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Abstract

We study the problem of learning the support of transition
matrix between random processes in a Vector Autoregres-
sive (VAR) model from samples when a subset of the pro-
cesses are latent. It is well known that ignoring the effect of
the latent processes may lead to very different estimates of
the influences among observed processes, and we are con-
cerned with identifying the influences among the observed
processes, those between the latent ones, and those from the
latent to the observed ones. We show that the support of tran-
sition matrix among the observed processes and lengths of all
latent paths between any two observed processes can be iden-
tified successfully under some conditions on the VAR model.
From the lengths of latent paths, we reconstruct the latent
subgraph (representing the influences among the latent pro-
cesses) with a minimum number of variables uniquely if its
topology is a directed tree. Furthermore, we propose an algo-
rithm that finds all possible minimal latent graphs under some
conditions on the lengths of latent paths. Our results apply to
both non-Gaussian and Gaussian cases, and experimental re-
sults on various synthetic and real-world datasets validate our
theoretical results.

Introduction

Identifying causal influences among time series is a problem
of interest in many fields. In macroeconomics, for instance,
researchers seek to understand what factors contribute to
economic fluctuations and how they interact with each other
(Lütkepohl and Krätzig 2004). In neuroscience, many re-
searchers focus on learning the interactions between differ-
ent regions of brain by analyzing neural spike trains (Roe-
broeck, Formisano, and Goebel 2005; Kim et al. 2014).

Granger causality (Granger 1969), transfer entropy
(Schreiber 2000), and directed information (Massey 1990;
Marko 1973; Quinn, Kiyavash, and Coleman 2013; Ete-
sami and Kiyavash 2014) are some of the most commonly
used measures in the literature to calculate time-delayed de-
pendence structures in time series. Measuring the reduction
of uncertainty in one variable after observing another vari-
able is the key concept behind such measures. Under cer-
tain assumptions, these measures may represent causal re-
lations among the variables (Pearl 2009; Spirtes, Glymour,
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and Scheines 2000). In (Eichler 2012), an overview of vari-
ous definitions of causation is given for time series.

In this work, we study the causal identification problem in
VAR models when only a subset of times series is observed.
More precisely, we assume that the available measurements
are a set of random processes �X(t) ∈ R

n which, together
with another set of latent random processes �Z(t) ∈ R

m,
where m ≤ n form a first order VAR model as follows:

[
�X(t+ 1)
�Z(t+ 1)

]
=

[
A11 A12

A21 A22

] [
�X(t)
�Z(t)

]
+

[
�ωX(t+ 1)
�ωZ(t+ 1)

]
. (1)

Here we assume that observed data were measured at the
right causal frequency of the VAR process; otherwise one
may need to consider the effect of the sampling procedure
such as subsampling or temporal aggregation (Danks and
Plis 2013; Gong et al. 2015; 2017). Under certain assump-
tions (e.g., causal sufficiency), the support of the transition
matrix corresponds to the causal structure between these
processes (Granger 1969; Spirtes, Glymour, and Scheines
2000; Pearl 2009). If we ignore the influence of latent pro-
cesses and just regress �X(t + 1) on �X(t), we may get a
wrong estimate of the transition matrix between observed
processes (see the example in (Geiger et al. 2015)). Hence,
it is crucial to consider the presence of latent processes and
their influences on the observed processes.

Contributions: The contributions of this paper are as fol-
lows: we propose a learning approach that recovers the ob-
served sub-network (support of A11) by regressing the ob-
served vector �X(t+ 1) on a set of its past observations (not
just �X(t)) as long as the graph representation of latent sub-
network (support of A22) is a directed acyclic graph (DAG)1.
We also derive a set of sufficient conditions under which we
can uniquely recover the influences from latent to observed
processes, (support of A12) and also the influences among
the latent variables, (support of A22). Additionally, we pro-
pose a sufficient condition under which the support of the
complete transition matrix can be recovered uniquely.

More specifically, we show that under an assumption on
the observed to latent noise power ratio, if neither of the sub-

1Support of matrix A is a matrix with the same size where entry
(i, j) is equal to one if the corresponding entry in A is nonzero.
Otherwise, it would be zero.
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matrices A12 and A21 are zero, it is possible to determine the
length of all directed latent paths2. We refer to this informa-
tion as linear measurements3. This information reveals im-
portant properties of the causal structure among the latent
and observed processes, i.e., support of [0, A12;A21, A22].
We call this sub-network of a VAR model unobserved net-
work. We show that in the case that the unobserved network
is a directed tree and each latent variable has at least two
parents and two children, a straightforward application of
(Patrinos and Hakimi 1972) can recover the unobserved net-
work uniquely. Furthermore, we propose Algorithm 1 that
recovers the support of A22 and A12 given the linear mea-
surements when only the latent sub-network is a directed
tree plus some extra structural assumptions (see Assump-
tion 2). Lastly, we study the causal structures of VAR mod-
els in a more general case in which there exists at most one
directed latent path of length k ≥ 2 between any two ob-
served processes (see Assumption 3). For such VAR models,
we propose Algorithm 2 that can recover all possible unob-
served networks with minimum number of latent processes.
Our results apply to both non-Gaussian and Gaussian cases,
and experimental results on various synthetic and real-world
datasets validate our theoretical results. All proofs can be
found in supplemental material.

Related works: The problem of recovering latent causal
structure for time series has been studied in the literature.
Assuming that connections between observed variables are
sparse and each latent variable interacts with many observed
variables, it has been shown that the transition matrix be-
tween observed variables can be identified in a VAR model
(Jalali and Sanghavi 2012). However, their approach focuses
on learning only the observed sub-network. (Boyen, Fried-
man, and Koller 1999) applied a method based on expec-
tation maximization (EM) to infer properties of partially
observed Markov processes, without providing theoretical
analysis for identifiability. (Geiger et al. 2015) showed that
if the exogenous noises are independent non-Gaussian and
additional so-called genericity assumptions hold, then the
sub-networks A11 and a part of A12 are uniquely identifi-
able. However, these assumptions may not hold true in a
real-world dataset even with three variables (Geiger et al.
2015). They also presented a result in which they allowed
Gaussian noises in their VAR model and obtained a set of
conditions under which they can recover up to

(
2n
n

)
can-

didate matrices for A11. Their learning approach is also
based on EM and approximately maximizes the likelihood
of a parametric VAR model with a mixture of Gaussians as
noise distribution. Recently, (Etesami, Kiyavash, and Cole-
man 2016) studied a network of processes (not necessary a
VAR model) whose underlying structure is a polytree and in-
troduced an algorithm that can learn the entire casual struc-
ture (observed and unobserved networks) using a particular
discrepancy measure.

Compared to related works, we show the identifiability

2A directed path is a latent path if it connects two observed
variables and all the intermediate variables on that path are latent.

3This is because it can be inferred from the observational data
using linear regression.

of new class of structures in the presence of latent pro-
cesses. Unlike (Geiger et al. 2015), we do not assume the
non-Gaussian distribution of the exogenous noises or those
genericity assumptions. Moreover, our results do not rely on
the assumption that connections between observed variables
are sparse or each latent variables interacts with many ob-
served variables as in (Jalali and Sanghavi 2012). Further-
more, these works (Geiger et al. 2015; Jalali and Sanghavi
2012) can uniquely identify at most a part of transition ma-
trix (A11 or a part of A12). We should emphasize that our
proposed methods are not necessarily more general than ex-
isting ones, but provide correct solutions under sensible as-
sumptions with graphical interpretation.

Problem Definition

In this part, we review some basic definitions and our nota-
tion. Throughout this paper, we use an arrow over the letters
to denote vectors. We assume that the time series are sta-
tionary and denote the autocorrelation of �X by γX(k) :=

E[ �X(t) �X(t − k)T ]. We denote the support of a matrix A
by Supp(A) and use Supp(A) ⊆ Supp(B) to indicate
[A]ij = 0 whenever [B]ij = 0. We also denote the Fourier
transform of g by F(g) and it is given by

∑∞
h=−∞ g(h)e−hΩj .

In a directed graph G = (V,
−→
E ) with the node set V and

the edge set
−→
E , we denote the set of parents of a node v

by Pv := {u : (u, v) ∈ −→
E } and the set of its children

by Cv := {u : (v, u) ∈ −→
E }. The skeleton of a directed

graph G is the undirected graph obtained by removing all
the directions in G.

System Model

Consider the VAR model in (1). Let �ωX(t) ∈ R
n and

�ωZ(t) ∈ R
m be i.i.d random vectors with mean zero. For

simplicity, we denote the matrix [A11, A12;A21, A22] by A.
Our goal is to recover Supp(A) from observational data, i.e.,
{ �X(t)}. Rewrite (1) as follows

�X(t+ 1) =

t∑
k=0

A∗k �X(t− k) +A12A
t
22

�Z(0)+

t−1∑
k=0

Ãk�ωZ(t− k) + �ωX(t+ 1), (2)

where A∗
0 := A11, A∗

k := A12A
k−1
22 A21 for k ≥ 1, and

Ãk := A12A
k
22.

Assumption 1. We assume that the A22 is acyclic, i.e.,
∃ 0 < l ≤ m, such that Al

22 = 0.

Based on the above assumption, for t ≥ l, Equation (2)
becomes4

�X(t+1) =

l∑
k=0

A∗k �X(t−k)+

l−1∑
k=0

Ãk�ωZ(t−k)+ �ωX(t+1). (3)

4Note that the limits of summations in (3) are changed.
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Figure 1: Two unobserved networks with the same linear
measurements. White circles denote latent nodes.

We are interested in recovering the set {Supp(A∗
k)}lk=0 be-

cause it captures important information about the structure
of the VAR model. Specifically, Supp(A∗

0) = Supp(A11);
so it represents the direct causal influences between the
observed variables and Supp(A∗

k) for k ≥ 1 determines
whether at least one directed path of length k + 1 exists
between any two observed nodes which goes through the
latent sub-network5. We will make use of this informa-
tion in our recovery algorithm. We call the set of matri-
ces {Supp(A∗

k)}k≥0, linear measurements. In Section 4, we
present a set of sufficient conditions under which given the
linear measurements, we can recover the entire or most parts
of the unobserved network uniquely.

Note that in general, the linear measurements cannot
uniquely specify the unobserved network. For example, Fig-
ure 1 illustrates two different unobserved networks that both
share the same set of linear measurements, A∗

k = 0 for k > 2
and the only nonzero entries of A∗

1 and A∗
2 are {(3, 2)} and

{(4, 1), (4, 2)}, respectively 6.

Identifiability of the Linear Measurements
As we need the linear measurements for our structure learn-
ing, in this section, we study a sufficient condition under
which we can recover the linear measurements from the ob-
served processes { �X(t)}. To do so, we start off by rewriting
Equation (3) as follows,

�X(t+ 1) = A �Xt−l:t +

l−1∑
k=0

Ãk�ωZ(t− k) + �ωX(t+ 1), (4)

where A := [A∗0, ..., A
∗
l ], and �Xt−l:t := [ �X(t); · · · ; �X(t − l)].

By projecting Ãk�ωZ(t−k) onto the vector space spanned by
the observed processes, i.e., { �X(t), ..., �X(t− l)}, we obtain

Ãk�ωZ(t−k)=

l∑
r=0

Cs
r
�X(t−r)+ �NZ(t−k), 0 ≤k≤ l−1, (5)

where { �NZ(t− k)} denote the residual terms and {Cs
r} are

the corresponding coefficient matrices. Substituting (5) into
(4) implies

�X(t+ 1) = B �Xt−l:t + �θ(t+ 1), (6)

5Herein, we exclude degenerate cases where there is a direct
path from an observed node to another one with length k but the
corresponding entry in matrix Supp(A∗k) is zero. In fact, such spe-
cial cases can be resolved by small perturbation of nonzero entries
in matrix A. In the causal discovery literature, this assumption is
known as faithfulness (Spirtes, Glymour, and Scheines 2000).

6In this work, a graph is a representation of transition matrix A.
In particular, there is a directed edge from node j to node i if entry
(i, j) of the matrix is nonzero.

where B := [B∗
0 , ..., B

∗
l ], B∗k := A∗k +

∑l−1
s=0 C

s
k, and �θ(t +

1) := �ωX(t+1)+
∑l−1

k=0
�NZ(t−k). Note that by this represen-

tation, �θ(t+ 1) is orthogonal to �Xt−l:t. Hence, Equation (6)
shows that the minimum mean square error (MMSE) esti-
mator can learn the coeffiecient matrix B given the observed
processes. More precisely, let ΓX(l) := E{ �Xt−l:t

�X T
t−l:t},

then we have

B = [γX(1), .., γX(l + 1)]× ΓX(l)−1. (7)

Proposition 1. Under Assumption 1, for the stationary VAR
model in (1), we have

||B∗
k −A∗

k||1 ≤
√

n(l−k−1)M/L||A12||2||A22||k+1
2 ,

where M := λmax(ΓωZ
(0)) and L := λmin (ΓX(0)).

This result implies that we can asymptotically recover
the support of {A∗

k}lk=0 as long as the absolute values of
non-zero entries of A∗

k are bounded away from zero by

2
√

n(l−k−1)ML ||A12||2||A22||k+1
2 . In Appendix (the sec-

ond section), we explained how these bounds can be esti-
mated from observational data.
Proposition 2. Let ΣX = σ2

XIn×n and ΣZ = σ2
ZIm×m be

the autocovariance matrices of �ωX(t) and �ωZ(t), respec-
tively. Then, the ratio M/L strictly increases by decreasing
σ2
X/σ2

Z .
Proposition 2 implies that when the σ2

X/σ2
Z increases,

M/L will decrease, and based on the bound in Proposi-
tion 1, the estimation error will decrease (it goes to zero
as σ2

X/σ2
Z tends to infinity). This shows that recovering the

linear measurements is much easier in high σ2
X/σ2

Z regime
as illustrated in Figure 3b. Note that Proposition 1 stresses
a suffiecient condition for recovering the linear measure-
ments. As shown in Figure 3b, in practice, the actual esti-
mation error is much smaller than the bound in Proposition
1. In the next section, we will make use of {Supp(A∗

k)}k>0

to recover the unobserved network. We assume that the cor-
rect linear measurements can be obtained from matrix B.

In order to estimate the support of matrix B from a finite
number of samples drawn from the observed processes, say
{ �X(t)}Tt=1, first we obtain the lag length l in (6) by AIC
or FPE criterion (see Chapter 4 in (Lütkepohl 2005)). Af-
terwards, we can estimate the coefficient matrix B, using an
empirical estimator for ΓX(l), {γX(h)}l+1

h=1, and then ap-
plying (7). Denote the result of this estimation by BT . It can
be shown that (Lütkepohl 2005),

√
Tvec(BT − B) d−−−−→

T→∞

N (0,Γ−1
X (l) ⊗ Σ), where d−→ denotes convergence in distri-

bution, and Σ is the autocovariance matrix of �θ(t). vec(.)
transforms a matrix to a vector by stacking its columns and
⊗ is the Kronecker product. Having the estimates of ΓX(l)
and Σ, we can test whether the entries of matrix B are
greater than the bounds in Proposition 1 (see Chapter 3 in
(Lütkepohl 2005)).

Learning the Unobserved Network

Recall that we refer to Supp([0, A12;A21, A22]) as the unob-
served network and Supp(A22) as the latent sub-network.

4002



We present three algorithms that take the linear measure-
ments {Supp(A∗k)}k≥0 as their input. The first algorithm re-
covers the entire unobserved network uniquely as long as it
is a directed tree and each latent node has at least two par-
ents and two children. The output of the second algorithm
is Supp([0, A12; Â21, A22]), where Supp(A21) ⊆ Supp(Â21).
This is guaranteed whenever the latent sub-network is a di-
rected tree and some extra conditions are satisfied on how
the latent and observed nodes are connected. The third algo-
rithm finds the set of all possible networks with minimum
number of latent nodes that are consistent with the measure-
ments. This algorithm is able to do so when there exists at
most one directed latent path of any arbitrarily length be-
tween two observed nodes. A directed path is latent if all the
intermediate variables on that path are latent.

Unobserved Network is a Directed Tree

Authors in (Patrinos and Hakimi 1972) introduced a neces-
sary and sufficient condition for recovering a weighted di-
rected tree uniquely from a valid distance matrix D defined
on the observed nodes,7 and also proposed a recovery algo-
rithm. The condition is as follows: every latent node must
have at least two parents and two children. A matrix D, in
(Patrinos and Hakimi 1972), is a valid distance matrix, when
[D]ij equals the sum of all the weights of those edges that
belong to the directed path from i to j, and [D]ij = 0, if
there is no directed path.

The algorithm in (Patrinos and Hakimi 1972) has two
phases. In the first phase, it creates a directed graph among
the observed nodes with the adjacency matrix Supp(D). In
the second phase, it recursively finds and removes the cir-
cuits by introducing latent nodes for each circuit8. For more
details, see (Patrinos and Hakimi 1972).

In order to adopt (Patrinos and Hakimi 1972)’s algorithm
for learning the unobserved network, we introduce a valid
distance matrix using our linear measurements as follows,
Dij = k + 1 if [Supp(A∗

k)]ji 
= 0 and 0, otherwise. Recall
that [Supp(A∗

k)]ji indicates whether there exists a directed
latent path from i to j of length k+1 in the unobserved net-
work. From theorem 8 in (Patrinos and Hakimi 1972), it is
easy to show that the unobserved network can be recovered
uniquely from above distance matrix if its topology is a di-
rected tree and every latent node has at least two parents and
two children.

Latent Sub-network is a Directed Tree

Definition 1. We denote the subset of observed nodes that
are parents of a latent node h by PO

h and denote the subset
of observed nodes for which h is a parent, by CO

h . We further
denote the set of all leaves in the latent sub-network by L.

We consider learning an unobserved network G that sat-
isfies the following assumptions.

7The skeleton of the recovered tree is the same as the original
one but not necessary the weights.

8In a directed graph, a circuit is a cycle after removing all the
directions.

Algorithm 1 DTR Algorithm
1: Input: {Supp(A∗

k)}k≥1

2: Find {li} using (8) and set U := ∅.
3: Find Ri,Mi from (9) for all 1 ≤ i ≤ n.
4: for i = 1, ..., n do
5: Yi := {j : j �= i ∧ lj = li}
6: if ∀j ∈ Yi, (Rj �⊆ Ri) ∨ (Rj = Ri ∧Mi ⊆ Mj) then
7: if i = min{k : Rk = Ri ∧Mk = Mi} then
8: Create node hi and set Phi={i}, U←{i} ∪U
9: end if

10: end if
11: end for
12: for every latent node hs do
13: if ∃hk, (lk = ls + 1) ∧ (Rs ⊆ Rk) then
14: Phs

← {hk} ∪ Phs

15: end if
16: Chs ← {j : [A∗1]js �= 0}
17: end for
18: for i = 1, ..., n do
19: if ∃ j ∈ U , s.t. Mj ⊆ Mi then
20: Phj

← {i} ∪ Phj

21: end if
22: end for

Assumption 2. Assume that the latent sub-network of G is
a directed tree. Furthermore, for any latent node h in G,
(i) PO

h 
⊆ ∪h �=jPO
j and, (ii) if h is a leaf of the latent sub-

network, then CO
h 
⊆ ∪i∈L,i �=hCO

i .

This assumption states that the latent sub-network of G
must be a directed tree such that each latent node in G
has at least one unique parent in the set of observed nodes.
That is, a parent who is not shared with any other la-
tent node. Furthermore, each latent leaf has at least one
unique child among the observed nodes. For instance, when
Supp(A22) represents a directed tree and both Supp(A12)
and Supp(A21) contain identity matrices, Assumption 2
holds. As we will see later in Experimental Results (Fig-
ure 3c), a large portion of randomly generated graphs satisfy
Assumption 2.

Figure 2e illustrates a simple network that satisfies As-
sumption 2 in which the unique parents of latent nodes
a, b, c, and d are {1}, {3}, {2}, and {4}, respectively. The
unique children of latent leaves c and d are {5} and {2, 4},
respectively.

Theorem 1. Among all unobserved networks that are con-
sistent with the linear measurements induced from (1), any
graph G that satisfies Assumption 2 has the minimum num-
ber of latent nodes.

Note that if Assumption 2 is violated, one can find many
unobserved networks that are consistent with the linear mea-
surements but are not minimum (in terms of the number of
latent nodes). For example, the network in Figure 2a satisfies
Assumption 2 (ii) but not (i). Figure 2b depicts an alternative
network with the same linear measurements as the network
in Figure 2a but it has fewer number of latent nodes. Sim-
ilarly, the graph in Figure 2c satisfies Assumption 2 (i) but
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Figure 2: Latent nodes are indicated by white circles. Graph (a) satisfies (ii) but not (i) and it can be reduced to (b). Graph
(c) satisfies (i) but not (ii) and it can be reduced to (d). (e) and (f) satisfy Assumption 2 and have the same induced linear
measurements but Supp(A21)(f)⊂Supp(A21)(e).

not (ii). Figure 2d shows an alternative graph with one less
latent node.

Theorem 2. Consider an unobserved network G with ad-
jacency matrix Supp([0, A12;A21, A22]). If G satisfies As-
sumption 2, then its corresponding linear measurements
uniquely identify G upto Supp([0, A12; Â21, A22]), where
Supp(A21) ⊆ Supp(Â21).

Figure 2e gives an example of a network satisfying As-
sumption 2 and an alternative network, Figure 2f, with the
same linear measurements which departs from the Figure 2e
in the A21 component.

Next, we propose the directed tree recovery (DTR) algo-
rithm that takes the linear measurements of an unobserved
network G satisfying Assumption 2 and recovers G upto
the limitation in Theorem 2. This algorithm consists of three
main loops. Recall that Assumption 2 implies that each la-
tent node has at least one unique observed parent. The first
loop finds all the unique observed parents for each latent
node (lines: 4-11). The second loop reconstructs Supp(A22)
and Supp(A12) (lines: 12-17). And finally, the third loop
constructs Supp(Â21) such that Supp(A21) ⊆ Supp(Â21)
(lines: 18-22).

The following lemma shows that the first loop of Algo-
rithm 1 can find all the unique observed parents from each
latent node. To present the lemma, we need the following
definitions.
Definition 2. For an observed node i, we define

li := max{k : [A∗k−1]si �= 0, for some s}, (8)

Ri := {j : [A∗li−1]ji �= 0}, Mi := {(j, r) : [A∗r−1]ji �= 0}. (9)

In the above equations, li denotes the length of longest di-
rected latent path that connects node i to any observed node.
Ri is the set of all observed nodes that can be reached by i
with a directed latent path of length li and set Mi consists
of all pairs (j, r) such that there exists a directed latent path
from i to j with length r.

Lemma 1. Under Assumption 2, an observed node i is the
unique parent of a latent node if and only if for any other
observed node j s.t. li = lj , we have (Rj 
⊆ Ri) ∨ (Rj =
Ri ∧Mi ⊆ Mj).

In the first loop, if there exist multiple unique parents of
a latent node (for instance, node 2 and node 3 in Figure 2b),
we pick the one with a minimum index (lines: 7-9).

Algorithm 2 NM Algorithm
1: Initialization: Construct graph G0.
2: G0 := G0, Gs := ∅, ∀s > 0
3: k := 0
4: while Gk 
= ∅ do
5: for G ∈ Gk do
6: for i′, j′ ∈ G do
7: if Check(G, i′, j′) then
8: Gk+1 := Gk+1 ∪ Merge(G, i′, j′).
9: end if

10: end for
11: end for
12: k := k + 1
13: end while
14: Output: Gout := Gk−1

The second loop recovers Supp(A22) based on the fol-
lowing observation. If a latent node hk is the parent of la-
tent node hs, then hk can reach all the observed nodes in
Rs, i.e., Rs ⊆ Rk and lk = ls + 1 (line: 13). Furthermore,
Supp(A12) can be recovered using the fact that an observed
node j is a children of a latent node hs, if a unique parent
of hs, e.g., s, can reach j by a directed latent path of length
2 (line: 16). Finally, the third loop reconstructs Supp(Â21)
by adding an observed node i to the parent set of latent node
hj , if i can reach all the observed nodes that a unique parent
of hj , e.g., j, reaches (lines: 18-22).
Proposition 3. Suppose network G satisfies Assumption 2.
Then given its corresponding linear measurements, Algo-
rithm 1 recovers G upto the limitation in Theorem 2.

Learning More General Unobserved Networks
with Minimum Number of Latent Nodes

In general, the latent sub-network may not be a tree or there
may not be a unique minimal unobserved network consistent
with the linear measurements (see Figure 1). Hence, we try
to find an efficient approach for recovering all possible min-
imal unobserved networks under some conditions. In fact,
without any extra conditions, finding a minimal unobserved
network is NP-hard.
Theorem 3. Finding an unobserved network that is both
consistent with a given linear measurements and has a min-
imum number of latent nodes is NP-hard.
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Figure 3: Average error in computing linear measurements.

Below, after some definitions, we propose the Node-
Merging (NM) algorithm that returns all possible unob-
served networks with minimum number of latent nodes un-
der the following assumption.

Assumption 3. Assume that there exists at most one di-
rected latent path of each length between any two observed
nodes.

For example, the graph in Figure 2f satisfies this assump-
tion but not the one in Figure 2e. This is because there are
two directed latent paths of length 2 from node 5 to node 4.

Definition 3. (Merging) We define merging two nodes i′ and
j′ in graph G as follows: remove node j′ and the edges be-
tween i′ and j′, and then give all the parents and children
of j′to i′. We denote the resulting graph after merging i′
and j′ by Merge(G, i′, j′). We say that two nodes i′ and j′
are mergeable if Merge(G, i′, j′) is consistent with the lin-
ear measurements of G.

Definition 4. (Connectedness) Consider an undirected
graph Ḡ over the observed nodes which is constructed as
follows: there is an edge between two nodes i and j in Ḡ, if
there exists k ≥ 1 s.t. Supp([A∗

k]ij) = 1 or Supp([A∗
k]ji) =

1; We say that two observed nodes i and j are “connected”
if there exists a path between them in Ḡ.

It can be seen that if pairs i, j and j, k are connected then
node i, k are also connected. We then define a connected
class as a subset of observed nodes in which any two nodes
are connected.

Initialization: We first find the set of all connected
classes, say S1, S2, ..., SC . For each class Sc, we create a
directed graph G0,c that is consistent with the linear mea-
surements. To do so, for any two observed nodes i, j ∈ Sc,
if [A∗

r ]ji 
= 0, we construct a directed path with length r+1
from node i to node j by adding r new latent nodes to G0,c.
Merger: In this phase, for any G0,c from the initialization
phase, we merge its latent nodes iteratively until no further
latent pairs can be merged. Since the order of mergers leads
to different networks with minimum number of latent nodes,
the output of this phase will be the set of all such networks.
Algorithm 2 summarizes the steps of NM algorithm. In this
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Figure 4: Recovering the minimal unobserved network
for instances of DRG(1/(2n), 1/(2n)) where n ∈
{10, ..., 100}, m = n/2.

algorithm, subroutine Check(G, i′, j′) checks whether two
nodes i′ and j′ are mergeable.

Theorem 4. Under Assumptions 1 and 3, the NM algorithm
returns the set of all networks that are consistent with the
linear measurements and have minimum number of latent
nodes.

Experimental Results

Synthetic Data: We considered a directed random graph,
denoted by DRG(p, q), such that there exists a directed link
between an observed and latent node with probability p, in-
dependently across all pairs, and there is a directed link be-
tween two latent nodes with probability q. If there is a link
between two nodes, we set the weight of that link uniformly
from [−a, a].

We utilize the method described in Section 3 to estimate
linear measurements with a significance level of 0.05. In or-
der to evaluate how well we can estimate the linear mea-
surements, we generated 1000 instances of DRG(0.4, 0.4)
with n + m = 100, ΣX = 0.1In×n,ΣZ = 0.1Im×m,
and a = 0.1. The length of the time series was set to
T = 1000. Let Supp(Â11) be the estimate of support
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Figure 5: Histogram of ||Supp(Â11)− Supp(A11)||2F .

of A11. In Figure 3a, the expected estimation error, i.e.
||Supp(Â11)−Supp(A11)||2F /n2, is computed, where ||.||F
is the Frobenius norm. One can see that the estimation error
decreases as the number of observed variables increases.

We also studied the effect of the observed to latent noise
power ratio (OLNR), σ2

X/σ2
Z , on ||B∗

0 − A∗
0||1, and com-

pared it with the bound given in Proposition 1. We generated
1000 instances of DRG(0.05, 0.05) with n = 5, m = 5, and
a = 0.1. As it can be seen in Figure 3b, the average estima-
tion error decreases as OLNR increases, as expected from
Proposition 2.

We investigated what percentage of instances of the ran-
dom graphs satisfy Assumption 2. We generated 1000 in-
stances of DRG(p, 1/n) with n = 100, and p ∈ [0.04, 0.2].
In Figure 3c, the probability of satisfying Assumption 2,
Psat., is depicted versus p for different numbers of latent
variables in the VAR model. For larger m, it is less likely to
see a unique observed parent for each latent node and thus
Psat. decreases. For a fixed m, the same phenomenon will
occur if we increase p when p is relatively large. Further-
more, for small p, there might exist some latent nodes that
have no observed parent or no observed children.

We also evaluated the performance of the NM algo-
rithm in random graphs. We generated 1000 instances of
DRG(1/2n, 1/2n) with n = 10, ..., 100 and m = n/2, and
computed the linear measurements. To save time, if for a
class of connected nodes the number of latent nodes gener-
ated in the initial phase exceeds 40, we supposed that the
corresponding instance cannot be recovered efficiently in
time and did not proceed to the merging phase. Figures 4a
and 4b depict the percentage of instances in which the algo-
rithm can recover all possible minimal unobserved networks
and the average run time (in seconds) of the algorithm, re-
spectively9. This plot shows that we can recover all possi-
ble minimal unobserved networks for a large portion of in-
stances efficiently even in relatively large networks.

US Macroeconomic Data: We considered the following
set of time series from the quarterly US macroeconomic data
for the period from 31-Mar-1947 to 31-Mar-2009 collected
from the St. Louis Federal Reserve Economic Database
(FRED) (FRE ): GDP, GDPDEF, COE, HOANBS, TB3MS,

9We performed the experiment on a Mac with 2×2.4 GHz 6-
Core Intel Xeon processor and 32 GB of RAM.
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Figure 6: US macroeconomic data.
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Figure 7: Dairy prices

PCEC, GPDI.
Assuming that the underlying dynamics is linear (see

Eq. (1)), we considered the estimated VAR model over
all variables as the ground truth. Then, we selected four
arbitrary times series as observed processes and com-
puted Supp(Â11). We divided the

(
7
4

)
= 35 possi-

ble selections into two classes: 1) high power, where
tr(E{ωX(t)ωX(t)T }) > τ for a fixed threshold τ ; 2) low
power: where tr(E{ωX(t)ωX(t)T }) < τ . In this experi-
ment, we set τ = 0.02. In Figure 5, we plotted the his-
tograms of ||Supp(Â11) − Supp(A11)||2F for these two
classes. As it can be seen, in the high power regime, most
of the possible selections have small estimation errors.

We also considered the following six time series of US
macroeconomic data during 1-Jun-2009 to 31-Dec-2016
from the same database: GDP, GPDI, PCEC, TBSMS, FED-
FUND, and GS10. We obtained the causal structure among
these six time series by fitting a VAR model on all of them
and considered the result as our ground truth (see Figure 6).
Then, we removed GPDI from the dataset and considered the
remaining five time series as observe processes and checked
whether the influences from the “latent” process (GPDI) can
be corrected estimated. We estimated the linear measure-
ments and gave them as an input to Algorithm 1, which suc-
cessfully recovered the ground truth (the estimated structure,
in which the latent process is denoted by a circle, is identical
to that in Figure 6).

Dairy Prices: A collection of three US dairy prices has
been observed monthly from January 1986 to December
2016 (Dai ): milk, butter, and cheese prices. We estimated
the VAR model on all the time series with lag length l =
1 and considered the resulting graph as our ground truth
(see Figure 7). Next, we omitted the butter prices from the
dataset and considered the milk and cheese prices as ob-
served processes. The estimated linear measurements were:
Supp(A∗

0) = Supp(A11) = [1, 1; 1, 0] and Supp(A∗
1) =

[0, 0; 1, 0]. Algorithm 1 correctly recovered the true causal
graph using this linear measurements. Note that so-called
genericity assumptions in (Geiger et al. 2015) do not hold
true for this data set (see Experiments section).

West German Macroeconomic Data: We considered the
quarterly West German consumption expenditures X1, fixed
investment X2, and disposable income X3, during 1960-
1982 (WG ). Similar to the previous experiment with dairy
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prices, we first obtained the entire transition matrix among
all the process. Figure 8 depicts the resulting graph. Next,
we considered X3 to be latent and used {X1, X2} to esti-
mate the linear measurements Supp(A∗

0) = Supp(A11) =
[0, 0; 1, 1] and Supp(A∗

1) = [1, 0; 1, 0]. Using this linear
measurements, Algorithm 1 recovered the true network in
Figure 8 correctly.

Conclusion and Future work

We considered the problem of estimating time-delayed in-
fluence structure from partially observed time series data.
Our approach consisted of two parts: First, we studied suf-
ficient conditions under which certain aspects of the influ-
ence structure of the underlying system are identifiable. Sec-
ond, we proposed two algorithms that recover the influence
structures satisfying the sufficient conditions given in the
first part. The proposed algorithms can construct the ob-
served sub-network (support of A11), the causal influences
from latent to observed processes (support of A12), and also
the causal influences among the latent variables (support of
A22), uniquely under a set of sufficient conditions. As a fu-
ture direction, we plan to extend our results to the case that
A22 might have cycles. In this work, we have seen examples
showing that unique recovery is not possible if any condi-
tions of Assumption 2 are violated. These conditions can be
a good starting point for the case that we have cycles in A22.
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