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Abstract

In this work we present classifier patching, an approach for
adapting an existing black-box classification model to new
data. Instead of creating a new model, patching infers re-
gions in the instance space where the existing model is error-
prone by training a classifier on the previously misclassified
data. It then learns a specific model to determine the error
regions, which allows to patch the old model’s predictions
for them. Patching relies on a strong, albeit unchangeable,
existing base classifier, and the idea that the true labels of
seen instances will be available in batches at some point in
time after the original classification. We experimentally eval-
uate our approach, and show that it meets the original de-
sign goals. Moreover, we compare our approach to existing
methods from the domain of ensemble stream classification
in both concept drift and transfer learning situations. Patch-
ing adapts quickly and achieves high classification accuracy,
outperforming state-of-the-art competitors in either adapta-
tion speed or accuracy in many scenarios.

1 Introduction

In practical classifications, one occasionally faces a scenario
where a given classification model needs to be adapted to
a changing environment, but neither can the model itself be
modified nor can it be re-trained because the necessary ex-
pert knowledge or training data are not available. For ex-
ample, consider the need for adaptation of legacy or expert
models, which have often been developed and successfully
deployed over decades, so that the required expertise for re-
programming them is no longer available. Moreover, they
may be implemented in hardware, so that it may be infeasi-
ble and impractical to reprogram the entire system.

Another application scenario is the specialization of uni-
versal models. Often, classification models have been de-
veloped for a general setting, but need to be refined to a
particular context. A typical case is the personalization of a
general user model to an individual user. The general model
is trained on historical data gathered from many users, and
therefore gives a good approximation of the average per-
son’s behavior. However, when considering the specific pref-
erences, needs or abilities of a single person, it is possible
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to improve the model’s predictions. Of course, the adap-
tation should only occur where necessary and helpful, and
should in general not hamper the performance of the origi-
nal model. A last example scenario is efficient model re-use.
In deep learning, substantial amounts of data and computa-
tional power is needed to train a model. For pattern recogni-
tion, such models are then often re-used in slightly different
contexts by taking the first layers of a generally trained im-
age classification network and re-training only the final layer
for a new classification task. However, this technique is spe-
cific to a neural network architecture, whereas we aim for a
generally applicable method.

In this paper, we propose classifier patching, a technique
which allows to adapt general black-box classification mod-
els to a new context. The key idea behind this approach is to
train classifiers that identify the regions of the instance space
in which adaptations are needed, and then train local classi-
fiers for these regions. We assume a setting where batchwise
labels of incoming examples are available. The adaptation
is triggered when a decay in the performance of the base
model is detected, with the goal of finding local patches to
the global classification model that act in a flexible and effi-
cient way without having to re-train the model from scratch.

The structure of this document is as follows. In Section 2,
we formalize the problem, explain the patching approach,
and relate it to previous work in concept drift and trans-
fer learning in Section 3. We then describe our evaluation
scenario and briefly explain the datasets and algorithms we
compare our approach against (Section 4). We give a sum-
mary of the experimental results in Section 5, and conclude
our work in Section 6.

2 Patching Classifiers

In the following, we introduce the Patching framework,
starting with a formal problem description in Section 2.1.

2.1 Problem Description

We assume a general instance space D of instances x with
labels l(x), and a black-box classifier C0. C0 is immutable
and inscrutable and is able to classify the examples of D
well, i.e., with a high probability Pr(C0(x) = l(x)). We
now receive new batches of examples Di, i > 0, for which
C0 makes imperfect predictions, presumably because the la-
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beling function li underlying Di is slightly different from
the function l, which C0 is approximating.
Formally, the assumption is that

Pr (C0(x) = li(x)) ≤ Pr (C0(x) = l(x)) .

Our goal is to learn classifiers Ci that approximate li as close
as possible.

2.2 The Patching Approach

A straight-forward way of addressing this problem is to di-
rectly train a classifier Ci = f(Di) from the instances of Di.
However, this approach is quite wasteful in terms of training
examples because it requires to re-train a complete classifier
from a sufficient number of samples. If |Di| is rather small,
we can expect the classification performance of Ci to be in-
ferior to the performance of a suitable combination Pi of the
classifiers C0 and Ci, because C0 is trained on a much larger
set of instances. Formally, we expect that there is

Pr (Pi(x) = li(x)) ≥ Pr (Ci(x) = li(x)) .

For constructing such a classifier Pi, our approach aims at
combining C0 and Ci in such a way, that the resulting en-
semble improves the performance over C0 and Ci alone.
This is achieved in two steps:

(i) We train a binary classifier Ei that is able to identify one
or more error regions Ri,j , in which C0 misclassifies data
of Di (illustrative example shown in Figure 1).

(ii) We train a new classifier Ci,j = f(Ri,j | C0), a so-called
patch, for each such region.
These two steps are further explained below. Optionally,

the original prediction of C0 can be added as an additional
attribute to both the error region and the patch learning steps.
At classification time for batch Di, the patching classifier
Pi first uses Ei to determine whether x lies in one of the
error regions Ri,j , and then uses the corresponding classifier
Ci,j for classification. If x does not lie in any error region
(i.e., if Ei(x) = 0), the classifier uses C0 for classifying the
example. More formally,

Pi(x) =

{
Ci,j(x) if Ei(x) = 1 ∧ x ∈ Ri,j(x),

C0(x) if Ei(x) = 0.

2.3 Learning Error Regions and Patches

After receiving a new batch of examples Di, we train a clas-
sifier that learns in which part of the instance space the base
classifier is likely to err, based on the sample Di. There-
fore, we define a new training set consisting of all examples
x ∈ Di, which are labeled with li(x) in Di, and which are
now re-labeled as

ei(x) = �(C0(x) �= li(x)).

In principle, any classifier Ei can be trained on this dataset to
predict the errors of C0 on Di. However, we assume a tree-
based or rule-based classifier, which divides the instance
space into smaller regions Ri,j .

Each error region Ri,j corresponds to a single rule (or the
leaf of a decision tree) of Ei that predicts 1, i.e., predicts that
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Figure 1: Learning error regions on a 2-dimensional dataset
with a base classifier C0 and instances from a different dis-
tribution Di

all examples of Di covered by this rule will be misclassified
by C0. Rules that predict 0 are ignored, as they identify re-
gions where C0 still operates well.

In order to learn patches for the error regions Ri,j , we
train one new classifier Ci,j for each region using all train-
ing examples (x, li(x)) ∈ Di where x ∈ Ri,j . This classi-
fier now serves as the predominant classifier for the decision
space region determined by Ri,j .

3 Related Work

The idea of patching is related to several well-known con-
cepts in machine learning, in particular the work on transfer
learning and concept drift. In the following sections we will
experimentally compare it to previous work in these areas.
Unlike these works, we assume a fixed, immutable base clas-
sifier, and our goal is not to re-learn or adapt this classifier,
but to track and model changes in the data relative to this
base classifier.

Overviews of work in transfer learning can be found in
(Torrey and Shavlik 2009; Pan and Yang 2010). The main
goal of transfer learning is to apply the knowledge of a
source task that has already been learned to a new target task
(Torrey and Shavlik 2009). The knowledge from the source
task is usually combined with additional information—e.g.
from the target task or a third, related task—to improve
learning in the target task.

In this work, we relate to specific experiments that were
conducted in (Dai et al. 2007; Gao et al. 2008; Pan and Yang
2010) for comparison. Those experiments are located in the
domain of inductive transfer learning with source and target
tasks being different, but related.
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A seminal paper on concept drift is authored by Widmer
and Kubat (1996), introducing the FLORA family of algo-
rithms to deal with various types of changing concepts in a
stream of data.

An overview of concept drift adaptation, its assumptions,
and its goals can be found in Gama et al. (2014). Concept
drift can be classified in multiple dimensions: duration, type
of transition, re-occurrence, etc. (Webb et al. 2016). The
general assumption to deal with concept drift affected clas-
sification is that the true label will be available after some
time, and can then be used to enhance the classifier for fu-
ture predictions. Recent work on concept drift is centered on
classification of massive amounts of stream data, where fast
processing and reduction of overall resources is paramount
(Aggarwal 2014).

The concept of Patching is quite similar to ensemble
methods such as stacking (Wolpert 1992; Ting and Witten
1999), where the idea is to collectively correct the predic-
tions of multiple classifiers by training a meta classifier that
combines their predictions. Most related to our technique
are arbitrating (Ortega, Koppel, and Argamon 2001) and
grading (Seewald and Fürnkranz 2001), which both already
feature the idea of training separate classifiers that indicate
where the base classifiers in an ensemble err. However, these
classifiers are then employed for filtering the predictions in
an ensemble, whereas we train a separate classifier on the
error regions. In this respect it is also related to boosting or
additive logistic regression (Friedman, Hastie, and Tibshi-
rani 2000), but the setting differs in that there, multiple iter-
ations are performed on the same data, whereas the goal here
is the adaptation to new data. It is also similar to reframing
(Hernández-Orallo et al. 2016), where the goal is to have a
unspecific general model that can be specialized for a par-
ticular task. Finally, patching may also be viewed as an in-
stance of exceptional model mining (Duivesteijn, Feelders,
and Knobbe 2016), in that it also focuses on recognizing and
modeling differences to a base model.

Due to the fact that our method uses an ensemble of classi-
fiers for data that occurs in batches, we rely on the extensive
survey by Gomes et al. (2017) to choose appropriate algo-
rithms to compare against.

4 Experimental Setup

In this section, we elaborate on the experiment setup. We
conduct experiments in three scenarios: We use Patching as
intended, in a scenario with a given classifier that is patched
based on the knowledge gained from new instances. Addi-
tionally, we apply it on concept drift and transfer learning
tasks.

We use the Massive Online Analysis (MOA) framework1

(Bifet et al. 2010) and the WEKA toolkit2 (Witten and Frank
2005) for machine learning, thereby simulating a real-world
scenario, where instances arrive one by one and labels are
available in batches some time after. From a data stream,
we preserve multiple batches of examples Di, together with
their respective labels li(x) for the learning steps. We allow

1http://moa.cms.waikato.ac.nz
2http://www.cs.waikato.ac.nz/ml/weka/
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Figure 2: Phases during the course of the stream. Change
points are shown as gray vertical lines (here at point 3.5),
the initialization phase ends at the dashed vertical line.

the Patching algorithm to store the most recent n batches, all
of which will be used to learn the error regions and respec-
tive patches. Different sizes of n yield different purposes:
small n are required for quicker adaptation, but larger n usu-
ally result in a better accuracy in the long run. In our experi-
ments we used a compromise value of n = 8 which yielded
overall adequate results in preliminary runs.

We use a chunk/batch-based evaluation method to retrieve
the performance of the classifier every m instances, for
which we split each dataset into a certain amount of batches
(Tab. 1). This way, we can use the whole dataset for training
and evaluation without having to rely on a separate hold-out
set. The classifiers can use previously evaluated instances to
incrementally expand their learning base.

In order to achieve this type of evaluation, we rely on the
EvaluateInterleavedChunks method provided by MOA. A
typical run of patching consists of four phases (illustrated
in Fig. 2):
– Initialization (Init): In the first phase, we create the base

classifier. In the evaluation part we will not show this
phase, because it is irrelevant to our findings.

– Base: In this phase, the dataset remains the same as in
the Init phase. The patching algorithm will start to collect
batches of instances, learn errors and update regularly.

– Adaptation: This phase starts with the first change point
(CP), where one or multiple changes in the data occur.
It ends when the performance has stabilized after the
changes.

– Finish: In the final phase, the concepts remain stable. It is
later used to calculate the final performance estimates that
the classifiers can achieve.
This setup represents a real-world usage scenario of clas-

sification on batches of instances. For the transfer-learning
experiments we aim at getting insight into how many in-
stances are required to reach a certain performance level
compared to the original data distribution. The Patching
scenario skips the initialization altogether, and starts at the
change point. In this scenario quick adaptation is the key
performance indicator. Here, the benchmark algorithms we
compare against start from scratch, whereas Patching has the
benefit of a given classifier (constructed from the data in the
Initialization phase).
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4.1 The Datasets

We evaluate the patching approach in a variety of different
scenarios, encompassing it’s intended use as well as concept
drift and transfer learning.

For the Patching scenario, we create experiments based
on MNIST3, to which we introduce various changes. We
also use the 20 newsgroups4 dataset, which originates from
the domain of transfer learning (Dai et al. 2007; Gao et
al. 2008). In the transfer learning and concept drift exper-
iments, we also rely on modified MNIST variants. Addition-
ally, the SEA concepts (Street and Kim 2001) and a dataset
created from a rotating hyperplane as described in Hulten,
Spencer, and Domingos (2001) are used for the concept drift
domain.

All datasets are explained below and described in Table 1
in detail. It shows a summary of all studied datasets, the
type of drift that occurs (Webb et al. 2016), and the num-
ber of change points. The Init value specifies the number
of instances used for the Initialization phase, Total specifies
the total number of instances, and Chunks is the number of
batches the dataset is divided into.

The MNIST Dataset The first dataset is the MNIST
dataset of handwritten digits. It consists of a total of 70,000
digits. We are randomizing the order, use it as a stream
and introduce four different variants of change. For the first
scenario, MNISTmerge, the labels of the stream are changed
such that classes 4,5,7 and 9 are all labeled as 9 at the
change point. For the second scenario MNISTappear, the la-
bels 3,5,7,9 do not exist during the initialization, and ap-

3http://yann.lecun.com/exdb/mnist/
4http://www.iesl.cs.umass.edu/data

Table 1: Summary of the datasets used in the experiments
Dataset Type Init Total Chunks CPs

Patching Domain
MNISTsplit — — 1000 100 —
MNISTswitch — — 1000 100 —
MNISTappear — — 1000 100 —
20NGR/T — — 1000 100 —
20NGR/S — — 1000 100 —

Transfer Domain
MNISTflip incr. 20k 140k 200 1
20NGR/T a, p 1600 4340 22 1
20NGS/T a, p 1600 4324 22 1
20NGR/S a, p 1600 4762 24 1

Concept Drift Domain
SEAlin a, i 100k 500k 200 2
SEAmulti a, i 100k 500k 200 2
RotHyp g, t 100k 500k 100 —
MNISTmerge a, p 20k 70k 100 1
MNISTappear a, p 20k 70k 100 1
MNISTswitch a, p 20k 70k 100 1
Drift Duration: a = abrupt, g = gradual
Transition: i = incremental, t = transient, p = permanent

pear at the change point. In MNISTflip the pixel values are
changed, so that the written digits are flipped both horizon-
tally and vertically. Finally, in MNISTswitch the classes of dig-
its are switched such that 2 becomes 4 and 3 becomes 5 and
vice versa.

20 Newsgroups The second dataset that we will use in
our evaluation is 20 Newsgroups. This dataset consists of
newsgroup entries and contains two hierarchical category
attributes, one being the top-category and the second be-
ing the subcategory. We derive a transfer learning task from
this dataset, such that the goal is to classify the top-category.
Therefore, we vectorize the text part of the dataset and split
it based on the subcategories. This means, that if A and B
are top-categories, and each has two subcategories A1, A2

and B1, B2, we split it such that A1 and B1 will be in the
training set, whereas A2 and B2 are put in the test set. There-
fore, the training and test sets are made up from different
subcategories and will show a varying distribution. We de-
rived three datasets 20NGR/S (Top category REC vs SCI),
20NGR/T (REC vs TALK), 20NGS/T (SCI vs TALK).

The SEA Dataset The SEA concepts dataset is a dataset
with abrupt concept drift (Street and Kim 2001) consisting
of three attributes, where the attributes are used to generate
the resulting binary label. All three attributes are real-valued
and have random values between 0 and 10.

We generate two variants of this dataset: SEAlin with a
linear and SEAmulti with a multiplicative relation between at-
tributes and class label. A threshold value θ will be changed
during the course of the instance stream to introduce concept
change. We generate a stream of 500,000 instances with 2
change points per dataset. Furthermore, 10% class noise is
added.

Rotating Hyperplane The last dataset we use is based
on a rotating hyperplane in a d-dimensional space as pro-
posed in (Hulten, Spencer, and Domingos 2001), with which
a binary stream classification problem can be constructed.
The hyperplane is defined by the set of points x that sat-
isfy

∑d
i=1 wixi = w0 where xi is the i-th attribute of

x. The class for each instance is determined as such: If∑d
i=1 wixi ≥ w0, the class is positive, otherwise it is neg-

ative. By changing the weights wi, the orientation and posi-
tion of the hyperplane can be changed. We generate a stream
RotHyp of 500,000 instances with 10 numeric attributes and
introduce a slow movement of the hyperplane. Thereby we
simulate a continuous gradual shift in the problem space.

4.2 The Patching Environment

The Patching algorithm builds an ensemble of classifiers,
consisting of three classification steps: (i) the base classifier
C0, (ii) the error region classifiers Ei and (iii) the patches
Ci,j . Our implementation allows any WEKA classifier to be
used for each of the steps. In our experiments, we primarily
use random forests (RF) with 100 random trees, mostly be-
cause this is a fast algorithm and gives good results without
requiring extensive parameter optimization.

As a base classifier, we train a random forest on all in-
stances from the initialization phase.
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In order to learn the error region classifiers, random
forests only give binary information, which does not allow
us to identify multiple error regions. For this reason, we us
a version of the RIPPER (Cohen 1995) rule learning al-
gorithm, specifically modified to determine by which of its
rules an instance has been classified, allowing us to specify
precise error regions by using each triggered rule as a re-
gion. For some problems, this works remarkably well, out-
performing the binary error regions. However, in general
scenarios the binary variant performs equally good, most
likely a result of the random forests behavior.

The entire patching framework is implemented in MOA
and publicly available on GitHub 5.

4.3 Benchmark Algorithms

In this work, we compare our algorithm against some state-
of-the-art ensemble learning algorithms. In order to ensure
comparable results between the algorithms, we rely on ran-
dom decision trees as the general underlying classifier. In
general, Patching can use any given classifier as base, error
region detector and for the patches. Our goal of parameter-
izing the algorithms is that they have a maximum of 500
(random) trees in their ensemble to achieve comparable re-
sults. When we use RIPPER as error region detector, we
can not guarantee a maximum number of error regions and
hence patches. Therefore we decided to use random forests
(with 100 trees each) for error regions and the patch. Patch-
ing can be configured to keep multiple batches in a FIFO
queue. We keep the most recent 8 batches for the concept
drift and transfer problems, and all batches for the Patching
scenario, where the batch size is very small and all gath-
ered information is crucial. The base classifier for Patching
is trained as a random forest with 100 random trees.

The accuracy-weighted ensemble (AWE) by (Wang et al.
2003) constructs an ensemble of weighted classifiers based
on their accuracy w.r.t. a time-evolving environment. The
accuracy-updated ensemble (AUE) by (Brzeziński and Ste-
fanowski 2011) extends this idea such that updates based on
the current distribution are possible as well as it fixes some
problems with AWE. Furthermore, we compare our Algo-
rithm with OzaBoost (Oza 2005), which is essentially an
online-version of boosting for data-streams that can also be
used in a batch-scenario. We also looked into DACC (Jaber,
Cornuéjols, and Tarroux 2013), but appropriate parametriza-
tion was difficult and therefore we excluded it from the ex-
perimental comparison. For AWE, we set the ensemble size
to 5 random forests, each consisting of 100 random trees.
AUE is configured similarly, with a maximum of 500 ran-
dom trees. OzaBoost is allowed to use 500 random Hoeffd-
ing Trees (Domingos and Hulten 2000), since it does not
support generic random trees.

Since there is—to our knowledge—no transfer learning
algorithm that deals with the transfer learning problem as a
streaming situation, we will also apply said algorithms for
the transfer learning experiments. In our experiments, we
choose the baseline performance to be a classifier that is

5https://github.com/Shademan/Patching/releases/tag/
AAAI2018
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Figure 3: Sample results of stream classification accuracy
for problems that resemble the intended use of patching

trained on the data of the initialization phase and has no ca-
pabilities to adapt during the course of the stream. It is also
a random forest consisting of 100 random trees.

4.4 Evaluation Measures

For the comparison of the algorithms we use the following
metrics:

– Final Accuracy (F.Acc.): Classification accuracy, mea-
sured in the second half of the Finish phase

– Recovery Speed (R.Spd): Number of instances that a clas-
sifier requires during the Adaptation phase to achieve 95%
of its final accuracy.

– Adaptation Rank (Ad.Rk): Average Rank of the classifier
during the Adaptation phase.

– Final Rank (F.Rk): Average Rank of the classifier during
the Finish phase.

We ran each algorithm 10 times on every dataset with dif-
ferent random seeds and averaged over the results for the 10
runs. The standard deviation of accuracy in those 10 runs
was smaller than 2%.

5 Results

In this section, we give an overview of our experimental re-
sults for the datasets described in the previous section. We
treat all the problems as stream problems, which allows us to
measure how quickly a classifier reacts to concept change,
or how much additional information it needs to adapt to a
transfer situation. Furthermore, we show exemplary graphs
of the adaptation behavior for selected datasets.
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Table 2: Experiment results for the patching scenario
Classifier F.Acc R.Spd Ad.Rk F.Rk

MNISTappear
Baseline 59.41 — 1.96 2.00
AUE 43.83 > 20k 3.24 3.00
AWE 25.56 20 4.60 5.00
OzaBoost 37.18 360 4.16 4.00
PatchingRF-RF-all 81.85 220 1.04 1.00

MNISTmerge
Baseline 70.71 — 1.96 2.00
AUE 48.12 100 4.24 3.00
AWE 42.51 20 3.48 5.00
OzaBoost 44.37 80 4.28 4.00
PatchingRF-RF-all 86.66 20 1.04 1.00

MNISTflip
Baseline 24.55 — 3.48 4.00
AUE 45.03 > 20k 2.68 2.00
AWE 22.28 20 4.68 5.00
OzaBoost 28.65 140 3.00 3.00
PatchingRF-RF-all 74.19 > 20k 1.16 1.00

MNISTswitch
Baseline 59.73 — 1.84 2.00
AUE 43.68 > 20k 3.20 3.00
AWE 25.35 20 4.64 5.00
OzaBoost 37.17 360 4.16 4.00
PatchingRF-RF-all 83.35 320 1.16 1.00

20NGR/S

Baseline 67.18 — 2.08 2.00
AUE 61.26 260 3.88 4.00
AWE 56.04 0 4.48 5.00
OzaBoost 65.08 440 3.48 3.00
PatchingRF-RF-all 73.09 0 1.08 1.00

20NGR/T

Baseline 63.65 — 4.64 5.00
AUE 68.75 0 3.08 3.45
AWE 68.56 0 3.28 3.55
OzaBoost 82.01 160 1.52 1.00
PatchingRF-RF-all 77.83 240 2.48 2.00

5.1 Patching Scenario

In Table 2 we show the results of the datasets which put
Patching to it’s intended use: Leveraging a given model and
adapt to changes relative to it. As we can see, Patching ex-
cels in almost all scenarios w.r.t. the adaptation rank (Ad.Rk)
and the final rank (F.Rk). The recovery speed (R.Spd) values
may be misleading, since the final accuracy of Patching is
higher for most datasets. The examples in Figure 3 demon-
strate the behavior over the course of the instances. As can
be seen, Patching shows both a better start and quicker adap-
tation, since it can leverage the given classifier. Although
in some settings, it does not improve significantly from it.
Overall, Patching achieves the highest rank for adaptation
and final accuracy in five of six datasets.

5.2 Transfer Learning Datasets

The results for transfer learning are shown in Table 3.
Each of the applied algorithms shows strengths and weak-
nesses regarding both adaptation speed and final perfor-
mance. Patching performs well overall, but not significantly
better (cf. Fig. 4), the only exception being 20NGS/T .
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Figure 4: Exemplary results of stream classification accu-
racy for transfer problems

Table 3: Experiment results in the transfer domain
Classifier F.Acc R.Spd Ad.Rk F.Rk

MNISTflip
Baseline 23.79 — 4.60 5.00
AUE 93.62 3500 3.00 1.19
AWE 91.24 1400 1.60 2.29
OzaBoost 89.28 5600 3.53 4.00
PatchingRF-RF-8 91.39 2100 2.27 2.52

20NGR/S

Baseline 64.36 — 3.33 5.00
AUE 71.70 360 3.78 3.10
AWE 91.79 240 1.37 1.00
OzaBoost 67.73 300 4.44 3.90
PatchingRF-RF-8 85.03 720 2.07 2.00

20NGS/T

Baseline 48.75 — 4.52 5.00
AUE 79.22 300 2.38 3.50
AWE 78.81 180 2.62 3.50
OzaBoost 86.78 540 2.19 2.00
PatchingRF-RF-8 91.07 780 3.29 1.00

5.3 Concept Drift Datasets

Table 4 shows the results for all concept drift-related
datasets. As we can see, Patching performs well in adapta-
tion rank where it achieves the highest rank 4 out of 6 times.
In final rank, however, Patching, OzaBoost and AUE per-
form very similar with no significant differences. It has to
be mentioned that the other ensemble methods are contin-
uously improving algorithms and might start to outperform
Patching at some point, given more instances (Fig. 5).
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Figure 5: Exemplary results of stream classification accu-
racy for concept drift problems

5.4 Statistical Evaluation

In order to show that Patching has significant advantages,
we applied the non-parametrical Friedmann test (Friedmann
1937) to our average ranks of both adaptation and final ac-
curacy, followed by the Nemenyi post-hoc test (Nemenyi
1963) as shown in (Demšar 2006) to assure pairwise signif-
icance and calculate critical distances. For this calculation
we removed the Baseline from the ranking, since it distorts
the Friedmann test on the null-hypothesis that all algorithms
are equally good. For our rankings, the critical distance is
1.22. Regarding the final ranks, Patching is significantly bet-
ter than AWE (distance 1.77) and OzaBoost (distance 1.73)
and in the same group as AUE (distance 0.9). For the adapta-
tion rank the distances are similar (AUE:1.2, AWE:1.23, Oz-
aBoost:1.43), which means that Patching performs signif-
icantly better compared to AWE and OzaBoost while AUE
is just within the range of non-significance. The statistical
evaluation was performed on all ranked results.

6 Conclusion

In this work, we have introduced Patching, i.e., the idea
of learning local corrections to existing classifiers, thereby
eliminating the need for re-learning an existing classifier. We
have shown experimentally that classifier patching works
well for its intended use: scenarios where the classifier can
leverage a pre-existing model for new situations, where (par-
tial) adaptation is required and regions of erroneous in-
stances can be determined and patched. Because of its de-
sign, it adapts faster in these scenarios than the benchmark
algorithms. Patching can also be applied to scenarios in
transfer learning or situations of concept drift, where it man-

Table 4: Experiment results in the concept drift domain
Classifier F.Acc R.Spd Ad.Rk F.Rk

MNISTappear
Baseline 59.23 — 4.47 5.00
AUE 90.87 2100 3.00 2.67
AWE 90.94 2800 2.80 2.33
OzaBoost 87.23 1400 3.67 4.00
PatchingRF-RF-8 93.21 1400 1.07 1.00

MNISTswitch
Baseline 59.54 — 3.89 5.00
AUE 91.42 4200 3.44 2.47
AWE 91.23 2100 2.33 2.53
OzaBoost 88.46 4200 3.33 4.00
PatchingRF-RF-8 93.77 3500 2.00 1.00

RotHyp
Baseline 53.02 — 4.90 5.00
AUE 84.78 10000 3.90 4.00
AWE 89.96 5000 2.24 1.64
OzaBoost 88.11 0 1.62 3.00
PatchingRF-RF-8 89.98 15000 2.33 1.36

SEAmulti
Baseline 85.59 — 4.84 5.00
AUE 99.38 0 2.35 1.00
AWE 98.20 0 2.32 3.14
OzaBoost 97.71 0 3.94 3.81
PatchingRF-RF-8 98.92 0 1.55 2.05

SEAlin
Baseline 67.35 — 4.90 5.00
AUE 99.81 5000 2.20 1.62
AWE 99.54 0 2.56 2.81
OzaBoost 95.20 0 3.83 4.00
PatchingRF-RF-8 99.78 5000 1.51 1.57

ages to rival state-of-the-art competitors in either adaptation
speed or accuracy in many scenarios. However, for massive
online analysis, where classification is learned from zero, we
recommend the state-of-the-art ensemble algorithms that are
mentioned in this paper for their focus on computationally
efficient behavior.

In the future, we will improve Patching in order to achieve
better computational performance and improve upon some
issues we encountered. For example, a major issue is the
parameter for the number of kept batches. Choosing this
parameter optimally affects both the adaptation speed and
the final performance. By adaptive windowing techniques
and batch weighting we can probably improve the speed
while simultaneously increasing the final accuracy. We are
also looking into other methods for learning the error re-
gions, more specifically clustering algorithms. One of the
main current constraints on computational efficiency is the
re-learning of error regions and patches, which we want to
address by adaptive error region learning and updateable
patch classifiers.
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Jaber, G.; Cornuéjols, A.; and Tarroux, P. 2013. Online
Learning: Searching for the Best Forgetting Strategy Under
Concept Drift. In Proceedings of the 20th International Con-
ference on Neural Information Processing – ICONIP ’13,
400–408. Springer.
Nemenyi, P. 1963. Distribution-Free Multiple Comparisons.
Ph.D. Dissertation, Princeton University.
Ortega, J.; Koppel, M.; and Argamon, S. 2001. Arbitrat-
ing Among Competing Classifiers Using Learned Referees.
Knowledge and Information Systems 3(4):470–490.
Oza, N. C. 2005. Online Bagging and Boosting. In Proceed-
ings of the 2005 IEEE International Conference on Systems,
Man and Cybernetics – SMC ’05, 2340–2345.
Pan, S. J., and Yang, Q. 2010. A Survey on Transfer Learn-
ing. IEEE Transactions on Knowledge and Data Engineer-
ing 22(10):1345–1359.
Seewald, A. K., and Fürnkranz, J. 2001. An Evaluation
of Grading Classifiers. In Advances in Intelligent Data
Analysis: Proceedings of the 4th International Conference
– IDA ’01, 115–124.
Street, W. N., and Kim, Y. 2001. A Streaming Ensemble Al-
gorithm (SEA) for Large-Scale Classification. In Proceed-
ings of the 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining – KDD ’01, 377–
382. ACM.
Ting, K. M., and Witten, I. H. 1999. Issues in Stacked
Generalization. Journal of Artificial Intelligence Research
10:271–289.
Torrey, L., and Shavlik, J. 2009. Transfer Learning. In
Handbook of Research on Machine Learning Applications
and Trends: Algorithms, Methods, and Techniques, vol-
ume 1. Information Science Reference. 242–264.
Wang, H.; Fan, W.; Yu, P. S.; and Han, J. 2003. Min-
ing Concept-Drifting Data Streams Using Ensemble Clas-
sifiers. In Proceedings of the 9th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing – KDD ’03, 226–235. AcM.
Webb, G. I.; Hyde, R.; Cao, H.; Nguyen, H. L.; and Petitjean,
F. 2016. Characterizing Concept Drift. Data Mining and
Knowledge Discovery 30(4):964–994.
Widmer, G., and Kubat, M. 1996. Learning in the Presence
of Concept Drift and Hidden Contexts. Machine Learning
23(1):69–101.
Witten, I. H., and Frank, E. 2005. Data Mining: Practi-
cal Machine Learning Tools and Techniques. Morgan Kauf-
mann.
Wolpert, D. H. 1992. Stacked Generalization. Neural Net-
works 5(2):241–260.

3381


