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Abstract

Many real-world reinforcement learning problems have a hi-
erarchical nature, and often exhibit some degree of partial
observability. While hierarchy and partial observability are
usually tackled separately (for instance by combining recur-
rent neural networks and options), we show that address-
ing both problems simultaneously is simpler and more ef-
ficient in many cases. More specifically, we make the initi-
ation set of options conditional on the previously-executed
option, and show that options with such Option-Observation
Initiation Sets (OOIs) are at least as expressive as Finite State
Controllers (FSCs), a state-of-the-art approach for learning in
POMDPs. OOIs are easy to design based on an intuitive de-
scription of the task, lead to explainable policies and keep the
top-level and option policies memoryless. Our experiments
show that OOIs allow agents to learn optimal policies in chal-
lenging POMDPs, while being much more sample-efficient
than a recurrent neural network over options.

1 Introduction

Real-world applications of reinforcement learning (RL) face
two main challenges: complex long-running tasks and par-
tial observability. Options, the particular instance of Hier-
archical RL we focus on, addresses the first challenge by
factoring a complex task into simpler sub-tasks (Barto and
Mahadevan 2003; Roy, Gordon, and Thrun 2006; Tessler et
al. 2016). Instead of learning what action to perform de-
pending on an observation, the agent learns a top-level pol-
icy that repeatedly selects options, that in turn execute se-
quences of actions before returning (Sutton, Precup, and
Singh 1999). The second challenge, partial observability, is
addressed by maintaining a belief of what the agent thinks
the full state is (Kaelbling, Littman, and Cassandra ’ 1998;
Cassandra, Kaelbling, and Littman 1994), reasoning about
possible future observations (Littman, Sutton, and Singh
2001; Boots, Siddiqi, and Gordon 2011), storing information
in an external memory for later reuse (Peshkin, Meuleau,
and Kaelbling 1999; Zaremba and Sutskever 2015; Graves
et al. 2016), or using recurrent neural networks (RNNs) to
allow information to flow between time-steps (Bakker 2001;
Mnih et al. 2016).
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In planning, options are already used to increase the plan-
ning horizon under uncertainty (He, Brunskill, and Roy
2011; Lim, Hsu, and Lee 2011) and to construct policies
robust to partial observability (Omidshafiei et al. 2017),
but learning algorithms for hierarchical partially observ-
able tasks are not yet ideal. HQ-Learning decomposes a
task into a sequence of fully-observable subtasks (Wier-
ing and Schmidhuber 1997), which precludes cyclic tasks
from being solved. Using recurrent neural networks in op-
tions and for the top-level policy (Sridharan, Wyatt, and
Dearden 2010) addresses both challenges, but brings in
the design complexity of RNNs (Józefowicz, Zaremba, and
Sutskever 2015; Angeline, Saunders, and Pollack 1994;
Mikolov et al. 2014). RNNs also have limitations regard-
ing long time horizons, as their memory decays over time
(Hochreiter and Schmidhuber 1997).

In her PhD thesis, Precup (2000, page 126) suggests that
options may already be close to addressing partial observ-
ability, thus removing the need for more complicated solu-
tions. In this paper, we prove this intuition correct by:

1. Showing that standard options do not suffice in POMDPs;

2. Introducing Option-Observation Initiation Sets (OOIs),
that make the initiation sets of options conditional on the
previously-executed option;

3. Proving that OOIs make options at least as expressive as
Finite State Controllers (Section 3.2), thus able to tackle
challenging POMDPs.

In contrast to existing HRL algorithms for POMDPs (Wier-
ing and Schmidhuber 1997; Theocharous 2002; Sridharan,
Wyatt, and Dearden 2010), OOIs handle repetitive tasks, do
not restrict the action set available to sub-tasks, and keep the
top-level and option policies memoryless. A wide range of
robotic and simulated experiments in Section 4 confirm that
OOIs allow partially observable tasks to be solved optimally,
demonstrate that OOIs are much more sample-efficient than
a recurrent neural network over options, and illustrate the
flexibility of OOIs regarding the amount of domain knowl-
edge available at design time. In Section 4.5, we demonstrate
the robustness of OOIs to sub-optimal option sets. While it
is generally accepted that the designer provides the options
and their initiation sets, we show in Section 4.4 that ran-
dom initiation sets, combined with learned option policies
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Figure 1: Robotic object gathering task. a) Khepera III, the
two-wheeled robot used in the experiments. b) The robot has
to gather objects from two terminals separated by a wall, and
to bring them to the root.

and termination functions, allow OOIs to be used without
any domain knowledge.

1.1 Motivating Example

OOIs are designed to solve complex partially-observable
tasks that can be decomposed into a set of fully-observable
sub-tasks. For instance, a robot with first-person sensors
may be able to avoid obstacles, open doors or manipulate
objects even if its precise location in the building is not ob-
served. We now introduce such an environment, on which
our robotic experiments of Section 4.3 are based.

A Khepera III robot1 has to gather objects from two termi-
nals separated by a wall, and to bring them to the root (see
Figure 1). Objects have to be gathered one by one from a
terminal until it becomes empty, which requires many jour-
neys between the root and a terminal. When a terminal is
emptied, the other one is automatically refilled. The robot
therefore has to alternatively gather objects from both termi-
nals, and the episode finishes after the terminals have been
emptied some random number of times. The root is colored
in red and marked by a paper QR-code encoding 1. Each ter-
minal has a screen displaying its color and a dynamic QR-
code (1 when full, 2 when empty). Because the robot cannot
read QR-codes from far away, the state of a terminal cannot
be observed from the root, where the agent has to decide to
which terminal it will go. This makes the environment par-
tially observable, and requires the robot to remember which
terminal was last visited, and whether it was full or empty.

The robot is able to control the speed of its two wheels. A
wireless camera mounted on top of the robot detects bright
color blobs in its field of view, and can read nearby QR-
codes. Such low-level actions and observations, combined
with a complicated task, motivate the use of hierarchical re-
inforcement learning. Fixed options allow the robot to move
towards the largest red, green or blue blob in its field of view.
The options terminate as soon as a QR-code is in front of the
camera and close enough to be read. The robot has to learn
a policy over options that solves the task.

The robot may have to gather a large number of objects,
alternating between terminals several times. The repetitive

1http://www.k-team.com/mobile-robotics-products/
old-products/khepera-iii
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Figure 2: Observations of the Khepera robot. a) Color im-
age from the camera. b) Color blobs detected by the vision
system, as observed by the robot. QR-codes can only be de-
coded when the robot is a couple of inches away from them.

nature of this task is incompatible with HQ-Learning (Wier-
ing and Schmidhuber 1997). Options with standard initiation
sets are not able to solve this task, as the top-level policy is
memoryless (Sutton, Precup, and Singh 1999) and cannot
remember from which terminal the robot arrives at the root,
and whether that terminal was full or empty. Because the
terminals are a dozen feet away from the root, almost a hun-
dred primitive actions have to be executed to complete any
root/terminal journey. Without options, this represents a time
horizon much larger than usually handled by recurrent neu-
ral networks (Bakker 2001) or finite history windows (Lin
and Mitchell 1993).

OOIs allow each option to be selected conditionally on the
previously executed one (see Section 3.1), which is much
simpler than combining options and recurrent neural net-
works (Sridharan, Wyatt, and Dearden 2010). The ability of
OOIs to solve complex POMDPs builds on the time abstrac-
tion capabilities and expressiveness of options. Section 4.3
shows that OOIs allow a policy for our robotic task to be
learned to expert level. Additional experiments demonstrate
that both the top-level and option policies can be learned by
the agent (see Section 4.4), and that OOIs lead to substantial
gains over standard initiation sets even if the option set is
reduced or unsuited to the task (see Section 4.5).

2 Background

This section formally introduces Markov Decision Pro-
cesses (MDPs), Options, Partially Observable MDPs
(POMDPs) and Finite State Controllers, before presenting
our main contribution in Section 3.

2.1 Markov Decision Processes

A discrete-time Markov Decision Process (MDP)
〈S,A,R, T, γ〉 with discrete actions is defined by a
possibly-infinite set S of states, a finite set A of actions,
a reward function R(st, at, st+1) ∈ R, that provides a
scalar reward rt for each state transition, a transition
function T (st, at, st+1) ∈ [0, 1], that outputs a probability
distribution over new states st+1 given a (st, at) state-action
pair, and 0 ≤ γ < 1 the discount factor, that defines how
sensitive the agent should be to future rewards.

A stochastic memoryless policy π(st, at) ∈ [0, 1] maps a
state to a probability distribution over actions. The goal of
the agent is to find a policy π∗ that maximizes the expected
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cumulative discounted reward Eπ∗ [
∑

t γ
trt] obtainable by

following that policy.

2.2 Options

The options framework, defined in the context of MDPs
(Sutton, Precup, and Singh 1999), consists of a set of options
O where each option ω ∈ O is a tuple 〈πω, Iω, βω〉, with
πω(st, at) ∈ [0, 1] the memoryless option policy, βω(st) ∈
[0, 1] the termination function that gives the probability for
the option ω to terminate in state st, and Iω ⊆ S the initia-
tion set that defines in which states ω can be started (Sutton,
Precup, and Singh 1999).

The memoryless top-level policy μ(st, ωt) ∈ [0, 1] maps
states to a distribution over options and allows to choose
which option to start in a given state. When an option ω is
started, it executes until termination (due to βω), at which
point μ selects a new option based on the now current state.

2.3 Partially Observable MDPs

Most real-world problems are not completely captured
by MDPs, and exhibit at least some degree of par-
tial observability. A Partially Observable MDP (POMDP)
〈Ω, S, A,R, T,W, γ〉 is an MDP extended with two com-
ponents: the possibly-infinite set Ω of observations, and the
W : S → Ω function that produces observations x based on
the unobservable state s of the process. Two different states,
requiring two different optimal actions, may produce the
same observation. This makes POMDPs remarkably chal-
lenging for reinforcement learning algorithms, as memory-
less policies, that select actions or options based only on the
current observation, typically no longer suffice.

2.4 Finite State Controllers

Finite State Controllers (FSCs) are commonly used in
POMDPs. An FSC 〈N , ψ, η, η0〉 is defined by a finite set
N of nodes, an action function ψ(nt, at) ∈ [0, 1] that maps
nodes to a probability distribution over actions, a successor
function η(nt−1, xt, nt) ∈ [0, 1] that maps nodes and obser-
vations to a probability distribution over next nodes, and an
initial function η0(x1, n1) ∈ [0, 1] that maps initial observa-
tions to nodes (Meuleau et al. 1999).

At the first time-step, the agent observes x1 and activates a
node n1 by sampling from η0(x1, ·). An action is performed
by sampling from ψ(n1, ·). At each time-step t, a node nt

is sampled from η(nt−1, xt, ·), then an action at is sampled
from ψ(nt, ·). FSCs allow the agent to select actions accord-
ing to the entire history of past observations (Meuleau et
al. 1999), which has been shown to be one of the best ap-
proaches for POMDPs (Lin and Mitchell 1992). OOIs, our
main contribution, make options at least as expressive and as
relevant to POMDPs as FSCs, while being able to leverage
the hierarchical structure of the problem.

3 Option-Observation Initiation Sets

Our main contribution, Option-Observation Initiation Sets
(OOIs), make the initiation sets of options conditional on
the option that has just terminated. We prove that OOIs
make options at least as expressive as FSCs (thus suited to

POMDPs, see Section 3.2), even if the top-level and option
policies are memoryless, while options without OOIs are
strictly less expressive than FSCs (see Section 3.3). In Sec-
tion 4, we show on one robotic and two simulated tasks that
OOIs allow challenging POMDPs to be solved optimally.

3.1 Conditioning on Previous Option

Descriptions of partially observable tasks in natural lan-
guage often contain allusions at sub-tasks that must be se-
quenced or cycled through, possibly with branches. This is
easily mapped to a policy over options (learned by the agent)
and sets of options that may or may not follow each other.

A good memory-based policy for our motivating exam-
ple, where the agent has to bring objects from two termi-
nals to the root (see Section 1.1), can be described as “go to
the green terminal, then go to the root, then go back to the
green terminal if it was full, to the blue terminal otherwise”,
and symmetrically so for the blue terminal. This sequence of
sub-tasks, that contains a condition, is easily translated to a
set of options. Two options, ωGF and ωGE , sharing a single
policy, go from the green terminal to the root (using low-
level motor actions). ωGF is executed when the terminal is
full, ωGE when it is empty. At the root, the option that goes
back to the green terminal can only follow ωGF , not ωGE .
When the green terminal is empty, going back to it is there-
fore forbidden, which forces the agent to switch to the blue
terminal when the green one is empty.

We now formally define our main contribution, Option-
Observation Initiation Sets (OOIs), that allow to describe
which options may follow which ones. We define the ini-
tiation set Iω of option ω so that the set Ot of options avail-
able at time t depends on the observation xt and previously-
executed option ωt−1:

Iω ⊆ Ω× (O ∪ {∅})
Ot ≡ {ω ∈ O : (xt, ωt−1) ∈ Iω}

with ω0 = ∅, Ω the set of observations and O the set of op-
tions. Ot allows the agent to condition the option selected at
time t on the one that has just terminated, even if the top-
level policy does not observe ωt−1. The top-level and option
policies remain memoryless. Not having to observe ωt−1

keeps the observation space of the top-level policy small,
instead of extending it to Ω×O, without impairing the repre-
sentational power of OOIs, as shown in the next sub-section.

3.2 OOIs Make Options as Expressive as FSCs

Finite State Controllers are state-of-the-art in policies appli-
cable to POMDPs (Meuleau et al. 1999). By proving that
options with OOIs are as expressive as FSCs, we provide a
lower bound on the expressiveness of OOIs and ensure that
they are applicable to a wide range of POMDPs.
Theorem 1. OOIs allow options to represent any policy that
can be expressed using a Finite State Controller.

Proof. The reduction from any FSC to options requires one
option 〈n′

t−1, nt〉 per ordered pair of nodes in the FSC, and
one option 〈∅, n1〉 per node in the FSC. Assuming that n0 =
∅ and η(∅, x1, ·) = η0(x1, ·), the options are defined by:
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A B

Figure 3: Two-nodes Finite State Controller that emits an in-
finite sequence ABAB... based on an uninformative observa-
tion x∅. This FSC cannot be expressed using options without
OOIs.

β〈n′
t−1,nt〉(xt) = 1 (1)

π〈n′
t−1,nt〉(xt, at) = ψ(nt, at) (2)

μ(xt, 〈n′
t−1, nt〉) = η(n′

t−1, xt, nt) (3)
I〈∅,n1〉 = Ω× {∅}

I〈n′
t−1,nt〉 = Ω× {〈n′

t−2, nt−1〉 : n′
t−1 = nt−1}

Each option corresponds to an edge of the FSC. Equa-
tion 1 ensures that every option stops after having emitted
a single action, as the FSC takes one transition every time-
step. Equation 2 maps the current option to the action emit-
ted by the destination node of its corresponding FSC edge.
We show that μ and I〈n′

t−1,nt〉 implement η(nt−1, xt, nt),
with ωt−1 = 〈n′

t−2, nt−1〉, by:

μ(xt, 〈n′
t−1, nt〉) =⎧⎪⎪⎪⎨

⎪⎪⎪⎩

η(nt−1, xt, nt)
〈n′

t−2, nt−1〉 ∈ I〈n′
t−1,nt〉

⇔ n′
t−1 = nt−1

0
〈n′

t−2, nt−1〉 /∈ I〈n′
t−1,nt〉

⇔ n′
t−1 �= nt−1

Because η maps nodes to nodes and μ selects options
representing pairs of nodes, μ is extremely sparse and re-
turns a value different from zero, η(nt−1, xt, nt), only when
〈n′

t−2, nt−1〉 and 〈n′
t−1, nt〉 agree on nt−1.

Our reduction uses options with trivial policies, that ex-
ecute for a single time-step, which leads to a large amount
of options to compensate. In practice, we expect to be able
to express policies for real-world POMDPs with much less
options than the number of states an FSC would require, as
shown in our simulated (Section 4.4, 2 options) and robotic
experiments (Section 4.3, 12 options). In addition to being
sufficient, the next sub-section proves that OOIs are neces-
sary for options to be as expressive as FSCs.

3.3 Original Options are not as Expressive as
FSCs

While options with regular initiation sets are able to express
some memory-based policies (Sutton, Precup, and Singh
1999, page 7), the tiny but valid Finite State Controller pre-
sented in Figure 3 cannot be mapped to a set of options and a
policy over options (without OOIs). This proves that options
without OOIs are strictly less expressive than FSCs.

Theorem 2. Options without OOIs are not as expressive as
Finite State Controllers.

Proof. Figure 3 shows a Finite State Controller that emits
a sequence of alternating A’s and B’s, based on a constant
uninformative observation x∅. This task requires memory
because the observation does not provide any information
about what was the last letter to be emitted, or which one
must now be emitted. Options having memoryless policies,
options executing for multiple time-steps are unable to rep-
resent the FSC exactly. A combination of options that exe-
cute for a single time-step cannot represent the FSC either, as
the options framework is unable to represent memory-based
policies with single-time-step options (Sutton, Precup, and
Singh 1999).

4 Experiments

The experiments in this section illustrate how OOIs allow
agents to perform optimally in environments where options
without OOIs fail. Section 4.3 shows that OOIs allow the
agent to learn an expert-level policy for our motivating ex-
ample (Section 1.1). Section 4.4 shows that the top-level and
option policies required by a repetitive task can be learned,
and that learning option policies allow the agent to lever-
age random OOIs, thereby removing the need for designing
them. In Section 4.5, we progressively reduce the amount of
options available to the agent, and demonstrate how OOIs
still allow good memory-based policies to emerge when a
sub-optimal amount of options are used.

All our results are averaged over 20 runs, with standard
deviation represented by the light regions in the figures. The
source code, raw experimental data, run scripts, and plotting
scripts of our experiments, along with a detailed description
of our robotic setup, are available on GitHub.2 A video de-
tailing our robotic experiment is available on YouTube.3

4.1 Learning Algorithm

All our agents learn their top-level and option policies (if not
provided) using a simplified version of the Option-Critic ar-
chitecture (Bacon, Harb, and Precup 2017), where the critic
is replaced by Monte-Carlo returns, and a single neural net-
work learns the policies and termination functions of all
the options. Our neural network π takes three inputs and
produces one output. The inputs are problem-specific ob-
servation features x, the one-hot encoded current option ω
(ω = 0 when executing the top-level policy), and a mask,
mask. The output y is the joint probability distribution over
selecting actions or options (so that the same network can be
used for the top-level and option policies), while terminating
or continuing the current option:

h1 = tanh(W1[x
TωT ]T + b1),

ŷ = σ(W2h1 + b2) ◦mask,

y =
ŷ

1T ŷ
,

2github.com/vub-ai-lab/options-with-oois
3youtu.be/VprJZEOD5NE
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with Wi and bi the trainable weights and biases of layer i,
σ the sigmoid function, and ◦ the element-wise product of
two vectors. The fraction ensures that a valid probability dis-
tribution is produced by the network. The initiation sets of
options are implemented using the mask input of the neural
network, a vector of 2×(|A|+|O|) integers, the same dimen-
sion as the y output. When executing the top-level policy
(ω = 0), the mask forces the probability of primitive ac-
tions to zero, preserves option ωi according to Iωi

, and pre-
vents the top-level policy from terminating. When executing
an option policy (ω �= 0), the mask only allows primitive
actions to be executed. For instance, if there are two options
and three actions, mask = end

cont (
0 0 1 1 1
0 0 1 1 1 ) when execut-

ing any of the options. When executing the top-level policy,
mask = end

cont (
0 0 0 0 0
a b 0 0 0 ), with a = 1 if and only if the op-

tion that has just finished is in the initiation set of the first
option, and b = 1 according to the same rule but for the
second option. The neural network π is trained using Policy
Gradient, with the following loss:

L(π) = −
T∑

t=0

(Rt − V (xt, ωt)) log(π(xt, ωt, at))

with at ∼ π(xt, ωt, ·) the action executed at time t. The re-
turn Rt =

∑T
τ=t γ

τrτ , with rτ = R(sτ , aτ , sτ+1), is a sim-
ple discounted sum of future rewards, and ignores changes
of current option. This gives the agent information about the
complete outcome of an action or option, by directly eval-
uating its flattened policy. A baseline V (xt, ωt) is used to
reduce the variance of the L estimate (Sutton et al. 2000).
V (xt, ωt) predicts the expected cumulative reward obtain-
able from xt in option ωt using a separate neural network,
trained on the monte-carlo return obtained from xt in ωt.

4.2 Comparison with LSTM over Options

In order to provide a complete evaluation of OOIs, a variant
of the π and V networks of Section 4.1, where the hidden
layer is replaced with a layer of 20 LSTM units (Hochre-
iter and Schmidhuber 1997; Sridharan, Wyatt, and Dearden
2010), is also evaluated on every task. We use 20 units as this
leads to the best results in our experiments, which ensures a
fair comparison of LSTM against OOIs. In all experiments,
the LSTM agents are provided the same set of options as
the agent with OOIs. Not providing any option, or less op-
tions, leads to worse results. Options allow the LSTM net-
work to focus on important observations, and reduces the
time horizon to be considered. Shorter time horizons have
been shown to be beneficial to LSTM (Bakker 2001).

Despite our efforts, LSTM over options only manages to
learn good policies in our robotic experiment (see Section
4.3), and requires more than twice the amount of episodes
as OOIs to do so. In our repetitive task, dozens of repetitions
seem to confuse the network, that quickly diverges from any
good policy it may learn (see Section 4.4). On TreeMaze,
a much more complex version of the T-maze task, origi-
nally used to benchmark LSTM agents (Bakker 2001), the
LSTM agent learns the optimal policy after more than 100K
episodes (not shown on the figures). These results illustrate
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Figure 4: Cumulative reward per episode obtained on our
object gathering task, with OOIs, without OOIs, and using
an LSTM over options. OOIs learns an expert-level policy
much quicker than an LSTM over options. The LSTM curve
flattens-out (with high variance) after about 30K episodes.

how learning with recurrent neural networks is sometimes
difficult, and how OOIs allow to reliably obtain good results,
with minimal engineering effort.

4.3 Object Gathering

The first experiment illustrates how OOIs allow an expert-
level policy to be learned for a complex robotic partially-
observable repetitive task. The experiment takes place in
the environment described in Section 1.1. A robot has to
gather objects one by one from two terminals, green and
blue, and bring them back to the root location. Because our
actual robot has no effector, it navigates between the root
and the terminals, but only pretends to move objects. The
agent receives a reward of +2 when it reaches a full termi-
nal, -2 when the terminal is empty. At the beginning of the
episode, each terminal contains 2 to 4 objects, this amount
being selected randomly for each terminal. When the agent
goes to an empty terminal, the other one is re-filled with 2
to 4 objects. The episode ends after 2 or 3 emptyings (com-
bined across both terminals). Whether a terminal is full or
empty is observed by the agent only when it is at the ter-
minal. The agent therefore has to remember information ac-
quired at terminals in order to properly choose, at the root,
to which terminal it will go.

The agent has access to 12 memoryless options that go
to red (ωR1..R4), green (ωG1..G4) or blue objects (ωB1..B4),
and terminate when the agent is close enough to them to
read a QR-code displayed on them. The initiation set of
ωR1,R2 is ωG1..G4, of ωR3,R4 is ωB1..B4, and of ωGi,Bi is
ωRi ∀i = 1..4. This description of the options and their
OOIs is purposefully uninformative, and illustrates how lit-
tle information the agent has about the task. The option set
used in this experiment is also richer than the simple exam-
ple of Section 3.1, so that the solution of the problem, not
going back to an empty terminal, is not encoded in OOIs but
must be learned by the agent.

Agents with and without OOIs learn top-level policies
over these options. We compare them to a fixed agent,
using an expert top-level policy that interprets the op-
tions as follows: ωR1..R4 go to the root from a full/empty
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green/blue terminal (and are selected accordingly at the ter-
minals depending on the QR-code displayed on them), while
ωG1..G4,B1..B4 go to the green/blue terminal from the root
when the previous terminal was full/empty and green/blue.
At the root, OOIs ensure that only one option amongst go to
green after a full green, go to green after an empty blue, go
to blue after a full blue and go to blue after an empty green
is selected by the top-level policy: the one that corresponds
to what color the last terminal was and whether it was full
or empty. The agent goes to a terminal until it is empty, then
switches to the other terminal, leading to an average cumu-
lative reward of 10.4

When the top-level policy is learned, OOIs allow the task
to be solved, as shown in Figure 4, while standard initiation
sets do not allow the task to be learned. Because experiments
on a robot are slow, we developed a small simulator for this
task, and used it to produce Figure 4 after having success-
fully asserted its accuracy using two 1000-episodes runs on
the actual robot. The agent learns to properly select options
at the terminals, depending on the QR-code, and to output a
proper distribution over options at the root, thereby match-
ing our expert policy. The LSTM agent learns the policy too,
but requires more than twice the amount of episodes to do
so. The high variance displayed in Figure 4 comes from the
varying amounts of objects in the terminals, and the random
selection of how many times they have to be emptied.

Because fixed option policies are not always available, we
now show that OOIs allow them to be learned at the same
time as the top-level policy.

4.4 Modified DuplicatedInput

In some cases, a hierarchical reinforcement learning agent
may not have been provided policies for several or any of its
options. In this case, OOIs allow the agent to learn its top-
level policy, the option policies and their termination func-
tions. In this experiment, the agent has to learn its top-level
and option policies to copy characters from an input tape to
an output tape, removing duplicate B’s and D’s (mapping
ABBCCEDD to ABCCED for instance; B’s and D’s always
appear in pairs). The agent only observes a single input char-
acter at a time, and can write at most one character to the
output tape per time-step.

The input tape is a sequence of N symbols x ∈ Ω, with
Ω = {A,B,C,D,E} and N a random number between
20 and 30. The agent observes a single symbol xt ∈ Ω,
read from the i-th position in the input sequence, and does
not observe i. When t = 1, i = 0. There are 20 actions
(5×2×2), each of them representing a symbol (5), whether
it must be pushed onto the output tape (2), and whether i
should be incremented or decremented (2). A reward of 1
is given for each correct symbol written to the output tape.
The episode finishes with a reward of -0.5 when an incorrect
symbol is written.

The agent has access to two options, ω1 and ω2. OOIs are
designed so that ω2 cannot follow itself, with no such re-

4 2+3
2

×(−2+ 2+4
2

×2), 2 or 3 emptyings of terminals that con-
tain 2 to 4 objects. Average confirmed experimentally from 1000
episodes using the policy, p > 0.30.
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Figure 5: Cumulative reward per episode obtained on modi-
fied DuplicatedInput, with random or designed OOIs, with-
out OOIs and using an LSTM over options. Despite our ef-
forts, an LSTM over options repeatedly learns then forgets
optimal policies, as shown by the high variance of its line.

striction on ω1. No reward shaping or hint about what each
option should do is provided. The agent automatically dis-
covers that ω1 must copy the current character to the output,
and that ω2 must skip the character without copying it. It
also learns the top-level policy, that selects ω2 (skip) when
observing B or D and ω2 is allowed, ω1 otherwise (copy).

Figure 5 shows that an agent with two options and OOIs
learns the optimal policy for this task, while an agent with
two options and only standard initiation sets (Iω = Ω ∀ω)
fails to do so. The agent without OOIs only learns to copy
characters and never skips any (having two options does not
help it). This shows that OOIs are necessary for learning this
task, and allow to learn top-level and option policies suited
to our repetitive partially observable task.

When the option policies are learned, the agent becomes
able to adapt itself to random OOIs, thereby removing the
need for designing them. For an agent with N options, each
option has N

2 randomly-selected options in its initiation set,
with the initiation sets re-sampled for each run. The agents
learn how to leverage their option set, and achieve good re-
sults on average (16 options used in Figure 5, more options
lead to better results). When looking at individual runs, ran-
dom OOIs allow optimal policies to be learned, but several
runs require more time than others to do so. This explains
the high variance and noticeable steps shown in Figure 5.

The next section shows that an improperly-defined set of
human-provided options, as may happen in design phase,
still allows the agent to perform reasonably well. Combined
with our results with random OOIs, this shows that OOIs
can be tailored to the exact amount of domain knowledge
available for a particular task.

4.5 TreeMaze

The optimal set of options and OOIs may be difficult to
design. When the agent learns the option policies, the pre-
vious section demonstrates that random OOIs suffice. This
experiment focuses on human-provided option policies, and
shows that a sub-optimal set of options, arising from a mis-
specification of the environment or normal trial-and-error in
design phase, does not prevent agents with OOIs from learn-
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Figure 6: TreeMaze environment. The agent starts at x1 and
must go to one of the leaves. The leaf to be reached is indi-
cated by 3 bits observed at time-steps 1, 2 and 3.

ing reasonably good policies.
TreeMaze generalizes the T-maze environment (Bakker

2001) to arbitrary heights. The agent starts at the root of the
tree-like maze depicted in Figure 6, and has to reach the ex-
tremity of one of the 8 leaves. The leaf to be reached (the
goal) is chosen uniformly randomly before each episode,
and is indicated to the agent using 3 bits, observed one at
a time during the first 3 time-steps. The agent receives no bit
afterwards, and has to remember them in order to navigate to
the goal. The agent observes its position in the current cor-
ridor (0 to 4) and the number of T junctions it has already
crossed (0 to 3). A reward of -0.1 is given each time-step,
+10 when reaching the goal. The episode finishes when the
agent reaches any of the leaves. The optimal reward is 8.2.

We consider 14 options with predefined memoryless poli-
cies, several of them sharing the same policy, but encod-
ing distinct states (among 14) of a 3-bit memory where
some bits may be unknown. 6 partial-knowledge options
ω0−−, ω1−−, ω00−, ..., ω11− go right then terminate. 8 full-
knowledge options ω000, ω001, ..., ω111 go to their corre-
sponding leaf. OOIs are defined so that any option may only
be followed by itself, or one that represents a memory state
where a single 0 or - has been flipped to 1. Five agents have
to learn their top-level policy, which requires them to learn
how to use the available options to remember to which leaf
to go. The agents do not know the name or meaning of the
options. Three agents have access to all 14 options (with,
without OOIs, and LSTM). The agent with OOIs (8) only
has access to full-knowledge options, and therefore cannot
disambiguate unknown and 0 bits. The agent with OOIs (4)
is restricted to options ω000, ω010, ω100 and ω110 and there-
fore cannot reach odd-numbered goals. The options of the
(8) and (4) agents terminate in the first two cells of the first
corridor, to allow the top-level policy to observe the second
and third bits.

Figure 7 shows that the agent with OOIs (14) consistently
learns the optimal policy for this task. When the number of
options is reduced, the quality of the resulting policies de-
creases, while still remaining above the agent without OOIs.
Even the agent with 4 options, that cannot reach half the
goals, performs better than the agent without OOIs but 14
options. This experiment demonstrates that OOIs provide
measurable benefits over standard initiation sets, even if the
option set is largely reduced.
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Figure 7: Cumulative reward per episode obtained on
TreeMaze, using 14, 8 or 4 options. Even with an insufficient
amount of options (8 or 4), OOIs lead to better performance
than no OOIs but 14 options. LSTM over options learns the
task after more than 100K episodes (not shown).

Combined, our three experiments demonstrate that OOIs
lead to optimal policies in challenging POMDPs, consis-
tently outperform LSTM over options, allow the option poli-
cies to be learned, and can still be used when reduced or no
domain knowledge is available.

5 Conclusion and Future Work

This paper proposes OOIs, an extension of the initiation sets
of options so that they restrict which options are allowed
to be executed after one terminates. This makes options as
expressive as Finite State Controllers. Experimental results
confirm that challenging partially observable tasks, simu-
lated or on physical robots, one of them requiring exact in-
formation storage for hundreds of time-steps, can now be
solved using options. Our experiments also illustrate how
OOIs lead to reasonably good policies when the option set is
improperly defined. Furthermore, we show that learning the
top-level and option policies in parallel allow random OOIs
to be used, thereby providing a solution to partial observable
problems without requiring engineering work.

Options with OOIs also perform surprisingly well com-
pared to an LSTM network over options. While LSTM over
options does not require the design of OOIs, their ability
to learn without any a-priori knowledge comes at the cost
of sample efficiency and explainability. Furthermore, ran-
dom OOIs are as easy to use as an LSTM and lead to supe-
rior results (see Section 4.4). OOIs therefore provide a com-
pelling alternative to recurrent neural networks over options,
applicable to a wide range of problems, able to use domain
knowledge when available, but not requiring it.

Finally, the compatibility between OOIs and a large vari-
ety of reinforcement learning algorithms leads to many fu-
ture research opportunities. For instance, we have obtained
very encouraging results with CACLA (Van Hasselt and
Wiering 2007), in continuous-action hierarchical POMDPs,
and we are working on extending OOIs to multi-objective
POMDPs (Roijers, Whiteson, and Oliehoek 2015).
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