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Abstract

In designing personalized ranking algorithms, it is desirable
to encourage a high precision at the top of the ranked list. Ex-
isting methods either seek a smooth convex surrogate for a
non-smooth ranking metric or directly modify updating pro-
cedures to encourage top accuracy. In this work we point out
that these methods do not scale well in a large-scale setting,
and this is partly due to the inaccurate pointwise or pairwise
rank estimation. We propose a new framework for personal-
ized ranking. It uses batch-based rank estimators and smooth
rank-sensitive loss functions. This new batch learning frame-
work leads to more stable and accurate rank approximations
compared to previous work. Moreover, it enables explicit use
of parallel computation to speed up training. We conduct
empirical evaluations on three item recommendation tasks,
and our method shows a consistent accuracy improvement
over current state-of-the-art methods. Additionally, we ob-
serve time efficiency advantages when data scale increases.

Introduction

The task of personalized ranking is to provide each user
with a ranked list of items that he might prefer. It has re-
ceived considerable attention in academic research (Hu, Ko-
ren, and Volinsky 2008; Rendle et al. 2009; He et al. 2016),
and algorithms developed are applied in various applications
in e-commerce (Linden, Smith, and York 2003), social net-
works (Chen et al. 2009), location (Liu et al. 2014), etc.
However, personalized ranking remains a very challenging
task: 1) The learning objectives of ranking models are hard
to directly optimize. For example, the quality of the model
output is commonly evaluated by ranking measures such as
NDCG, MAP, and MRR, which are position-dependent (or
rank-dependent) and non-smooth. It makes gradient-based
optimization infeasible and also computationally expensive.
2) The size of an item set that a ranking task uses can be very
large. It is not uncommon to see an online recommender sys-
tem with millions of items. As a consequence, it increases
the difficulty of capturing user preferences over the entire
set of items. It also makes it harder to compute or estimate
the rank of a particular item.

Traditional approaches model user preferences with rank-
independent algorithms. Pairwise algorithms convert the
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learning task into many binary classification problems and
optimize the average classification accuracy. For exam-
ple, BPR (Rendle et al. 2009) maximizes the probability
of correct prediction of each pairwise item comparison.
MMMF (Srebro, Rennie, and Jaakkola 2005) minimizes a
margin loss for each pair in a matrix factorization setting.
Listwise algorithms such as those recently explored by (Hi-
dasi et al. 2015; Covington, Adams, and Sargin 2016) treat
the problem as a multi-class classification and use cross-
entropy as the loss function.

Despite the simplicity and wide application, these rank-
independent methods are not satisfactory because the qual-
ity of results from a ranking system is highly position-
dependent. A high accuracy at the top of a list is more im-
portant than that at a low position on the list. However, the
average accuracy targeted by the pairwise algorithms dis-
cussed above places equal weights at all the positions. This
mismatch therefore leads to under-exploitation in the pre-
diction accuracy at the top part. Listwise algorithms, on the
other hand, do make an attempt to push items to the top using
a classification scheme. However, its classification criterion
also does not match well with ranking.

Position-dependent approaches are explored to address
the above limitations. One critical question is how to ap-
proximate item ranks to perform rank-dependent training.
TFMAP (Shi et al. 2012a) and ClifMF (Shi et al. 2012b) ap-
proximate an item rank purely based on the model score of
this item, i.e., a pointwise estimate. Particularly, it models
the reciprocal rank of an item with a sigmoid transformed
from the score returned by the model. TFMAP then opti-
mizes a smoothed modification of MAP, while ClifMF op-
timizes MRR. This pointwise estimation is simple, but it is
only loosely connected to the true ranks. The estimation be-
comes even more unreliable as the itemset size increases.

An arguably more direct approach is to optimize the ranks
of relevant items returned by the model to encourage top
accuracy. It requires the computation or estimation of item
ranks and modification of the updating strategy. This idea
is explored in traditional learning to rank methods Lamb-
daNet (Burges et al. 2005), LambdaRank (Burges, Ragno,
and Le 2007), etc., where the learning rate is adjusted based
on item ranks. In personalized ranking, WARP (Weston,
Bengio, and Usunier 2010) propose to use a sampling proce-
dure to estimate item ranks. It repeatedly samples negative
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items until it finds one that has a higher score. Then the num-
ber of sampling trials is used to estimate item ranks. This
stochastic pairwise estimation is intuitive. WARP is also
found to be more competitive than BPR (Hong, Doumith,
and Davison 2013). A more recent matrix factorization
model LambdaFM (Yuan et al. 2016) adopts the same rank
estimation. However, this pairwise rank estimator becomes
very noisy and unstable as the itemset size increases (as we
will demonstrate). It takes a large number of sampling it-
erations for each estimation. Moreover, its intrinsic online
learning fashion prevents full utilization of available paral-
lel computation (e.g., GPUs), making it hard to train large or
flexible models which rely on the parallel computation.

The limitations of these approaches largely come from the
stochastic pairwise estimation component. As a comparison,
training with batch or mini-batch together with parallel com-
putation has recently offered opportunities to tackle scala-
bility challenges. (Hidasi et al. 2015) use a sampled clas-
sification setting to train a RNNs-based recommender sys-
tem. (Covington, Adams, and Sargin 2016) deploy a two-
stage classification system in YouTube video recommenda-
tion. Parallel computation (e.g., GPUs) are extensively used
to accelerate training and support flexible models.

In this work we propose a novel framework to do person-
alized ranking. Our aim is to have better rank approxima-
tions and advocate the top accuracy in large-scale settings.
The contributions of this work are:

• We propose rank estimations that are based on batch com-
putation. They are shown to be more accurate and stable
in approximating the true item rank.

• We propose smooth loss functions that are “rank-
sensitive.” This advocates top accuracy by optimizing
the loss function values. Being differentiable, the func-
tions are easily implemented and integrated with back-
propagation updates.

• Based on batch computation, the algorithms explicitly uti-
lize parallel computation to speed up training. They lend
themselves to flexible models which rely on more exten-
sive computation.

• Our experiments on three item recommendation tasks
show consistent accuracy improvements over state-of-the-
art algorithms. They also show time efficiency advantages
when data scale increases.

The remainder of the paper is organized as follows: We
first introduce notations and preliminary methods. We next
detail our new methods, followed by discussions on related
work. Experimental results are then presented. We conclude
with discussions and future work.

Notations

In this paper we will use the letter x for users and the letter
y for items. We use unbolded letters to denote single ele-
ments of users or items and bolded letters to denote a set
of items. Particularly, a single user and a single item are, re-
spectively, denoted by x and y, Y denotes the entire item set.
yx denotes the positive items of user x—that is, the subset of

items that are interacted by user x. ȳx ≡ Y \ yx is the irrele-
vant item set of user x. We omit subscript x when there is no
ambiguity. S = {(x, y)} is the set of observations. The indi-
cator function is denoted by I. f denotes a model (or model
parameters). fy(x) denotes the model score for user x and
item y. For example, in a matrix factorization model, fy(x)
is computed by the inner product of latent factors of x and
y. Given a model f , user x, and its positive items y, the rank
of an item y is defined as

ry ≡ ranky(f, x, y) =
∑

y′∈ȳ

I[fy(x) ≤ fy′(x)], (1)

where we use the same definition as in (Usunier, Buffoni,
and Gallinari 2009) and ignore the order within positive
items. The indicator function is sometimes approximated
by a continuous margin loss |1 − fy(x) + fy′(x)|+ where
|t|+ ≡ max(t, 0) ∀t ∈ R.

Position-dependent personalized ranking

Position-dependent algorithms take the ranks of predicted
items into account in the model training. A practical chal-
lenge is how to estimate item ranks efficiently. As seen in
(1), the ranks depend on the model parameters and are dy-
namically changing. The definition is non-smooth in model
parameters due to the indicator function. The computation
of ranks involves comparisons with all the irrelevant items,
which can be costly.

Existing position-dependent algorithms address the chal-
lenge by different rank approximation methods. They can be
categorized into pointwise and pairwise approximations. We
describe their approaches in the following.

Pointwise rank approximation

Item ranks are approximated in TFMAP (Shi et al.
2012a) and ClifMF (Shi et al. 2012b) using a pointwise ap-
proach. Particularly,

ry ≈ rankpointy (f, x) = 1/σ(fy(x)), (2)

where σ(z) = 1/(1 + e−z), ∀z ∈ R. The approximated
rank ry is then plugged into an evaluation metric MAP (as
in TFMAP) and MRR (as in ClifMF) to make the objective
smooth. The algorithms then use gradient-based methods for
optimization.

In (2), rankpointy is close to 1 when model score fy(x)
is high and becomes large when fy(x) is low. This connec-
tion between model scores and item ranks is intuitive, and
implicitly encourages a good accuracy at the top. However,
rankpointy is very loosely connected to rank definition in (1).
In practice, it does not capture the non-smooth characteris-
tics of ranks. For example, small differences in model scores
can lead to dramatic rank differences when the item set is
large.

Pairwise rank approximation

An alternative approach used by WARP (Weston, Bengio,
and Usunier 2010), LambdaMF (Yuan et al. 2016) estimates
item ranks based on comparisons between a pair of items.
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The critical component is an iterative sampling approxi-
mation procedure: given a user x and a positive item y, keep
sampling a negative item y′ ∈ ȳ uniformly with replacement
until the condition 1 + fy′(x) < fy(x) is violated. With the
sampling procedure it estimates item ranks by

ry ≈ rankpairy (f, x, y) = � |ȳ| − 1

N
� (3)

where N is the number of sampling trials to find the first
violating example and �z� takes the maximum integer that
is no greater than z.

The intuition behind this estimation is that the number of
trials of sampling follows a geometric distribution. Suppose
the item’s true rank is ry , the probability of having a violat-
ing item is p = ry/(|ȳ| − 1). The expected number of trials
is E(N) = 1/p = (|ȳ| − 1)/ry .

To promote top accuracy, the estimated item ranks are
used to modify updating procedures. For example, in WARP,
they are plugged in a loss function defined as,

Lowa(x, y) = Φowa[ry] =

ry∑

j=1

αj α1 ≥ α2 ≥ .. ≥ 0 (4)

where αj j = 1, 2, .. are predefined non-increasing scalars.
The function Φowa is derived from ordered weighted aver-
age (OWA) of classification loss (Yager 1988) in (Usunier,
Buffoni, and Gallinari 2009). It defines a penalty incurred by
placing ry irrelevant elements before a relevant one. Choos-
ing equal αj means optimizing the mean rank, while choos-
ing αj>1 = 0, α1 = 1 means optimizing the proportion of
top-ranked correct items. With strictly decreasing αs, it op-
timizes the top part of a ranked list.

Approach

We begin by pointing out several limitations of approaches
based on pairwise rank estimations.

First, the rank estimator in (3) is not only biased but also
has a large variance. Expectation of the estimator in (3)
for p of a geometric distribution is approximately p(1 +∑N

k=2
1
k (1 − p)k−1) > p. In a ranking example where

p = r/N (N population size), it overestimates the rank seri-
ously when r is small. Moreover, we will demonstrate later
that the estimator has high estimation variances. We believe
this poor estimation may lead to training inefficiency. Sec-
ond, it can take a large number of sampling iterations be-
fore finding a violating item in each iteration. This is es-
pecially the case after the beginning stage of training. This
results in low frequency of model updating. In practice, pro-
longed training time is observed. Finally, the intrinsic se-
quential learning fashion based on pairwise estimation pre-
vents full utilization of available parallel computation (e.g.,
GPUs). This makes it hard to train large or flexible models
which highly rely on the parallel computation.

We address the limitations by combining the ideas of
batch computation and rank-dependent training loss. Partic-
ularly, we propose batch rank approximations and general-
ize (4) to smooth rank-sensitive loss functions. The resulting
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Figure 1: Illustrations of rank approximations and smooth
rank-sensitive loss functions. 1a shows different approxima-
tions of indicator functions. 1b shows smooth loss functions
used to generalize the loss (4).

algorithm gives more accurate rank approximations and al-
lows back-propagation updates.

Batch rank approximations

In order to have a stable and accurate rank approximation
that leads to efficient algorithms. We exploit the idea of
batch training which has been recently actively explored or
revisited in areas such as model design (Covington, Adams,
and Sargin 2016) and optimization (Chen et al. 2016).

To begin, we define margin rank (mr) as the following:

rankmr
y (f, x, y) =

∑

y′∈ȳ

|1− fy(x) + fy′(x)|+, (5)

where the margin loss is used to replace the indicator func-
tion in (1), and the target item y is compared to a batch of
negative items ȳ. As illustrated in Figure 1a, the margin loss
(green curve) is a smooth convex upper bound of the original
step loss function (or indicator function). Margin rank sums
up the margin errors and characterizes the overall violation
of irrelevant items.

Margin rank could be sensitive to “bad” items that have
significantly higher scores than the target item. As seen in
Eq. (5) or Figure 1a, such a bad item contributes much more
than one in rank estimation. To suppress that effect, we add
a sigmoid transformation, i.e.,

ranksmr
y (f, x, y) =

∑

y′∈ȳ

2 ∗ σ(|1− fy(x) + fy′(x)|+) + 1,

(6)
where σ(z) = 1/(1+e−z), ∀z ∈ R. We call this suppressed
margin rank (smr). Additionally, we study a smoother ver-
sion without margin formulation, i.e., ranksry (f, x, y) =∑

y′∈ȳ σ(fy′(x) − fy(x)). Therefore, our rank approxima-
tions can be written as

rankbatchy (f, x, y) =
∑

y′∈ȳ

r̃(x, y, y′), (7)

where r̃(x, y, y′) takes one of the following three forms:

• r̃(x, y, y′) = |1− fy(x) + fy′(x)|+
• r̃(x, y, y′) = 2 ∗ σ(|1− fy(x) + fy′(x)|+)− 1

• r̃(x, y, y′) = σ(fy′(x)− fy(x))
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Figure 2: Standard deviations (relative values) of two types
of rank estimators at different item ranks. Simulation is done
with item set size N=100,000. ‘online’ uses estimator (3) and
‘sampled-batch q’ uses (8) where q = |Z|/|Y|.

Note that the rank approximations in (7) are computed in
a batch manner: model scores between a user and a batch
of items are first computed in parallel; r̃ are then computed
accordingly and summed up. This batch computation allows
model parameters to be updated more frequently. The paral-
lel computation can speed up model training.

The full batch treatment may become infeasible or ineffi-
cient when the item set gets overly large. A mini-batch ap-
proach is used for that case. Instead of computing the rank
based on the full set Y as in (7), the mini-batch version algo-
rithm samples Z, a subset of Y randomly (without replace-
ment) and computes

rankmb
y (f, x, y) =

|Y|
|Z|

∑

y′∈Z

r̃(x, y, y′)I(y′ ∈ ȳ). (8)

Although a sampling step is involved, we argue below that
(8) does not lead to large variances as the sampling in pair-
wise approaches do. First, (8) is an unbiased estimator of
(suppressed) margin rank. Second, the sampling schemes in
the two approaches are different. To have a better idea, we
conduct a simulation of two types of sampling and plot stan-
dard deviations. Figure 2 shows that (8) has much smaller
variances than (3) as long as |Z|/|Y| is not too small.

Smooth rank-sensitive loss functions

The rank-based loss function (4) operates on item ranks and
provides a mechanism to advocate top accuracy. However,
its input has to be an integer. It is also non-smooth. Conse-
quently, it is not applicable to our batch rank estimators and
does not support gradient-based optimization. In the follow-
ing, we generalize (4) to smooth rank-sensitive loss func-
tions that similarly advocate top accuracy.

We first observe that a loss function � would encour-
age top accuracy when the following three conditions are
satisfied—we then call it rank sensitive (rs):

1. � is a smooth function of the rank r.

2. � is increasing, i.e., �′ > 0.
3. � is concave, i.e., �′′ < 0.

The second condition indicates that the loss increases
when the rank of a target item increases. Thus, given a single
item, minimizing the objective would try to push the item to
the top. The third condition means the increase is fast when
rank is small and slow when rank is large. So it is more sen-
sitive to small ranking items. Given more than one item, an
algorithm that minimizes this objective would prioritize on
those items with small estimated rank values.

Based on the observation, we study several types of func-
tions �rs that satisfy these conditions: polynomial functions,
logarithmic functions, and exponential functions, i.e.,
• �rs1 (r) = (1 + r)p, 0 < p < 1

• �rs2 (r) = log(r + 1)

• �rs3 (r) = 1− λ−r, λ > 1

It follows standard calculus to verify that these functions
satisfy the above conditions. Thus, they all incur (smoothly)
weighed loss based on estimated rank values and advo-
cate top accuracy. We plot part of these functions in Fig-
ure 1b and compare them to BPR and OWA (with αs =
1, 1/2, 1/3, ...). BPR is equivalent to a linear function which
places a uniformly increasing penalty on the estimated rank.
Polynomial and logarithmic functions have a diminishing re-
turn when the estimated rank increases and is unbounded.
Exponential functions are bounded by 1, and the penalty on
high rank values is quickly saturated.

Algorithm

An algorithm can be then formulated as minimizing an ob-
jective based on the (mini-)batch approximated rank values
and rank-sensitive loss functions. It sums over all pairs of
observed user-item activity. Particularly,

L =
∑

(x,y)∈S

�rs(rmb
y (f, x, y)) + φ(f), (9)

where rmb
y is given by (8) and �rs takes �rsi , i = 1, 2, 3. φ(f)

is a model regularization term.
Gradient-based methods are used to solve the optimiza-

tion problem. The gradient with respect to the model can be
written as

∂L

∂f
=

∑
�′(r)× ∂r

∂f
, (10)

where �′(r) takes the form p(1 + r)p−1 (or 1/(r + 1), or
λ−r) and we ignore the regularization term for the moment.
We call the framework defined in (9) Batch-Approximated-
Rank-Sensitive loss (BARS). The details are described in
Algorithm 1.

Note that in Algorithm 1 computation is conducted in a
batch manner. Particularly, it computes model scores be-
tween a mini-batch of users (x) and sampled items (Z) in
parallel. In every step it updates parameters of all the users
in x and items in Z.

Comparisons to Lambda-based methods. Lambda-based
methods such as LambdaNet and LambdaRank use an up-
dating strategy in the following form

δfij = λij ∗ |ΔNDCGij |, (11)
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Algorithm 1:

Input: Training data S; mini-batch size m; Sample
rate q; a learning rate η.

Output: The model parameters f.
initialize parameters of model f randomly;
while Objective (9) is not converged do

sample a mini-batch of observations {(x, y)i}mi=1;
sample item subset Z from Y, q = |Z|/|Y|;
compute approximated ranks by (8);
update model f parameters:

f = f − η ∗ ∂�/∂f based on (10);
end

where λij is a regular gradient term and |ΔNDCGij | is the
NDCG difference of the ranking results for a specific user
if the positions (ranks) of items i, j get switched, and acts
as a scaling term that is motivated to directly optimize the
ranking measure.

Compare (10) and (11): �′(r) replaces |ΔNDCGij | and
functions in a similar role. In our cases, �′(r) is decreasing in
r. Thus it gives a higher incentive to fix errors in low-ranking
items. However, instead of directly computing the NDCG
difference which can be computationally expensive in large-
scale settings, the proposed algorithm first approximates the
rank and then computes the scaling value through derivative
of the loss function.

Related work

Top accuracy in traditional ranking. Top accuracy is a
classical challenge for ranking problems. One typical ap-
proach is to develop smooth surrogates of the non-smooth
ranking metric.(Weimer et al. 2008) use structure learning
and propose smooth convex upper bounds of a ranking met-
ric. (Taylor et al. 2008) develop a smooth approximation
based on connections between score distribution and rank
distribution. Similarly, in a kernel SVM setting, (Agarwal
2011) propose a formulation based on infinity norm. (Boyd
et al. 2012) generalize the notion of top k to top τ -quantile
and optimize a convex surrogate of the corresponding rank-
ing loss.

Alternatively, (Burges et al. 2005) start with the average
precision loss and modify model updating steps to promote
top accuracy. Similar ideas are developed in (Burges, Ragno,
and Le 2007; Wu et al. 2010). (Burges, Ragno, and Le 2007)
write down the gradient directly rather than deriving it from
a loss. (Wu et al. 2010) work on a boosted tree formulation.
Personalized ranking. Traditional work on personalized
ranking does not necessarily focus on top accuracy. (Hu,
Koren, and Volinsky 2008) first study the task and convert
it as a regression problem. (Rendle et al. 2009) introduce
ranking-based optimization and optimize a criterion similar
to AUC. (He et al. 2016) improves matrix factorization by
giving missing items non-uniform weights and devising an
ALS based solver.

To promote top accuracy and deal with large-scale set-
tings, (Shi et al. 2012a) develop rank approximation based

Data |U | |I| |Strain| |Stest|
ML-20m 138,493 27,278 7,899,901 2,039,972

Yelp 1,029,433 144,073 1,917,218 213,460
XING 1,500,000 327,002 2,338,766 484,237

Table 1: Dataset statistics. U: users; I: items; S: interactions.

on model score and propose a smooth approximation of
MAP. (Shi et al. 2012b) adopt the same idea and target MRR.

Pairwise algorithms (Weston, Bengio, and Usunier 2010;
Yuan et al. 2016) are then proposed to estimate ranks
through sampling methods. (Weston, Bengio, and Usunier
2010) update the model based on an operator ordered
weighted average. (Yuan et al. 2016) use a similar idea as
in (Burges et al. 2005).

Experiments

In this section we conduct experiments on three large-scale
real-world datasets to verify the effectiveness of the pro-
posed methods.

Experimental setup

Dataset We validate our approach on three public datasets
from different domains: 1) movie recommendations; 2) busi-
ness reviews at Yelp; 3) job recommendations from XING.1
We describe the datasets in detail below.
MovieLens-20m The dataset has anonymous ratings made
by MovieLens users.2 We transform the data into binary
indicating whether a user rated a movie above 4.0. We
discard users with less than 10 movie ratings and use
70%/30% train/test splitting. Attributes include movie gen-
res and movie title text.
Yelp dataset comes from Yelp Challenge.3 We work on rec-
ommendations related to which business a user might want
to review. Following the online protocol in (He et al. 2016),
we sort all interactions in chronological order, take the last
10% for testing and take the rest for training. Business items
have attributes including city, state, categories, hours, and
attributes (e.g., “valet parking,” “good for kids”).
XING contains about 12 weeks of interaction data between
users and items on XING. Train/test splitting follows the
RecSys Challenge 2016 (Abel et al. 2016) setup where the
last two weeks of interactions for a set of 150,000 target
users are used as test data. Rich attributes are associated
with data like career levels, disciplines, locations, job de-
scriptions etc. Our task is to recommend to users a list of job
posts with which they are likely to interact.

We report dataset statistics in Table 1.

Methods We study multiple algorithms under our learning
framework and compare them to various baseline methods.
Particularly, we study the following algorithms:

• POP. A naive baseline model that recommends items in
terms of their popularity.

1www.xing.com
2www.movielens.org
3https://www.yelp.com/dataset challenge. Downloaded Feb 17.
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Datasets ML-20m Yelp XING
Metrics P@5 R@30 NDCG@30 P@5 R@30 NDCG@30 P@5 R@30 NDCG@30

POP 6.2 10.0 8.5 0.3 0.9 0.5 0.5 2.7 1.3
BPR 6.1 10.2 8.3 0.1 0.4 0.2 0.3 2.2 0.9

b-BPR 9.3 14.3 12.9 0.9 3.4 1.9 1.3 9.2 4.2
WARP 10.1 13.3 13.5 1.3 4.3 2.5 2.6 11.6 6.7

CE 9.6 14.3 13.2 1.4 4.5 2.6 2.5 12.3 6.5
SR-log 9.9 14.5 13.6 1.4 5.2 2.9 2.8 12.3 6.9

MR-poly 10.2 14.8 13.9 1.5 5.2 2.9 2.8 12.5 6.9
MR-log 10.2 14.6 13.9 1.5 5.1 2.9 2.9 12.5 7.1

SMR-log 10.2 14.6 13.9 1.5 5.4 3.0 2.9 12.5 7.1

Table 2: Recommendation accuracy comparisons (in %). Results are averaged over 5 experiments with different random seeds.
Best and second best numbers are in bold and italic, respectively.

• BPR (Rendle et al. 2009). BPR optimizes AUC and is a
widely used baseline.

• b-BPR. A batch version of BPR. It uses the same logistic
loss but updates a target item and a batch of negative items
every step.

• WARP (Weston, Bengio, and Usunier 2010; Hong,
Doumith, and Davison 2013). A state-of-the-art pairwise
personalized ranking method.

• CE. Cross entropy loss is recently used for item recom-
mendation in (Hidasi et al. 2015; Covington, Adams, and
Sargin 2016).

• SR-log. The proposed algorithm with the smoothed rank
approximation without margin formulation (sr) and loga-
rithmic function (log).

• MR-poly. The proposed algorithm with the margin rank
approximation (mr) and polynomial function (poly).

• MR-log. The proposed algorithm with the margin rank ap-
proximation (mr) and logarithmic function (log).

• SMR-log. The proposed algorithm with the suppressed
margin rank approximation (smr) and logarithmic func-
tion (log).

BPR and WARP are implemented by LIGHTFM (Kula
2015). We implemented the other algorithms.

We apply the algorithms to hybrid matrix factoriza-
tion (Shmueli et al. 2012), a factorization model that repre-
sents users and items as linear combinations of their attribute
embedding. Therefore, model parameters f include factors
of users, items, and their attributes.

Early stopping is used on a development dataset split from
training for all models. Hyper-parameter model size is tuned
in {10, 16, 32, 48, 64}; learning rate is tuned in {0.5, 1, 5,
10}; when applicable, dropout rate is 0.5. Batch-based ap-
proaches are implemented based on Tensorflow 1.2 on a sin-
gle GPU (NVIDIA Tesla P100) ). LIGHTFM runs on Cython
with a 5-core CPU (Intel Xeon 3.30GHz).

Metrics We assess the quality of recommendation results
by comparing a model’s recommendations to ground truth
interactions, and report Precision (P), Recall (R) and Nor-
malized Discounted Cumulative Gain (NDCG) scores. We

(a) 0-50000. (b) 0-200.

Figure 3: Approximated rank values compared to the true
rank values. 3b is a zoomed-in version with error bars.

report scores after removing historical items from each
user’s recommendation list on Yelp and ML-20m datasets
because users seldom re-interact with items in these sce-
narios (Yelp reviews/movie ratings). This improves perfor-
mance for all models but does not change relative compari-
son results.

Results

Quality of rank approximations We first study how well
the proposed methods approximate the true item ranks. To
do that, we run one epoch of training on the XING dataset
and compute the values in (5) and the true item rank. We plot
the value of (5) as a function of the true rank in Figure 3.

Figure 3a shows in a very large range (0-50000) that the
estimator in (5) is linearly aligned with the true item rank,
especially when true item ranks are small—note that those
regions are what we most care about. We further zoom into
the top region (0-200) and plot error bars in addition to func-
tion mean values. In Figure 3b, we see limited variances. For
example, the relative standard deviation is smaller than 0.1,
which indicates stable rank approximation. As a compari-
son, the simulation in Figure 2 suggests that stochastic pair-
wise estimation should lead to a relative standard deviation
much more than 6.

Recommendation accuracy Recommendation scores are
reported in Table 2. We have the following observations.

First, vanilla pairwise BPR performs poorly due to a large
itemset size. In contrast, batch version b-BPR bypasses the
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Datasets ML-20m Yelp XING
Density 2.6e-3 1.4e-5 5.8e-6

# of param. 4.6M 9.3M 12.1M
# of Attr. 11 19 33
|I| 27K 144K 327K

complexity small medium large

Table 3: Dataset/model complexity comparisons.

difficulty of sampling negative items and updates model pa-
rameters smoothly, achieving decent accuracies.

Second, WARP and CE outperform b-BPR. Both meth-
ods target more than averaged precision. Compared with
each other, CE penalizes more on a correct item ranking be-
hind incorrect items, thus showing consistently better per-
formances in recall.

Third, the proposed methods consistently outper-
form WARP and CE. Compared to CE, the improvements
suggest the effectiveness of the rank-sensitive loss, which
works better than the classification loss. Compared
to WARP, we attribute the improvements to better rank
approximations and possibly other factors like smoother
parameter updates.

Finally, we compare the different variants of the proposed
methods. SR-log underperforms, and it suggests the benefit
of margin formulation. Polynomial loss functions have sim-
ilar results compared to logarithmic functions, but require a
bit tuning in the hyper-parameter p. Suppress margin rank
(SMR) performs a bit better than MR—probably due to its
better rank approximation.

Time efficiency We study the time efficiency of the pro-
posed methods and compare them to the pairwise algorithm
implementations. Note that we are not just interested in the
comparisons of the absolute numbers because they involve
multiple factors. Rather, we focus on the trend of how time
efficiency changes when data scale increases.

We characterize the dataset complexity in Table 3 by the
density (computed by #.observations

#.users×#.items ), the number of total
parameters, the average number of attributes per user-item
pair, and the itemset size. From Table 3, ML-20m has the
densest observations, the smallest number of total param-
eters and attributes per user-item, and the smallest itemset
size. Thus we call it “small” in complexity. Conversely, we
call XING “large” in complexity. Yelp is between the two
and is called “medium.”

Two results are reported in Figure 4. Figure 4a shows
across different datasets the converging time needed to reach
the best models from the two systems: WARP and BARS
(ours). WARP takes a shorter time in both “small” and
“medium”, but its running time increases very fast; BARS
has a slower increase in the training time and wins at “large.”

Figure 4b depicts the averaged epoch training time of the
two systems. BARS has a constant epoch time. In contrast,
WARP keeps increasing the training time per epoch. This is
expected because when the model becomes better, it takes a
lot more sampling iterations every step.
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Figure 4: Training time comparisons between WARP and
BARS. Fig. 4a plots how training time changes across
datasets with different scales; Fig. 4b plots how epoch time
changes as the training progresses.

q ML-20m Yelp XING
obj NDCG obj NDCG obj NDCG

1.0 6.49 16.0 7.94 3.0 6.42 9.9
0.1 6.47 15.9 7.87 3.0 6.40 10.0
0.05 6.47 15.9 7.90 2.9 6.42 9.8

Table 4: Comparisons of objective values (obj) and recom-
mendation accuracies (NDCG) on development set among
full batch and sampled batch algorithms. q = |Z|/|Y|,
q = 1.0 means full batch.

Robustness to mini-batch size The full batch algorithm
is used in the above experiments. We are also interested in
seeing how it performs with a sampled batch loss. In Table
4 we report loss values and NDCG@30 scores on develop-
ment split, and compare them to full batch versions. With the
sampling proportion 0.1 or 0.05, the sampled version algo-
rithm gives almost identical results as the full batch version
on all datasets. This suggests the robustness of the algorithm
to mini-batch size.

Conclusion

In this work we address the personalized ranking task and
propose a learning framework that exploits the ideas of batch
training and rank-dependent loss functions. The proposed
methods allow more accurate rank approximations and em-
pirically give competitive results.

In designing the framework, we purposely tailored our ap-
proach to the use of parallel computation and support of
back-propagation updates. This readily lends itself to flex-
ible models such as deep feedforward networks, recurrent
neural nets, etc. In the future, we are interested in exploring
the algorithm in the training of deep neural networks.
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