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Abstract

Label distribution learning (LDL) is a novel learning
paradigm to deal with some real-world applications, espe-
cially when we care more about the relative importance of
different labels in description of an instance. Although some
approaches have been proposed to learn the label distribution,
they could not explicitly learn and leverage the label correla-
tion, which plays an importance role in LDL. In this paper,
we propose an approach to learn the label distribution and
exploit label correlations simultaneously based on the Opti-
mal Transport (OT) theory. The problem is solved by alter-
natively learning the transportation (hypothesis) and ground
metric (label correlations). Besides, we provide perhaps the
first data-dependent risk bound analysis for label distribution
learning by Sinkhorn distance, a commonly-used relaxation
for OT distance. Experimental results on real-world datasets
comparing with several state-of-the-art methods validate the
effectiveness of our approach.

Introduction

In traditional machine learning paradigm, an instance is in
general associated to a single label. Single-label learning
(SLL) is established to deal with this case. However, as
is often the case, multiple labels might be linked with the
same instance simultaneously. Taking the image classifica-
tion as an example, an image can be complicated and have
multiple semantic meanings. Consequently, it can be tagged
with several different categories/tags. To handle such kind of
tasks, multi-label learning (MLL) paradigm is proposed and
has achieved a lot of success (Zhang and Zhou 2007; 2014;
Zhou et al. 2012).

SLL and MLL only answer the question which la-
bel/labels should the instance belong to, but not the rela-
tive importance of different labels in description of the in-
stance. However, various labels may be associated to an
instance with different degrees in many real-world appli-
cations. Thus, it is more reasonable to use a soft label
description rather a hard one. Label distribution learning
(LDL) (Geng 2016) is a new learning paradigm to describe
supervision as a histogram or probability distribution.
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LDL has been successfully applied in many real-world
scenarios in recent years, such as facial age estima-
tion (Geng, Yin, and Zhou 2013; Gao et al. 2017), head
pose estimation (Kong and Mbouna 2015; Xu and Zhou
2017), emotion recognition (Zhou, Xue, and Geng 2015)
and text mining (Zhou et al. 2016). Although LDL has been
wildly applied in different scenarios and achieves a great
success, most of previous LDL approaches cannot automat-
ically exploit the label correlations to boost the learning per-
formance. An exception is a recent work (Zhou et al. 2016)
dealing with emotion analysis from texts. It exploits the re-
lationship between different emotions by adding a specific-
designed regularization term based on prior domain knowl-
edge. However, in many other applications, there is usually
no such prior knowledge or additional structure information
on label correlations. Moreover, the specific-designed regu-
larizer needs to be redesigned for new applications.

In this work, we aim to simultaneously learn the label dis-
tribution and explore label correlations. Thus, we proposed
an algorithm called LALOT, short for LAbel Distribution
Learning by Optimal Transport. This method is based on
Optimal Transport (OT) theory (Villani 2008). On one hand,
we adopt optimal transport distance to measure the quality
of prediction. OT distance provides a more meaningful dis-
tance in LDL tasks, because it could capture the geometric
information of the underlying label space. On the other hand,
we cast the label correlations exploration as a ground metric
learning problem. The ground metric is also called cost ma-
trix, playing an important role in the performance of optimal
transport. Previous work mainly assumed that there exists
some prior knowledge as cost matrix (Frogner et al. 2015;
Rolet, Cuturi, and Peyré 2016). However, this may not hold
in many real-world applications, since there may not be a di-
rect or simple semantic information among labels. LALOT
could automatically learn the ground metric, i.e., the label
correlations, and improve the label distribution learning per-
formance. It is also noteworthy to mention that most previ-
ous work on LDL do not have any theoretical analysis, and
we provide perhaps the first risk bound analysis for label
distribution learning in this work.

The main contributions of this paper are summarized in
following three points,

1) We cast LDL as solving an optimal transport problem,
and handle label correlations exploration by ground met-
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ric learning. The optimal transport and ground metric are
jointly learned by alternative optimization.

2) We do not require a prior structure knowledge on la-
bels but directly learn the ground metric by kernel biased
regularization. Our approach avoids a costly projection
to metric space, only projection to semi-definite cone is
necessary, whose projection cost is much cheaper.

3) We provide, to the best of our knowledge, the first
data-dependent risk bound analysis for label distribu-
tion learning. Besides, this might also be the first risk
bound analysis for Sinkhorn distance, a commonly used
entropic regularized approximation for OT.

In the following, we start with a brief review of related
work. Then, the proposed approach LALOT will be intro-
duced. Next, both theoretical results and empirical effective-
ness have been examined. Finally, we conclude the paper.

Related Work

Label Distribution Learning (LDL) (Geng 2016) is a
novel machine learning framework. It models multiple la-
bels as a label distribution indicating the relative importance
of each label involved in the description of an instance.

There are several algorithms designed for LDL. In gen-
eral, they can be grouped into three categories: problem
transformation, algorithm adaptation and specialized algo-
rithms. Problem transformation method aims to change the
training examples into weighted single-label instances by
sampling in order to transform LDL problem as SLL or
MLL learning. After the sampling, SVM and Naive Bayes
can be applied to perform the binary classification, devel-
oping two representative algorithms called PT-SVM and
PT-Bayes respectively (Geng 2016). Algorithm adaptation
methods extend traditional MLL algorithms to deal with la-
bel distributions, they adapt the hard-threshold labels to the
soft ones by some specific mechanisms, such as AA-Bayes
and AA-BP (Geng 2016). Besides, there are some special-
ized algorithms to directly match the LDL problems, a rep-
resentative one is IIS-LLD (Geng, Yin, and Zhou 2013).

There are few papers considering label distribution learn-
ing from the theoretical aspect. In this paper, we develop a
first data-dependent risk analysis for label distribution learn-
ing based on Rademacher complexity.

Optimal Transport (OT) (Villani 2008) is originally de-
veloped to measure the difference between two probability
distributions based on some given ground metric. The dis-
tance defined by OT is also called Wasserstein distance or
Earth Mover’s distance for some special cases. Recently,
OT has drawn great attentions in computer vision and image
processing fields, such as image retrieval (Rubner, Tomasi,
and Guibas 2000), barycenters computation (Cuturi and
Doucet 2014). Also, it is wildly applied in machine learn-
ing and related fields, for instance NMF (Qian et al. 2016),
clustering (Ye et al. 2017), domain adaptation (Courty et al.
2016) and multi-label learning (Frogner et al. 2015).

Most previous work require a similarity structure in the
output space as a prior side information to define the optimal
transport distance. Only a few work (Cuturi and Avis 2014;

Rolet, Cuturi, and Peyré 2016) try to learn the ground met-
ric. However, they share two common drawbacks. The first
concern is that they have to bare a high computational cost
due to a projection back to metric space. The other issue is
that they still need some additional information on similar or
dissimilar samples, although they do not explicitly assume a
similarity structure.

Different from previous work, we do not require prior
knowledge on the label structures or additional information
on samples, but jointly learn the transportation (hypothe-
sis) and ground metric (label correlations). Moreover, by the
mechanism of kernel biased regularization, the projection
cost of our approach is much cheaper, since only a projection
to semi-definite cone is necessary.

Preliminary

Notations

For two matrices X,Y ∈ R
m×n, 〈X,Y 〉 def

= tr(XTY ) =∑m
i=1

∑n
j=1 XijYij is the Frobenius dot-product, X�Y de-

notes the element-wise quotient between X and Y . Besides,
we denote the simplex as Σd := {x ∈ R

d
+ : xT1d = 1},

where 1d is the d dimensional vector of ones.

Optimal Transport Distance

It is of great importance to define a proper distance be-
tween two probability distribution, which is key to many
machine learning problems. Traditionally, plenty of mea-
surements are introduced including Hellinger, total variation
and Kullback-Leibler divergences. However, these measure-
ments fail when the probability space has some geometrical
structures. The optimal transport distances are usually more
powerful in such situations, since it could take the pairwise
cost into consideration when measuring the distance.

Definition 1. (Transport Polytope) For two probability vec-
tors r and c in the simplex Σd, we write U(r, c) for the trans-
port polytope of r and c, namely the polyhedral set of d× d
matrices,

U(r, c) := {P ∈ R
d×d
+ |P1d = r, PT1d = c}. (1)

Definition 2. (Optimal Transport) Given a d × d cost ma-
trix M , the total cost of mapping from r to c using a trans-
port matrix (or coupling probability) P can be quantified as
〈P,M〉. The optimal transport (OT) problem is defined as,

dM (r, c) := min
P∈U(r,c)

〈P,M〉. (2)

Theorem 1. (Optimal Transport Distance (Villani 2008))
dM defined in (2) is a distance on Σd whenever M is a met-
ric matrix.

Remark 1. OT distance is also known as the Earth Mover’s
distance (Rubner, Tomasi, and Guibas 2000). It is very
similar to Wasserstein distance (Bogachev and Kolesnikov
2012), but they have some subtle differences. The cost ma-
trix of Wasserstein distance is defined as Mij = dpK(i, j),
where dK is a metric and p is an integer greater than 1. As a
matter of fact, its cost matrix may not be a metric.
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The Proposed Approach

Problem Statements

We consider the problem of learning a mapping from the
feature space X to the label space Y . Let the training set
be S = {(x1,y1), (x2,y2), · · · , (xm,ym)}, sampled from
an underlying probability distribution PX×Y . We denote
X = [x1, · · · ,xm]T ∈ R

m×d and Y = [y1, · · · ,ym]T,
where yi ∈ ΣL and L is the total number of labels. The goal
is to learn label distribution and explore label correlations
simultaneously.

Label Correlations Exploration

Non-linear Transformation First, we introduce a non-
linear transformation φ(·), and denote the Euclidean dis-
tance after the transformation as

Dφ(u,v) = ‖φ(u)− φ(v)‖2. (3)

Dφ satisfies all properties of a well-defined pseudo-metric in
the original input space (Kedem et al. 2012).

Remark 2. Technically, the non-linear transformation de-
fined in (3) is not a strictly metric, but a pseudo-metric (also
named as semi-metric). Thus, OT defined accordingly is no
longer a strict distance. However, it preserves sub-additivity
property, which plays a key role in measuring difference be-
tween prediction and groundtruth. Meanwhile, it is sufficient
to make it a strict distance by multiplying dM by 1r �=c.

Theorem 2. For a pseudo-metric M and probability distri-
butions r, c ∈ Σd, the function (r, c) → 1r �=cdM (r, c) satis-
fies all four distance axioms, i.e., non-negativity, symmetry,
definiteness and sub-additivity (triangle inequality).

The proof follows (Cuturi and Avis 2014), and the key
idea is to exploit the sub-additivity of cost matrix, and de-
tailed proof will be presented in longer version.

Kernel Biased Regularization Instead of directly learn-
ing the ground metric, we adopt kernel biased term as reg-
ularizer. Specifically, we learn a kernel K defined by the
non-linear transformation φ(·), namely,

Kij = K(Y:,i, Y:,j) = φ(Y:,i)
Tφ(Y:,j), (4)

where Y:,i denotes the i-th column of label matrix Y .

The Formulation

Now, we propose to conduct the label distribution learning
and label correlations exploration simultaneously based on
optimal transport. We adopt OT mainly because OT distance
can be used to capture the geometry of a space. To do so,
we adopt OT distance as the loss between prediction and
groundtruth, and then incorporate the ground metric learning
by kernel biased regularization,

min
K,h∈H

m∑
i=1

〈Pi,M〉+ C

2
‖K −K0‖2F

s.t. Pi ∈ U(h(xi),yi)

K ∈ S+,

(5)

where C > 0 is a trade-off parameter, S+ denotes the set
of positive semi-definite matrices, H is hypothesis set and
U(h(xi),yi) is defined in Definition 1. Besides, the ground
metric M is computed as Mij = D2

φ(Y:,i, Y:,j), and the ker-
nel K is defined as (4). Thus, the relation between M and
K can be derived as

Mij = Kii − 2Kij +Kjj . (6)

Remark 3. The non-linear mapping preserves (pseudo-)
metric properties, and therefore it only needs a projection
to positive semi-definite matrix cone when learning the ker-
nel. Thus, we can avoid the projection to metric space which
is very complicated and costly.
Remark 4. It seems that we could learn the cost matrix and
hypothesis jointly by (M�, h�) = argminM,h∈H〈P,M〉. In
fact, this will be an ill-posed optimization problem, since it
has a trivial solution as M = 0 along with arbitrary h. Con-
sequently, the kernel biased regularizer in (5) is necessary
for ground metric learning. The idea is similar to the biased
regularization in hypothesis transfer learning (Kuzborskij
and Orabona 2017). In this paper, we adopt the label distri-
bution covariance matrix as the initialization, namely, K0 =
Y TY . If there are auxiliary convincing label correlations, it
can be transformed into the initial kernel or directly used
as ground metric. More discussions on initialization strategy
will be appeared in longer version.

Optimization

We adopt the alternative optimization to solve problem (5),
(i) fix K to update h: learning the target mapping;

(ii) fix h to update K: learning the ground metric.

Learning the Target Mapping When updating h with a
fixed K, the sub-problem can be written as follows,

min
h∈H

m∑
i=1

〈Pi,M〉

s.t. Pi ∈ U(h(xi),yi).

(7)

The sub-problem can be solved by gradient descent, how-
ever, it is a challenge to directly compute the gradient w.r.t.
prediction h(xi), especially when it is in the constraints.

In this paper, similar to (Frogner et al. 2015), we use
primal-dual approach to compute its gradient by solving the
dual LP problem, and adopt Sinkhorn’s relaxation (Cuturi
2013) as the entropic regularization to smooth the transport
objective and speed up the computation of original OT.

For a given training sample (x,y), the dual LP of (2) is
ddM (h(x),y) = max

α,β∈CM

αTh(x) + βTy,

where CM = {α,β ∈ R
L : αi + βj ≤ Mi,j}.

From (Bertsimas and Tsitsiklis 1997), we know that the
dual optimal α is, in fact, a subgradient of the loss of train-
ing sample (x,y) with respect to its first argument h(x).
However, it is costly to directly compute the exact loss. In
the seminal paper (Cuturi 2013), Cuturi introduced an en-
tropic regularization as an efficient approximation of origi-
nal problem named as the Sinkhorn distance.
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Definition 3. (Sinkhorn Distance) Given a d × d cost ma-
trix M , and marginal distributions r, c ∈ Σd. The Sinkhorn
distance is defined as,

dλM (r, c) := 〈Pλ,M〉, (8)

Pλ = argmin
P∈U(r,c)

〈P,M〉 − 1

λ
H(P ), (9)

where H(P ) = −∑d
i=1

∑d
j=1 pij log pij is the entropy of

P , and λ > 0 is entropic regularization coefficient.

The advantages of entropic regularization are multi-
faceted, and the most important one is that the entropic reg-
ularization makes the objective function a strictly convex
problem that can be solved through Sinkhorn’s matrix scal-
ing algorithm, at a speed that is several orders of magnitude
faster than that of transport solvers (Cuturi 2013).

Then, based on the Sinkhorn’s theorem, we could con-
clude that the transportation matrix can be written in the
form of P � = diag(u)Kdiag(v), where K := e−λM

is the element-wise exponential of λM . Besides, u =
e−1/2+λα and v = e−1/2+λβ.

Thus, we adopt the well-known Sinkhorn-Knopp algo-
rithm which is also used in (Cuturi 2013; Cuturi and Doucet
2014) to update the target mapping h(x) given the ground
metric, i.e., with a fixed K. In this paper, we adopt linear
logistic regression as base classifier h(x), defined as

ŷk = h(xk) = [ŷ1, ŷ2, · · · , ŷL]T, ŷi = exp (wT
i xk)∑L

i=1 exp (w
T
i xk)

,

where ŷi is the i-th dimensional value of prediction.
To simplify the notations, we denote the object func-

tion as F (W ) =
∑m

k=1 �(h(xk),yk), where W =
[w1; · · · ;wL]

T ∈ R
L×d. Then the gradient w.r.t. W could

be calculated via chain rule.
The detailed procedure is summarized in Algorithm 1,

then gradient descent could be adopted to update classifier.
Obviously, for datasets with large amount of instances, it
could be easily extended to SGD version for acceleration.

Learning the Ground Metric When updating K with a
fixed h, the sub-problem can be written as follows,

min
K

〈P,M〉+ C

2
‖K −K0‖2F

s.t. K ∈ S+

Mij = Kii +Kjj − 2Kij ,

(10)

where P =
∑m

i=1 Pi.
This sub-problem can be solved by projected gradient de-

scent. To simplify the notations, let G(K) be the objective
function, i.e.,

G(K) =
C

2
‖K −K0‖2F + g(K),

where g(K) = 〈P,M〉. Since ∇G(K) = C(K − K0) +
∇g(K), we could turn to compute ∇g(K), and let the full
gradient be zero, obtaining the close-form solution as,

Algorithm 1 Learning the Mapping
Input: Ground metric M , current mapping h(x), training
set D = {(x1,y1), . . . , (xm,ym)}, and λ > 0;
Output: Gradient of objective function with respect to the
target mapping h(x).

1: Initialize u ← 1,K = e−λM ,∇ ← 0;
2: for i = 1 to m do
3: ui ← 1;
4: while ui has not converged do
5: ui ← h(xi)� (K(yi �KTui));
6: end while

7: ∇H
i ← logui

λ − loguT
i 1

λL · 1;
8: Compute ∇W

i according to the chain rule;
9: ∇ ← ∇+ [∇H

i ]T∇W
i ;

10: end for

(K̂ −K0)ij =

⎧⎨
⎩
2Pij ,when i �= j

−
L∑

k �=i

(Pik + Pki) ,when i = j
(11)

Then, we project K̂ back to positive semi-definite cone as,

K = Proj(K̂) = U max(σ, 0)UT,

where Proj is a projection operator, U and σ correspond to
the eigenvectors and eigenvalues of K̂.

Theoretical Results

In this part, we provide a risk bound analysis for learning
the mapping during the alternative optimization. To the best
of our knowledge, this might be the first risk analysis for
Sinkhorn distance, a relaxation for optimal transport dis-
tance in common use. Also, this might be the first data-
dependent risk analysis for label distribution learning.

Due to the page limits, only some proof sketches for main
theorem are provided, details of the omitted proofs will be
presented in longer version.

To simplify the presentation, we introduce the Sinkhorn
loss as:

�(h(x),y) := dλM (h(x),y) = 〈Pλ,M〉, (12)

where Pλ is obtained by Sinkhorn iteration defined in (9).
Based on Sinkhorn loss defined in(12), we introduce nota-

tions of corresponding risk and empirical risk, respectively.

R(h) = E(x,y)∼P�(h(x),y), R̂(h) =
m∑
i=1

�(h(xi),yi).

In the following, we will utilize the notion of Rademacher
complexity (Bartlett and Mendelson 2002) to measure the
hypothesis complexity and use it to bound the excess risk.

Definition 4. (Rademacher Complexity (Bartlett and
Mendelson 2002)) Let G be a family of functions and a fixed
sample of size m as S = (z1, · · · , zm). Then, the empirical

4509



Rademacher complexity of G with respect to the sample S is
defined as:

R̂S(G) = Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(zi)

]
.

Besides, the Rademacher complexity of G is the expectation
of the empirical Rademacher complexity over all samples of
size m drawn according to D:

Rm(G) = ES∼Dm [R̂S(G)]. (13)
Then, we could establish a generalization bound based on

Rademacher complexity defined in (13).
Theorem 3. (Mohri, Rostamizadeh, and Talwalkar 2012)
Let L be the family of loss function associated to H, i.e., L =
{�(h(x,y), h ∈ H}. Then, for any δ > 0, with probability
at least 1− δ, the following holds for all h ∈ H:

R(h) ≤ R̂(h) + 2Rm(L) + ‖M‖∞
√

log(1/δ)

2m
(14)

where Rm(L) is Rademacher complexity of loss function
class L associated to H, and ‖M‖∞ = maxij Mij .

We provide some useful properties of Sinkhorn distance.
Lemma 1. For any double stochastic matrix S ∈ R

d×d
+ , its

entropy H(S) satisfies H(S) ≤ 2 log d.
Lemma 2. For two probability distributions r, c ∈ Σd,
Sinkhorn distance dλM (r, c) and optimal transport distance
dM (r, c) satisfy the following relationship,

dM (r, c) ≤ dλM (r, c) ≤ dM (r, c) +
2

λ
log d. (15)

In order to establish the relationship between Rademacher
complexity of Sinkhorn distance loss and function space, we
need introduce another loss definition based on original op-
timal transport distance as

�OT (h(x),y) := dM (h(x),y) = 〈P,M〉. (16)
Then, based on Lemma 2, we know that

�OT (h(x),y) ≤ �(h(x),y) ≤ �OT (h(x),y) +
logL

λ
.

holds for any instance (x,y). Now, we can relate the
Rademacher complexity associated with these two losses as
stated in Theorem 4.
Theorem 4. Let L and LOT correspond the family of loss
functions � and �OT associated to function space H. Then
the Rademacher complexities of L and LOT satisfy,

Rm(L) ≤ Rm(LOT ) +
logL

2λ
. (17)

Now, we can provide the risk bound for ERM based on
Sinkhorn loss.
Theorem 5. Let H be the family of hypothesis set, and de-
note the hypothesis returned by LALOT in Algorithm 1 as ĥ.
Then, for any δ > 0, with probability at least 1− δ,

R(ĥ) ≤ inf
h∈H

R(h)+
2 logL

λ
+‖M‖∞

⎛
⎝16LRm(H) +

√
2 log 1

δ

m

⎞
⎠ .

where Rm(H) is Rademacher complexity of hypothesis
class H, and ‖M‖∞ = maxij Mij .

Table 1: Statistics of 15 real-world datasets
Index Datasets #instance #dim #label

1 JAFFE-5 181 18 5
2 JAFFE-6 213 18 6
3 Emotions 593 72 6
4 Image 2000 135 5
5 Yeast-alpha 2,465 24 18
6 Yeast-cdc 2,465 24 15
7 Yeast-cold 2,465 24 4
8 Yeast-diau 2,465 24 7
9 Yeast-dtt 2,465 24 4

10 Yeast-elu 2,465 24 14
11 Yeast-heat 2,465 24 6
12 Yeast-spo 2,465 24 6
13 Yeast-spo5 2,465 24 3
14 Yeast-spoem 2,465 24 2
15 Human Gene 30,542 36 68

Proof Sketch. To prove the risk bound, we turn to estab-
lish a uniform generalization bound similar to Theorem 3.
Then we use Lemma 2 to connect the relationship between
Sinkhorn loss and optimal transport loss.

The main technique is to utilize the concentration of mea-
sure, with Rademacher vector contraction inequality applied
on a Lipschitz loss, then we can link the Rademacher com-
plexity of loss family and hypothesis space.

Remark 5. From Eq. (2), (8) and (9), we can see that the
Sinkhorn distance coincides with optimal transport distance
as λ → ∞. Besides, from Theorem 5, we can see that there
is a constant error in risk bound but will be reduced to the
standard convergence rate O(1/

√
m) as λ → ∞, which also

coincides with the risk bound for optimal transport distance.
This reflects the trade-off between computational efficiency
and approximation accuracy to some extents.

Remark 6. From Theorem 5, we can see that the risk bound
gets worse with the entropic regularization, namely, when λ
is small. This might somehow contradict with the empirical
phenomenon reporting that Sinkhorn distance usually per-
forms better than original OT even with a small λ (Cuturi
2013; Cuturi and Doucet 2014). The reason could lie in the
bound is not tight, since we have no more advanced tools but
Talagrand’s Comparison Inequalities (Koltchinskii 2011) or
Rademacher Vector Contraction Inequality (Maurer 2016)
to analyze the risk bounds more meticulously. One conjec-
ture is that the entropic regularization could strengthen the
convexity of objective function, which may speed up the
convergence rate. However, there is no such related work
as far as we know. To the best of our knowledge, Theorem 5
provided in this paper is the only result of risk bound analy-
sis for Sinkhorn distance.

Experiments

In this part, we evaluate the effectiveness of LALOT in fol-
lowing two aspects,

(i) label distribution learning: we will examine the effec-
tiveness of LALOT in boosting performance of LDL;
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Table 2: Experimental results on LDL datasets. Each row corresponds to a data set. On each dataset, 10 test runs were conducted
and the average performance as well as standard deviation are presented, - indicates numerical limits or errors. Besides, • (◦)
indicates that LALOT is significantly better (worse) than the compared method (paired t-tests at 95% significance level).

(a) Performance Measure: Chebyshev ↓
Dataset IIS-LLD PT-Bayes PT-SVM AA-BP AA-KNN LALOT
Image .6749 ± .0065 .6682 ± .0103 .7305 ± .0465 • .5863 ± .0370 ◦ .5130 ± .0074 ◦ .6850 ± .0073
JAFFE-5 .1396 ± .0046 .4251 ± .0270 • .1430 ± .0053 • .1490 ± .0073 • .1444 ± .0059 • .1394 ± .0044

JAFFE-6 .1207 ± .0060 .3674 ± .0296 • .1220 ± .0057 • .1265 ± .0085 • .1321 ± .0042 • .1206 ± .0049

Emotions .4429 ± .0138 .6659 ± .0312 • .5526 ± .0565 • .4087 ± .0140 ◦ .3989 ± .0155 ◦ .4476 ± .0153
Yeast-alpha .0201 ± .0002 • .1093 ± .0085 • .0139 ± .0003 .0358 ± .0022 • .0147 ± .0002 • .0136 ± .0002

Yeast-cdc .0232 ± .0005 • .1211 ± .0080 • .0170 ± .0005 .0370 ± .0019 • .0176 ± .0003 • .0168 ± .0003

Yeast-cold .0618 ± .0007 • .2060 ± .0155 • .0565 ± .0033 • .0574 ± .0024 • .0553 ± .0009 • .0541 ± .0009

Yeast-diau .0452 ± .0007 • .1793 ± .0126 • .0439 ± .0026 • .0471 ± .0015 • .0395 ± .0006 ◦ .0418 ± .0007
Yeast-dtt .0491 ± .0010 • .2019 ± .0188 • .0380 ± .0016 • .0443 ± .0022 • .0391 ± .0007 • .0370 ± .0006

Yeast-elu .0239 ± .0004 • .1254 ± .0076 • .0171 ± .0004 • .0363 ± .0015 • .0177 ± .0002 • .0167 ± .0002

Yeast-heat .0526 ± .0006 • .1942 ± .0086 • .0441 ± .0009 • .0520 ± .0013 • .0453 ± .0003 • .0435 ± .0005

Yeast-spo .0653 ± .0010 • .1855 ± .0112 • .0625 ± .0019 • .0664 ± .0035 • .0636 ± .0008 • .0603 ± .0012

Yeast-spo5 .0958 ± .0022 • .2209 ± .0159 • .0923 ± .0025 • .0927 ± .0021 • .0956 ± .0014 • .0908 ± .0015

Yeast-spoem .0930 ± .0019 • .1909 ± .0144 • .0916 ± .0022 • .0892 ± .0050 • .0919 ± .0022 • .0887 ± .0013

Human Gene .0535 ± .0007 .1826 ± .0198 • .0540 ± .0040 • .0602 ± .0009 • .0647 ± .0007 • .0532 ± .0007

LALOT W/ T/ L 10/ 5/ 0 14/ 1/ 0 13/ 2/ 0 13/ 0/ 2 12/ 0/ 3 rank first 12/ 15

(b) Performance Measure: Cosine ↑
Dataset IIS-LLD PT-Bayes PT-SVM AA-BP AA-KNN LALOT
Image .5154 ± .0036 ◦ .4882 ± .0064 • .3618 ± .0684 • .6261 ± .0520 ◦ .6220 ± .0100 ◦ .4908 ± .0027
JAFFE-5 .9229 ± .0035 • .6331 ± .0303 • .9155 ± .0053 • .9080 ± .0096 • .9122 ± .0072 • .9304 ± .0034

JAFFE-6 .9306 ± .0048 .6561 ± .0229 • .9274 ± .0056 • .9203 ± .0084 • .9124 ± .0035 • .9307 ± .0042

Emotions .6253 ± .0121 ◦ .4352 ± .0361 • .3893 ± .1232 • .6979 ± .0184 ◦ .6892 ± .0194 ◦ .5513 ± .0065
Yeast cdc .9872 ± .0004 • .8336 ± .0099 • .9927 ± .0003 .9598 ± .0038 • .9920 ± .0002 • .9928 ± .0002

Yeast cold .9836 ± .0004 • .8745 ± .0112 • .9863 ± .0013 • .9857 ± .0012 • .9868 ± .0005 • .9873 ± .0005

Yeast diau .9822 ± .0004 • .8435 ± .0131 • .9836 ± .0014 • .9800 ± .0017 • .9860 ± .0003 ◦ .9853 ± .0003
Yeast dtt .9892 ± .0004 • .8785 ± .0149 • .9935 ± .0004 .9910 ± .0010 • .9931 ± .0002 • .9938 ± .0002

Yeast elu .9877 ± .0003 • .8359 ± .0089 • .9932 ± .0003 .9643 ± .0029 • .9929 ± .0002 • .9935 ± .0001

Yeast heat .9813 ± .0003 • .8468 ± .0065 • .9868 ± .0007 • .9810 ± .0010 • .9860 ± .0002 • .9872 ± .0003

Yeast spo .9715 ± .0007 • .8503 ± .0094 • .9728 ± .0020 • .9698 ± .0035 • .9720 ± .0007 • .9746 ± .0008

Yeast spo5 .9714 ± .0011 • .8832 ± .0120 • .9734 ± .0013 • .9735 ± .0010 • .9709 ± .0009 • .9741 ± .0007

Yeast spoem .9762 ± .0008 • .9132 ± .0099 • .9750 ± .0024 • - • .9755 ± .0011 • .9771 ± .0007

Human Gene .8332 ± .0018 .4597 ± .0403 • .8320 ± .0110 .7205 ± .0051 • .7694 ± .0021 • .8333 ± .0018

LALOT W/ T/ L 11/ 2/ 2 15/ 0/ 0 11/ 4/ 0 13/ 0/ 2 12/ 0/ 3 rank first 12/ 15

(ii) label correlations exploration: we will examine
whether the obtained label correlations are reasonable.

Label Distribution Learning

In this part, we will evaluate the proposed method on 15
real-world datasets with five state-of-the-art label distribu-
tion learning approaches over six different measurements.

Datasets The 15 datasets cover fields of biological infor-
mation classification, natural scene recognition, emotional
analysis and so on. Due to the page limitation, we only
present the brief statistics of the datasets in Table 1.

Baselines As mentioned earlier, there are mainly three cat-
egories approaches. We compare the proposed LALOT to
five state-of-the-art LDL algorithms, including two prob-
lem transformation methods PT-Bayes and PT-SVM (Geng

2016), two algothim adaptation methods AA-KNN and AA-
BP (Geng 2016), and a specialized algorithms maximizing
entropy IIS-LLD (Geng, Yin, and Zhou 2013).

Evaluation Six different measurements are used to eval-
uate the performance for LDL tasks. They can be divided
into two groups, one type is to measure distance of two
vectors including Chebyshev, Clark, Canberra and
KL divergence. Obviously, these measurements are the
lower the better. The other measurements measure similar-
ity including Cosine and Intersection, which are the
higher the better.

Parameter Settings For LALOT, there are two parame-
ters. The first one is the trade-off parameter C, and the other
is the entropic regularization coefficient λ. They are chosen
by 10-fold cross-validation with random splitting 70% for
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(b) Emotions Dataset

Figure 1: Illustration of learned label correlations for different datasets, and the value has been scaled in [-1,1]. Red color
indicates a positive correlation, and blue one indicates a negative correlation.

training and 30% for testing. One more attention is that λ
should be chosen starting with a small value. Specifically, λ
should small enough to make sure λ‖M‖∞ ≤ 200 because
of the insufficient numerical precision, under which circum-
stance the Sinkhorns algorithm could blow up due to a too
large λ value (Cuturi 2013).

Results There are actually six different measurements, we
only present results w.r.t. Chebyshev (the lower the better)
and Cosine (the higher the better) in Table 2. Performance
results in terms of other measurements are similar and there-
fore omitted.

Form Table 2, we can see that in all the different measure-
ments, LALOT outperforms the baselines, the results are ex-
pected since our approach could explicitly exploit label cor-
relations to enhance learning performance. In a total of 15
datasets, the number of labels vary from 2 to at most 174.
LALOT achieves the best among all approaches in 12 over
15 datasets. Also, in other 3 datasets, it ranks the second
or the third. The reason LALOT behaves poorly on Image
and Emotion might be that the distributions on these two
datasets are discrete, which may cause a negative result since
the transportation learned by OT is continuous in general. It
is also noteworthy to mention that the behavior of LALOT
is relatively consistent on different measurements. This val-
idates the effectiveness of proposed LALOT.

Label Correlations Exploration

As mentioned before, one of our method’s advantages is that
it could learn label correlations explicitly. In this part, we ex-
amine the effectiveness of proposed algorithm in label corre-
lations exploration. The explorations are conducted on two
real-world datasets Image and Emotions (Zhou and Zhang
2007). Image dataset contains five labels: desert, mountains,
sea, sunset and trees. Emotions dataset contains six different
emotions as labels: amazed, happy, calm, quiet and sad.

The ground metric learned by LALOT are shown in Fig-
ure 1, and we scale the original value in cost matrix into
[-1,1]. Red color indicates a positive correlation, and blue
one indicates a negative correlation.

We can see that the learned pairwise cost accords with
intuitions. Take a few examples, in Figure 1(a), the cost be-
tween (desert, sea) ranks the top indicating a very small cor-
relation, and this is reasonable since when there is a desert
occurring in an image, it is unlikely to find sea in the im-
age generally. It is also noteworthy to mention that the la-
bel correlations discovered by LALOT are highly similar to
the results reported in (Huang, Yu, and Zhou 2012). Specif-
ically, four of top 5 most related label pairs discovered by
LALOT also occur in theirs, and four of bottom 5 most re-
lated ones coincide with theirs. In Figure 1(b), the cost be-
tween (amazed, calm) and (happy, sad) rank the top and
cost between (quiet, sad) and (quiet, calm) are very small.
All above accord with our knowledge of emotional relation-
ships, like that in Plutchiks theory (Plutchik 1980).

Conclusion

In this paper, a novel approach called LALOT is proposed
to learn the label distribution based on optimal transport the-
ory, and cast label correlations exploration as a ground met-
ric learning problem. LALOT can avoid a costly projection
to metric space by kernel biased regularization. During the
optimization, an entropic regularization approach is adopted
to approximate OT distance to speed up the computation.

Besides, we provide perhaps the first data-dependent risk
bound analysis for label distribution learning, especially for
the Sinkhorn distance, which is commonly used to approx-
imately solve the optimal transport problem. Moreover, the
effectiveness of LALOT is validated in experimental parts
with state-of-the-art methods.

As for future work, one interesting issue is to parallelize
the algorithm since the Sinkhorn distance can be easily vec-
torized and generalized to multiple label distributions. An-
other interesting one related to theoretical analysis is how to
use novel mathematical tools to obtain a fast rate risk analy-
sis for Sinkhorn distance based ERM problems.
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