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Abstract

Some recent works in classification show that the data ob-
tained from various views with different sensors for an ob-
ject contributes to achieving a remarkable performance. Ac-
tually, in many real-world applications, each view often con-
tains multiple features, which means that this type of data has
a hierarchical structure, while most of existing works do not
take these features with multi-layer structure into considera-
tion simultaneously. In this paper, a probabilistic hierarchical
model is proposed to address this issue and applied for classi-
fication. In our model, a latent variable is first learned to fuse
the multiple features obtained from a same view, sensor or
modality. Particularly, mapping matrices corresponding to a
certain view are estimated to project the latent variable from a
shared space to the multiple observations. Since this method
is designed for the supervised purpose, we assume that the
latent variables associated with different views are influenced
by their ground-truth label. In order to effectively solve the
proposed method, the Expectation-Maximization (EM) algo-
rithm is applied to estimate the parameters and latent vari-
ables. Experimental results on the extensive synthetic and two
real-world datasets substantiate the effectiveness and superi-
ority of our approach as compared with state-of-the-art.

Introduction

In many practical applications, the raw data is obtained from
various domains or extracted from diverse modalities. For
instance, a person can be verified by the fingerprint, palm
print, or iris; a face image can be captured from different
angles. These multiple types of data are called multi-view
or multi-modal data, which have attracted much attention
in recent years. Due to the comprehensive information pro-
vided by multiple views, multi-view methods have achieved
better performances in many fields such as object recogni-
tion (Eleftheriadis, Rudovic, and Pantic 2015), (Li, Zhang,
and Zhang 2017b), (Yang et al. 2012) (Jing et al. 2014),
disease detection (Li et al. 2016) (Li, Zhang, and Zhang
2017a), cross modal learning (Song et al. 2015), and semi-
supervised learning (Zhang and Zhang 2016) (Ceci et al.
2015) (Tao et al. 2017), regression (Zheng et al. 2015) etc.,
compared with those methods only using the information
from single view.
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Figure 1: An example of the multi-view and multi-feature
object. A person can be diagnosed through his or her tongue,
face and sublingual vessel. Also, these modalities can be
represented with different features.

Although many methods are proposed for multi-view data
to integrate different views to get an outstanding perfor-
mance, there are still some difficulties for us to tackle. One
key problem is that apart from obtained multiple views, each
view is also represented with various features that are fully
valuable for classification. For instance, a person is veri-
fied by the combination of iris, fingerprint, face and palm
print. Furthermore, an iris image is described with wavelet
and gabor. So do other modalities. Similarly, Li et al. (Li
et al. 2016) (Li, Zhang, and Zhang 2017a) also illustrated
that the fatty liver and diabetes mellitus disease can be de-
tected through a patient’s tongue, face and sublingual vessel,
and these three types of modalities are also represented with
color, texture, and geometric features, as shown in Fig.1. To
the best of our knowledge, many existing methods only es-
tablished models for multiple modalities, which is limited
for the data including multiple views and their correspond-
ing multiple features. For this situation, a naive way is to
only concatenate different features acquired from a same
view as a large one, and the existing multi-view approach is
then applied, as done in (Li et al. 2016) and (Li, Zhang, and
Zhang 2017a). However, this kind of strategy ignores the
correlation among multiple features, and the larger vector
would result in over-fitting if the dimensionality of each fea-
ture is relatively large, encountering the performance degra-
dation subsequently.

In order to address this problem, we propose a probabilis-
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tic generative model by modeling the multi-view and multi-
feature data under a hierarchical structure. With the observed
features from a view or modality, a shared and latent variable
is learned as the fused feature. Additionally, since our model
is constructed for classification, the learned variables asso-
ciated with different views are assumed to be independently
influenced by their ground-truth label.

The main contributions of this paper are shown as follows:
(1) To the best of our knowledge, this paper is the first one
to investigate the multi-view and multi-feature classifica-
tion problem. Many conventional multi-view methods, in-
cluding (Li, Zhang, and Zhang 2017a), (Zhang and Zhang
2016), (Eleftheriadis, Rudovic, and Pantic 2015) and (Li et
al. 2016), etc., only regard the multi-feature as a particu-
lar case of the multi-view, and apply the same algorithm to
model the multi-view or multi-feature data. By contrast, this
paper does not only exploit the relationship across differ-
ent features, but also reveal the correlation among various
views.
(2) A probabilistic hierarchical method is proposed for
multi-view and multi-feature learning. This model hierarchi-
cally fuses multiple features through a latent variable. Dif-
ferent from many existing methods which only output the
decided label, the corresponding probability belonging to a
certain category is predicted by combining the fused vari-
ables from different views.
(3) The EM-based algorithm (Bishop 2006) is introduced
to solve our model effectively. Particularly, a closed-form
solution for each parameter or variable is obtained, and we
alternatively update the parameters and variables until con-
vergence.

Related Works
Recently, many works on multi-view learning have

been proposed. The Canonical Correlation Analysis (CCA)
(Hotelling 1936) aims to learn two types of mapping func-
tions to project two views into a common space, maximiz-
ing their correlation. Considering the data corrupted by the
noise and outliers, the robust CCA (Nicolaou et al. 2014)
(Bach and Jordan 2005), sparse CCA (Archambeau and
Bach 2009) were presented by introducing the Student-t
density model and l1 norm. Additionally, Andrew et al. and
Wang et al. also described the deep canonical correlation
analysis (DCCA) (Andrew et al. 2013) and deep canonically
correlated autoencoders (DCCAE) (Wang et al. 2015) by ex-
tending the CCA to the deep structure. Due to the limitation
of conventional CCA which is only adaptive for two views,
the multi-view CCA (Chaudhuri et al. 2009) was presented
to maximize the summarization of all pair correlation. Simi-
larly, the supervised subspace learning-Linear Discrimina-
tive analysis (LDA) is also extended for multi-view data.
For instance, the multi-view fisher discriminative analysis
(MFDA) (Diethe, Hardoon, and Shawe-Taylor 2010) inde-
pendently trains a classifier for each view to make the av-
erage distance of different categories as large as possible.
Furthermore, multi-view discriminant analysis (MvDA) was
proposed by Kan et al. (Kan et al. 2016) to extract the dis-
criminative feature from a common space through a linear
transformation, encouraging the extracted features belong-
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Figure 2: (a) The framework of the proposed method, where
the number of the latent variables is equal to the number
of observed views. (b) The probabilistic framework of the
proposed method.

ing to the same class to be close and those belonging to the
different classes to be far.

Due to the effectiveness of the sparse and collaborative
representation, some joint representation based approaches
were proposed. Unlike some approaches which only con-
sider the common part, Li et al. (Li et al. 2016) separated the
sparse representation coefficients into the similar and spe-
cific components (JSSL), which achieves a satisfied perfor-
mance on the diabetes mellitus and impaired glucose regula-
tion detection. The l2,1 norm was introduced in (Yuan, Liu,
and Yan 2012) to measure the consistence of the representa-
tion coefficients across different views (MTJSRC). Yang et
al. (Yang et al. 2012) proposed a relaxed collaborative rep-
resentation method (RCR) to make the coefficient belonging
to different views be similar. Considering the label infor-
mation, a discriminant collaborative representation method
(JDCR) was proposed in (Li, Zhang, and Zhang 2017a) for
the multi-view data. Besides, Guo (Guo 2013) also proposed
a novel approach to get a convex subspace among various
views (CSRL). Because of the power of dictionary learn-
ing, a sparse model was described in (Bahrampour et al.
2016) (UMDL and SMDL) to learn a multi-modal dictio-
nary which greatly exploit the correlation among different
modalities.

Although various methods have been proposed for the
multi-view data, there are few works which take the afore-
mentioned hierarchical data into account. Generally speak-
ing, multiple features obtained from a single view would
contain a certain relationship. So do multiple views captured
from a same object. Thus, it is significant to present a novel
approach to hierarchically exploit the valuable information
across these types of features and views.

The Proposed Method

In this section, the hierarchical probabilistic model is an-
alyzed for multi-view and multi-feature classification, fol-
lowed by its efficient optimization and prediction inference.

The Hierarchical probabilistic Model

The framework and graphic model of the proposed
method are shown in Fig.2. As we can see, an object is
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observed from J views, and the j-th (j ∈ {1, · · · , J})
view is represented by Kj types of features. Specifically, the
data and the label of the i-th sample can be represented as
{xijkj

∈ R
Djkj }J,Kj

j,kj=1 and a one-hot categorical variable
zi ∈ R

P , respectively, where Djkj is the dimension of the
kj-th feature in the j-th view, P is the number of the classes,
and zi satisfies zpi ∈ {0, 1} and

∑P
p=1 zpi = 1.

Then some probability assumptions for these variables are
made to construct our hierarchical model. Firstly, the cate-
gorical distribution is introduced for the categorical variable
zi, which has the following form:

p(zi | θZ) =
P∏

p=1

πzpi
p (1)

where θZ = {πp}Pp=1, zpi = 1 if the i-th sample belongs to
the p-th class, otherwise zpi = 0 and the variable πp ∈ [0, 1]

follows
∑P

p=1 πp = 1, which means the probability of a
sample belonging to its corresponding category.

In order to exploit the discriminative information, a la-
tent variable hij ∈ R

Dj corresponding to the j-th view of
the i-th sample is then learned by imposing the ground-truth
label on it. Specifically, for distinctive categories, the dis-
tributions of the latent variables belonging to different views
are different, greatly exploiting the complementary informa-
tion across multiple views. The most common and simple
assumption for hij is that

p(hij | zi,θH) =
P∏

p=1

N (hij | μjp,Σjp)
zpi (2)

where θH = {μjp,Σjp}J,Pj,p=1, meaning that its distribution
for the p-th category is a Gaussian distribution with mean
μjp and covariance matrix Σjp.

In general, it is reasonable to assume that multiple fea-
tures are the projections from a shared variable through
different mapping functions. Thus, in the proposed model,
a mapping matrix for each feature in a same modality is
learned to transform the the latent variable hij to the ob-
served data xijkj

by a linear Gaussian model, which can be
presented as following equation:

p(xijkj | hij ,θX) = N (xijkj | Ajkjhij + bjkj ,Σjkj ) (3)

where θX = {Ajkj
,bjkj

,Σjkj
}J,Kj

j,kj=1, Ajkj
is the learned

mapping matrix, bjkj
is the bias and Σjkj

denotes the co-
variance matrix.

Moreover, we also make some reasonable conditional in-
dependence assumptions about different features and differ-
ent views, including

p({xijkj}Kj

kj=1 | hij ,θX) =

Kj∏
kj=1

p(xijkj | hij ,θX)

p({{xijkj}Kj

kj=1,hij}Jj=1 | θX ,θH , zi)

=

J∏
j=1

p({xijkj}Kj

kj=1,hij | θX ,θH , zi)

(4)

In order to acquire a simple representation derivation, let
Z = {zi}Mi=1, H = {hij}M,J

i,j=1 and X =
{
xijkj

}M,J,Kj

i,j,kj=1
.

Taking the aforementioned independent and identically dis-
tributed (i.i.d.) assumption into account, the join distribution
w.r.t. all variables is obtained:

P (X,Z,H | θX ,θZ ,θH) =

M∏
i=1

{p(zi | θZ)

J∏
j=1

{p(hij | zi,θH)

Kj∏
kj=1

p(xijkj | hij ,θX)}}

(5)
which is a probabilistic hierarchical model. Generally speak-
ing, it is infeasible to estimate the covariance matrix Σjkj

and Σjp , when the dimensions of the features and the la-
tent variables are large. To avoid overfitting, Σjp and Σjkj

can be set to be σ2
jpI and σ2

jkj
I in this case, where σjp and

σjkj are two 1-D variables to control their variances of all
dimensions, and I is identical matrix.

To estimate the parameters of this probabilistic method,
the log-likelihood function w.r.t. all variables should be op-
timized. Since it is difficult to directly observe the latent
variable H, the log-likelihood function only related to the
multi-view and multi-feature data X and its label variable Z
is considered. Therefore, the objective function is

logP (X,Z | θX ,θZ ,θH) (6)

However, it is quite different between marginalizing H in
Eq.(5) and optimizing the objective function (6). Fortu-
nately, the Expectation-Maximization(EM) (Bishop 2006)
algorithm can be readily utilized for efficiently solving this
kind of problem with latent variables.

Optimization

As analyzed above, the EM algorithm, which is a two-
stage iterative optimization technique for finding maximum
likelihood solutions, is employed to estimate the model
parameters. Specifically, the posterior probability of latent
variable H will be calculated in E-step, followed by the esti-
mation of the value of parameters θZ , θH and θX in M-step.

E Step: Primarily, we use the current values of all pa-
rameters to evaluate the posterior probabilities of H. The
log-posterior function

logP (H | X,Z,θX ,θZ ,θH) ∝ logP (X,H,Z | θX ,θZ ,θH)

∝
M∑
i=1

{
J∑

j=1

{−1

2
hT
ij(

P∑
p=1

zpiΣ
−1
jp +

Kj∑
kj=1

AT
jkj

Σ−1
jkj

Ajkj )hij

+ hT
ij(

P∑
p=1

zpiΣ
−1
jp μjp +

Kj∑
kj=1

AT
jkj

Σ−1
jkj

(xijkj − bjkj ))}}

(7)
is an a quadratic form function w.r.t. hij . Thus the posterior
probability of hij follows a Gaussian distribution, which can
be rewritten as follows:

p(hij | X,Z,θX ,θZ ,θH) = N (hij | μH
ij ,Σ

H
ij ) (8)
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where

ΣH
ij = (

P∑
p=1

zpiΣ
−1
jp +

Kj∑
kj=1

AT
jkj

Σ−1
jkj

Ajkj )
−1

μH
ij = ΣH

ij{
P∑

p=1

zpiΣ
−1
jp μjp +

Kj∑
kj=1

AT
jkj

Σ−1
jkj

(xijkj − bjkj )}

(9)
M Step: In M-step, all parameters are re-estimated by op-

timizing a concave low-bound function for (6), being
L(θX ,θZ ,θH) = EH [log p(X,Z,H | θX ,θZ ,θH)] (10)

with a unique maximum point. In Eq.(10), the format is sim-
ilar to log joint density log p(X,Z,H | θZ ,θH ,θX), ex-
cept to replace hij and hijh

T
ij with E[hij ] and E[hijh

T
ij ],

respectively. Since the mean and covariance of the poste-
rior probability for hij are μH

ij and ΣH
ij , which have been

calculated in E-step, E[hij ] and E[hijh
T
ij ] can be obtained

through the following equation:

E[hij ] = μH
ij

E[hijh
T
ij ] = ΣH

ij + μH
ij (μ

H
ij )

T
(11)

By calculating the derivative of the low-bound function
L(θZ ,θH ,θX) w.r.t. θZ , θH , and θX , and setting it to be
zero, the parameters can be estimated with closed-form so-
lutions. The results are listed as follows.

For the parameters corresponding to θX , the solutions are

Ajkj = {
M∑
i=1

(xijkj − bjkj )E[hT
ij ]}{

M∑
i=1

E[hijh
T
ij ]}−1

bjkj =
1

M

M∑
i=1

{xijkj −AjkjE[hij ]}

Σjkj =
1

M

M∑
i=1

{AjkjE[hijh
T
ij ]A

T
jkj

− 2AjkjE[hij ]

(xijkj − bjkj )
T + (xijkj − bjkj )(xijkj − bjkj )

T }

(12)

For the parameters corresponding to θH , the solutions are

μjp =
1∑M

i=1 zpi

M∑
i=1

zpiE[hij ]

Σjp =
1∑M

i=1 zpi

M∑
i=1

zpi{E[hijh
T
ij ]− 2E[hij ]μ

T
jp + μjpμ

T
jp}
(13)

To estimate the parameter θZ = {πp}Pp=1, the Lagrange
Multiplier term is introduced to meet

∑P
p=1 πp = 1. By cal-

culating the derivative of the Lagrange function w.r.t. πp and
setting it to 0, the solution of πp is then obtained according
to the following equation:

πp =

∑M
i=1 zpi∑P

p=1

∑M
i=1 zpi

(14)

From Eq. (12), Eq. (13) and Eq. (14), we can see that each
step has a closed-form solution which would greatly facili-
tate the parameter estimation process. According to the con-
vergence theory of EM algorithm, each update of the param-
eters acquired from an E-step followed by an M-step can

Algorithm 1 [HMMF]Hierarchical Multi-view Multi-
feature Fusion
Input: Observed data: X; label: Z;
Initialization: θZ ;θH ; θX

1: (Calculate θZ )
2: for p = 1, ..., P do
3: Calculate πp by Eq (14)
4: end for
5: while not converged do
6: E-step:
7: for i = 1, ...,M do
8: for j = 1, ..., J do
9: Evaluate ΣH

ij and μH
ij by Eq.(9),

Calculate E[hij ] and E[hijh
T
ij ] by Eq.(11).

10: end for
11: end for
12: M-step: (re-estimate θH and θX )
13: for j = 1, ..., J do
14: for p = 1, ..., P do
15: calculate μjp and Σjp through Eq.(13)
16: end for
17: for kj = 1, ...,Kj do
18: calculate Σjkj , bjkj and Ajkj through Eq.(12)
19: end for
20: end for
21: end while
Output: θZ ;θH ; θX

guarantee the increase of the log likelihood function. Hence,
to obtain a local maximin point, we alternatively execute E-
step and M-step until convergence. The Algorithm 1 illus-
trates the details of the optimization. In this paper, our pro-
posed method is named as Hierarchical Multi-view Multi-
feature Fusion (HMMF).

Complexity: To simplify the description of the computa-
tional complexity per iteration, here we firstly give several
definitions: D1 = max(Dj), D2 = max(Djkj ), and K =
max(Kj). Thus the complexity of our algorithm is O(MC+
J(CD3

1 + K(MD2D1 + D2
2D1 + D3

2))) for the general
covariance matrix and O(MC + JD3

1 + JKMD1D2) for
the diagonal covariance matrix, where M, C and J are the
number of samples, categories and views, respectively. To
be honest, the algorithm converges in 10 iterations in most
cases. However, to make a full convergence, we set the num-
ber of iterations to 100 in our experiments.

Prediction

According to the Bayesian principle, the posterior proba-
bility of a given test sample x = {xjkj

}J,Kj

j,kj=1 belonging to
the p-th class is calculated through

p(zp = 1 | x,θZ ,θH ,θX)

=
p(x | zp = 1,θZ ,θH ,θX)p(zp = 1)∑P
p=1 p(x | zp = 1,θZ ,θH ,θX)p(zp = 1)

.
(15)

Since the second term of the numerator p(zp = 1) = πp, the
key problem is how to calculate the first term of the numer-
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ator. Actually, we get its value by the following process:

log p(x | zp = 1,θZ ,θH ,θX)

= log

∫
p(x,h | zp = 1,θZ ,θH ,θX)dh

=

J∑
j=1

{(−1

2
log

|Σjp|∣∣ΣH
jp

∣∣ −
1

2
μT

jpΣ
−1
jp μjp)+

1

2
(μH

jp)
T (ΣH

jp)
−1μH

jp +

Kj∑
kj

(−Djkj

2
log(2π)−

1

2
log

∣∣Σjkj

∣∣− 1

2
(xjkj − bjkj )

TΣ−1
jkj

(xjkj − bjkj ))}

(16)

where

ΣH
jp = (Σ−1

jp +

Kj∑
kj=1

AT
jkj

Σ−1
jkj

Ajkj )
−1

μH
jp = ΣH

jp{Σ−1
jp μjp +

Kj∑
kj=1

AT
jkj

Σ−1
jkj

(xjkj − bjkj )}
(17)

Every parameter or variable is well-defined in Eq.(16). Thus
first term of the numerator in Eq(15) as well as the posterior
probability of this new sample belonging to the p-th class
are easily gained. If only requiring the predicted label, the
logarithm of the numerator in Eq(15) for all classes can be
calculated, and predicted category is the one with the max
value.

Experimental Results

In this section, we conduct experiments on both synthetic
and real-world datasets to demonstrate the superiority of the
proposed method. The datasets used in this paper are first
described, followed by the experimental setting. The com-
parison among different approaches is then analyzed.

Datasets and Experimental Setting

The synthetic data is generated according to the assump-
tion of the proposed method. Particularly, given the values
of Dj and Dkj , the parameters Ajkj

, Σjkj
, Σjp and μjp

are randomly generated. The latent variable hij is then ob-
tained by following N (hij | ∑P

p=1 zpiμjp,
∑P

p=1 zpiΣjp).
Consequently, the observations are acquired according to
N (xijkj

| Ajkj
hij ,Σjkj

). Without loss generality, we set
the dimensionality Dj to be the same for each view. So does
Djkj

. In this experiment, we set Dj and Djkj
to be 10 and

20, respectively.
We also select the biomedical dataset (Li et al. 2016)

to evaluate the performance of the proposed method. This
biomedical dataset was collected by the Hong Kong Poly-
technic University at the Guangdong Provincial TCM Hos-
pital, Guangdong, China, from the early 2014 to the late
2015, which aims to detect the Diabetes Mellitus (DM) dis-
ease from the healthy samples. Each instance can be repre-
sented by three modalities: facial image, tongue image and
sublingual image. Concretely, the face image can be rep-
resented by the 24-dimensional color feature (4 block×6
dimension) and another 5-dimensional texture feature; the

tongue image can be represented with 12-dimensional color
feature, 9-dimensional texture feature and 13-dimensional
geometry feature; and the sublingual image can be repre-
sented with 6-dimensional color feature and 6-geometrical
feature. This dataset consists of 192 healthy and 198 DM
samples. Additionally, 40, 50, 60, and 70 instances in each
category are randomly selected for training with five inde-
pendent times, and the rest of sample are exploited for test-
ing.

The third one is the Wiki Text-Image dataset (Rasiwasia et
al. 2010) collected from the WikiPedia’s featured articles. In
this dataset, each sample can be represented by two modali-
ties including an image and a text. According to (Rasiwasia
et al. 2010), 10 most populated categories (at least 150 in-
stances per category) containing art, biology, geography, his-
tory, literature, media, music, royalty, sport and warfare are
used for training and testing. Particularly, (Rasiwasia et al.
2010) separates the database into 2173 training samples and
693 test samples. The image view is described with the 128-
D SIFT histogram image feature and the text view is pre-
sented with 10-D latent Dirichlet features. In order to make
this dataset be multi-view and multi-feature style, we also
apply the Alexnet (Krizhevsky, Sutskever, and Hinton 2012)
to extract a CNN feature from the provided images. Note
that, the dimensionality of the output of the Alexnet is re-
duced from 4096 to 30 in this paper to decrease the training
time.

In order to illuminate the superiority of our method, we
also make it compare with some single- and multi-view
based strategies including DPL (Gu et al. 2014), MDL
(UMDL and SMDL) (Bahrampour et al. 2016), JDCR (Li,
Zhang, and Zhang 2017a), and CSRL (Guo 2013) on the
real-world datasets. For DPL, we concatenate all features in
all views as a single one. For other approaches, we concate-
nate all features in each view as a vector, thus vectors in dif-
ferent views are regarded as their inputs. Since CSRL aim to
learn a latent variable, we apply SVM to it to do the classifi-
cation.

For the parameter tuning on synthetic and Wiki Text-
Image datasets, we tune the dimension Dj of the latent vari-
able through 5-fold cross-validation using training data. In
fact, we find that Dj being close to min(Djkj ) is fine for
both datasets. For the Biomedical dataset, since the dimen-
sion of several features is around 5 and according to results
of the first and third datasets, we set Dj to be 5 empirically.

Experimental Results on Three Datasets

Synthetic Dataset: In this experiment, we randomly gen-
erate four types of synthetic datasets, which are (J = 2,
Kj=2), (J = 3, Kj=3), (J = 4, Kj=4) and (J = 5,
Kj=5). As mentioned above, without loss generality, we
set the number Kj of types of features in each view to be
same. Note that Dj and Djkj are set to be 10 and 20, re-
spectively. Additionally, we randomly generate 5 categories
whose number of training and test samples is 20 and 100 in
each class, respectively. In order to demonstrate the superi-
ority of the hierarchical fusion, we reconstruct the inputs in
another three types. For instance, as shown in Tab.1, when
the number of views and their corresponding features are
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Table 1: The classification accuracies on the synthetic
dataset obtained by HMMF.

(J , Kj)
Model (2,2) (2,1) (1,4) (4,1)

Accuracy 82.2% 80.6% 63.6% 80.4%
Model (3,3) (3,1) (1,9) (9,1)

Accuracy 86.8% 85.0% 68.6% 84.8%
Model (4,4) (4,1) (1,16) (16,1)

Accuracy 93.6% 92.4% 82.0% 92.0%
Model (5,5) (5,1) (1,25) (25,1)

Accuracy 94.4% 93.0% 90.2% 91.0%

(a)
original data

(b)
generated data

Figure 3: The comparison of the distributions between the
original data and generated data.

(J = 3, Kj=3), we concatenate the features in each view
as a single one. Thus a novel input, whose J is 3 and Kj

is 1 (3,1) is obtained. Additionally, we also follow the in-
put as many existing multi-view methods do. We regard the
sample with 9 types of features as the input and two cases
including (J = 1, Kj=9 (1,9)) and (J = 9, Kj=1 (9,1))
are consequently acquired. From Tab.1 we can see that our
proposed hierarchical fusion strategy always achieves a no-
ticeable accuracy compared with other cases. The perfor-
mance obtained by HMMF is particularly better than that
in the third column, indicating the significance of hierarchi-
cal fusion structure. Furthermore, with the increasing of the
number of views and features, there is also a remarkable im-
provement in the classification accuracy. The result is only
82.2% in the case of (J = 2, Kj = 2), while it has a great
achievement when (J , Kj) rise to (4,4).

Due to application of the EM algorithm in our optimiza-
tion, a local solution can be obtained. Thus it is necessary
to have a discussion on the initialization. To be honest, we
can initialize parameters in two ways: be consistent and be
random. First: in our synthetic experiment, we generate the
mapping matrices A through PCA (Xjkj

is the input), and Σ
matrices, μ and b vectors are set to be identical matrices and

Figure 4: The ROC curves obtained by different methods in
DM detection.

zeros vectors, respectively. In this way, the experimental re-
sult is consistent. Second: another one is to initialize param-
eters randomly. Although this method will have a influence
on results, the fluctuation of results is acceptable. For in-
stance, we randomly initialize all parameters with 10 times
in the synthetic experiment when (J = 3,K = 3). The
corresponding accuracy is (86.4%, 85.2%, 86.4%, 85.4%,
85.6%, 86.4%, 86.0%, 86.6%, 85.8%, 86.0%), which indi-
cates that our method is little sensitive to the initialization.

Additionally, we also visualize the data generated through
the estimated parameters. In order to display distributions of
different categories more clearly, we randomly re-generate
the synthetic data by enlarging the mean of distributions be-
longing to different classes. The Fig.3(a) shows the loca-
tions of the first two dimensional points of the synthetic data
in the first type of features in the first view when J = 3
and Kj = 3. Inputting this data into our model, we can
subsequently obtain the parameters θZ , θH and θX . Then
these estimated parameters are exploited in our model to re-
generate the five-class data, as shown in Fig.3(b). It is easy
to see that the distributions of different categories generated
according to the estimated parameters are quite similar to
that in original data, which relatively substantiates the effec-
tiveness and superiority of our hierarchical fusion model.

Biomedical Dataset: The accuracy as well as the
sensitivity and specificity calculated by various strate-
gies are tabulated in Tab.2. Note that, Sensitivity
= TruePos./(TurePos.+FalsePos.) and Specificity =
TrueNeg./(TrueNeg.+FalseNeg.). It is easy to observe
that the proposed method always gets the better perfor-
mance in classification compared with other approaches. In
contrast to UMDL, SMDL and CSRL, HMMF is obviously
superior. Particularly, HMMF achieves 82.0%, 82.7%,
83.2% and 84.9% in accuracy when the training number
is 40, 50, 60 and 70, respectively, while the best results
obtained by the aforementioned methods are only 77.4%,
74.7%, 79.1% and 79.6%. In comparison to DPL, RCR,
MTJSRC and JDCR, HMMF is also competitive, gaining
about 2% improvement in classification accuracy. For
instance, when the training number is 40 or 60, the classifi-
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Table 2: The accuracy, sensitivity and specificity values obtained by different methods on the Biomedical dataset when the
number of training samples is 40, 50, 60, and 70, respectively. Best results are highlighted in bold.

Number of Training Samples
Num num=40 num=50 num=60 num=70

Methods Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe
DPL 77.2% 75.4% 79.0% 79.9% 78.2% 81.5% 79.4% 77.7% 81.0% 82.4% 80.3% 84.4%

MTJSRC 79.0% 82.2% 76.0% 80.5% 80.6% 80.3% 81.0% 86.0% 76.1% 80.1% 82.1% 78.2%
RCR 78.6% 77.0% 80.3% 80.5% 80.3% 80.7% 80.9% 78.1% 83.6% 82.5% 80.6%, 84.4%

UMDL 77.4% 79.0% 75.8% 74.7% 73.4% 76.0% 79.1% 80.3% 78.0 % 79.6% 81.5% 77.8%
SDML 77.4% 79.0% 76.0% 73.6% 76.1% 71.2% 74.7% 70.4% 78.8 % 74.5% 75.9% 73.1%
JDCR 78.1% 75.8% 80.4% 80.1% 78.0% 82.0% 79.9% 78.8% 81.0 % 82.7% 80.7% 84.7%
CSRL 71.3% 73.5% 69.2% 72.2% 74.0% 70.5% 73.1% 77.9% 68.4% 75.4% 77.2% 73.7%

HMMF 82.0% 80.3% 83.7% 82.7% 80.7% 84.6% 83.2% 78.7% 87.5% 84.9% 83.1% 86.6%

Table 3: The area under curve (AUC) obtained by the differ-
ent methods in DM detection.

Methods AUC Methods AUC
DPL 0.8639 JDCR 0.8703

UMDL 0.8639 CSRL 0.8420
SMDL 0.8089 HMMF 0.9027

Table 4: The accuracy obtained by the different methods in
the Wiki Text-Image dataset.

Method DPL MTJSCR RCR UMDL
Accuracy 65.1% 67.7% 66.1% 67.2%
Method SMDL JDCR CSRL HMMF

Accuracy 69.1% 68.5% 64.2% 71.1%

cation accuracy calculated by the proposed method reaches
more than 2% improvement. Referring to the sensitivity and
specificity, the presented model obtains superior values in
most cases. For the specificity, the values gained by HMMF
always outperforms that obtained by other comparison
methods. For the sensitivity, although MTJSRC achieves
a better performance our’s when the training number is 40
and 60, our method arrives at the best point in other cases.

The ROC curves as well as their AUC values are further
shown in Fig. 4 and Tab.3, respectively, when the training
number is 70. From Fig. 4 we can see that the area cov-
ered by the ROC curve obtained by HMMF is remarkably
larger than that calculated by SMDL and CSRL. In con-
trast to DPL, UMDL, and JDCR, HMMF also has the more
or less improvement. From the Tab.3, it is easy to observe
that our proposed hierarchical fusion model acquires higher
AUC values. In comparison to SMDL and CSRL, HMMF
achieves at least 6% improvement. Referring to the remain-
ing strategies, HMMF is also much better. The area covered
by HMMF is 0.9027, while the best result gained by these
comparison strategies is only 0.8703.

Wiki Text-Image Dataset: The classification accuracy
conducted on the Wiki Text-Image Dataset is listed in Tab.
4. Note that, we set the dimension of the latent variable to be
8 in our method. For CSRL, we set the dimension to be 10
since it achieves the best result in this case. It is easy to see
that the proposed method achieves the best result compared

Table 5: The accuracy obtained by HMMF with the change
of the dimensionality of the latent variable.

Dimension Accuracy Dimension Accuracy
Dj=1 44.0% Dj=6 68.7%
Dj=2 53.4% Dj=7 70.6%
Dj=3 59.0% Dj=8 71.1%
Dj=4 64.4% Dj=9 70.4%
Dj=5 66.8% Dj=10 69.4%

with other approaches. In contrast to CSRL, DPL, RCR,
MTJSRC and UMDL, HMMF gains a remarkable improve-
ment. Compared with SMDL and JDCR, our strategy also
obtains about 2.0% achievement. Particularly, the proposed
method reaches as high as 71.1% in accuracy, while the best
result obtained by SMDL and JDCR is only 69.1%.

The Tab. 5 further shows the accuracy with the changes of
different dimensions of the latent variable. There is an obvi-
ous increase accuracy from 1 to 8 since a too low dimension
of the latent variable would lose some valuable information.
Subsequently, HMMF meets a slight performance degrada-
tion if Dj continues rising, indicating that a large dimen-
sional subspace may introduce some information which does
not contribute to the classification.

Conclusion

In this paper, a generative and hierarchical model is pro-
posed for multi-view and multi-feature fusion. A latent vari-
able is first learned for each view to fuse multiple features.
The label information is also imposed on these variables
across various views to jointly exploit the correlation among
them. In this way, the multi-view and multi-feature data can
be hierarchically and effectively fused. The EM algorithm is
then applied to optimize the proposed method and a closed-
form solution for each parameter is calculated. The experi-
mental results on both synthetic and two real-world datasets
substantiate the superiority of the presented method.
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