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Abstract

We revisit the problem of robust principal component anal-
ysis with features acting as prior side information. To this
aim, a novel, elegant, non-convex optimization approach is
proposed to decompose a given observation matrix into a
low-rank core and the corresponding sparse residual. Rigor-
ous theoretical analysis of the proposed algorithm results in
exact recovery guarantees with low computational complex-
ity. Aptly designed synthetic experiments demonstrate that
our method is the first to wholly harness the power of non-
convexity over convexity in terms of both recoverability and
speed. That is, the proposed non-convex approach is more ac-
curate and faster compared to the best available algorithms
for the problem under study. Two real-world applications,
namely image classification and face denoising further exem-
plify the practical superiority of the proposed method.

Introduction

Several machine learning and signal processing tasks in-
volve the separation of a data matrix into a low-rank ma-
trix and a matrix with sparse support (i.e., a sparse ma-
trix) containing entries of arbitrary magnitude. Robust prin-
cipal component analysis (RPCA) (Candes et al. 2011;
Chandrasekaran et al. 2011) offers a provably correct and
convenient way to solve this matrix separation problem,
when certain incoherence conditions on the data hold. In
fact, RPCA solves a convex relaxation of the natural rank
minimization problem which is regularized by the sparsity
promoting �0-(quasi) norm.

Nevertheless, prior side information, oftentimes in the
form of features, may also be present in practice. For in-
stance, features are available for the following tasks:

– Collaborative filtering: apart from ratings of an item by
other users, the profile of the user and the description of
the item can also be exploited in making recommenda-
tions (Chiang, Hseih, and Dhillon 2015);

– Relationship prediction: user behaviours and message ex-
changes can assist in finding missing links on social media
networks (Xu, Jin, and Zhou 2013);

– Person-specific facial deformable models: an orthonormal
subspace learnt from manually annotated data captured
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in-the-wild, when fed into an image congealing proce-
dure, can help produce more correct fittings (Sagonas et
al. 2014).

It is thus reasonable to investigate whether it is propitious
for RPCA to exploit the available side information by in-
corporating features. Indeed, recent results (Liu, Liu, and
Li 2017), indicate that in case of union of multiple sub-
spaces where RPCA degrades due to the increasing row-
coherence (when the number of subspaces grows), the use
of features as side information allow accurate low-rank re-
covery by removing its dependency on the row-coherence.
Despite the theoretical and practical merits of convex vari-
ants of RPCA with features, such as LRR (Liu, Lin, and Yu
2010) and PCPF (Chiang, Hsieh, and Dhillon 2016), convex
relaxations of the rank function and l0-norm result into al-
gorithm weakening (Chandrasekarana and Jordan 2013).

On a separate note, recent advances in non-convex op-
timization algorithms continue to undermine their convex
counterparts (Gong et al. 2013; Ge, Lee, and Ma 2016;
Kohler and Lucchi 2017). In particular, non-convex RPCA
algorithms such as fast RPCA (Yi et al. 2016) and AltProj
(Netrapalli et al. 2014) exhibit better properties than the con-
vex formulation. Most recently, (Niranjan, Rajkumar, and
Tulabandhula 2017) embedded features into a non-convex
RPCA framework known as IRPCA-IHT with faster speed.
However, it remains unclear, how to exploit side information
in non-convex RPCA and whether it facilitates provably cor-
rect, fast, and more accurate algorithms.

In this work, we give positive answers to the above ques-
tions by proposing a novel, non-convex scheme that fully
leverages side information (features) regarding row and col-
umn subspaces of the low-rank matrix. Even though the pro-
posed algorithm is inspired by the recently proposed fast
RPCA (Yi et al. 2016), our contributions are by no means
trivial, especially from a theoretical perspective. First, fast
RPCA cannot be easily extended to consistently take ac-
count of features. Second, as we show in this paper, inco-
herence assumptions on the observation matrix and features
play a decisive role in determining the corruption bound and
the computational complexity of the non-convex algorithm.
Third, fast RPCA is limited to a corruption rate of 50% due
to their choice of the hard threshold, whereas our algorithm
ups this rate to 90%. Fourth, we prove that the costly pro-
jection onto factorized spaces is entirely optional when fea-
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tures satisfy certain incoherence conditions. Although our
algorithm maintains the same corruption rate of O( n

r1.5 ) and
complexity of O(rn2 log( 1ε )) as fast RPCA, we show em-
pirically that massive gains in accuracy and speed can still
be obtained. Besides, the transfer of coherence dependency
from observation to features means that our algorithm is ca-
pable of dealing with highly incoherent data.

Unavoidably, features adversely affect tolerance to cor-
ruption in IRPCA-IHT (O(nd )) compared to its predecessor
AltProj (O(nr )). This is not always true with our algorithm
in relation to fast RPCA. And when the underlying rank is
low but features are only weakly informative, i.e. r � d,
which is often the case, our tolerance to corruption is ar-
guably better. IRPCA-IHT also has a higher complexity of
O((dn2+d2r) log( 1ε )) than that of our algorithm. Although
feature-free convex and non-convex algorithms have higher
asymptotic error bounds than our algorithm, we show in our
experiments that this does not translate as accuracy in real-
ity. Our algorithm still has the best performance in recover-
ing accurately the low-rank part from highly corrupted ma-
trices. This may be attributed to the fact that our bounds are
not tight. Besides, PCPF and AltProj have much higher com-
plexity (O( n

3√
ε
) and O(r2n2 log( 1ε ))) than ours. For PCPF,

there does not exist any theoretical analysis under the de-
terministic sparsity model. Nonetheless, we show in our ex-
periments that our algorithm is superior with regard to both
recoverability and running time.

The contributions of this paper are summarised as fol-
lows:
• A novel non-convex algorithm integrating features with

informed sparsity is proposed in order to solve RPCA
problem.

• We establish theoretical guarantees of exact recovery un-
der different assumptions regarding the incoherence of
features and observation.

• Extensive experimental results on synthetic data indicate
that the proposed algorithm is faster and more accurate in
low-rank matrix recovery than the compared state-of-the-
art convex and non-convex methods for RPCA (with and
without features).

• Experiments on two real-world datasets, namely MNIST
and Yale B database demonstrate the practical merits of
the proposed algorithm.

Notations

Lowercase letters denote scalars and uppercase letters de-
note matrices, unless otherwise stated. Ai· and A · j rep-
resent the ith row and the jth column of A. Projection onto
support set Ω is given by ΠΩ. |A| is the element-wise ab-
solute value of matrix A. For norms of matrix A, ‖A‖F
is the Frobenius norm; ‖A‖∗ is the nuclear norm; ‖A‖2 is
the largest singular value; otherwise, ‖A‖p is the lp-norm
of vectorized A; and ‖A‖2,∞ is the maximum of matrix
row l2-norms. Moreover, 〈A,B〉 represents tr(ATB) for
real matrices A,B. Additionally, σi is the ith largest sin-
gular value of a matrix.

The Euclidean metric is not applicable here because of the

non-uniqueness of the bi-factorisation L∗ = A∗B∗T , which
corresponds to a manifold rather than a point. Hence, we de-
fine the following distance between (A,B) and any of the
optimal pair (A∗,B∗) such that L∗ = A∗B∗T :

d(A,B,A∗,B∗) = min
R

√
‖A−A∗R‖2F + ‖B−B∗R‖2F ,

(1)
where R is an r × r orthogonal matrix.

Related Work

RPCA concerns a known observation matrix M which we
are seeking to decompose into matrices L∗, S∗ such that
L∗ is low-rank and S∗ is sparse and of arbitrary magnitude.
Conceptually, it is equivalent to solving the following opti-
mization problem:

min
L,S

rank(L) + γ‖S‖0 subject to L+ S = M, (2)

for appropriate γ. This problem, regrettably, is NP-hard.
PCP (Wright et al. 2009) replaces (2) with convex heuris-

tics:

min
L,S

‖L‖∗ + γ‖S‖1 subject to L+ S = M, (3)

for some γ. In spite of the simplification, PCP can ex-
actly recover the solution of RPCA under the random model
(Candes et al. 2011) and the deterministic model (Chan-
drasekaran et al. 2011; Hsu, Kakade, and Zhang 2011).

If feasible feature dictionaries, X and Y, regarding row
and column spaces are available, PCPF (Chiang, Hsieh, and
Dhillon 2016) makes use of these to generalize (3) to the
below objective:

min
H,S

‖H‖∗+γ‖S‖1 subject to XHYT +S = M, (4)

for the same γ as in (3). Convergence to the RPCA solution
has only been established for the random sparsity model.

AltProj (Netrapalli et al. 2014) addresses RPCA by mini-
mizing an entirely different objective:

min
L,S

‖M− L− S‖F

subject to L ∈ set of low-rank matrices
S ∈ set of sparse matrices,

(5)

where the search consists of alternating non-convex projec-
tions. That is, during each cycle, hard-thresholding takes
place first to remove large entries and projection of appro-
priate residuals onto the set of low-rank matrices with in-
creasing ranks is carried out next. Exact recovery has also
been established.

Fast RPCA (Yi et al. 2016) follows yet another non-
convex approach to solve RPCA. After an initialization
stage, fast RPCA updates bilinear factors U, V such that
L = UVT through a series of projected gradient descent
and sparse estimations, where U, V minimize the following
loss:

min
U,V

1

2
‖UVT + S−M‖2F +

1

8
‖UTU−VTV‖2F , (6)
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for U, V properly constrained. Recovery guarantee is en-
sured.

IRPCA-IHT (Niranjan, Rajkumar, and Tulabandhula
2017) includes features X, Y in an iterative non-convex pro-
jection algorithm. Similar to AltProj, at each step, a new
sparse estimate is calculated from hard thresholding via a
monotonically decreasing threshold. After that, spectral hard
thresholding takes place to attain the low-rank estimate.
IRPCA-IHT provably converges to the solution of RPCA.

We also mention here several works of non-convex ob-
jectives (Oh et al. 2015; Shang et al. 2017), though exact
recovery guarantees are lacking.

Problem Setup
Suppose that there is a known data matrix M ∈ R

n1×n2 ,
which can be decomposed into a low-rank component L∗
and a sparse error matrix S∗ of compatible dimensions. Our
aim is to identify these underlying matrices and hence ro-
bustly recover the low-rank component with the help of
available side information in the form of feature matrices
X and Y.

Concretely, let L∗ = U∗Σ∗V∗T be the singular value de-
composition and P∗ = XTU∗Σ∗ 1

2 and Q∗ = YTV∗Σ∗ 1
2 .

S∗ follows the random sparsity model. That is, the support
of S∗ is chosen uniformly at random from the collection of
all support sets of the same size. Furthermore, let us be in-
formed of the proportion of non-zero entries per row and
column, denoted by α. Assume that there are also available
features X ∈ R

n1×d1 and Y ∈ R
n2×d2 such that they are

feasible, i.e. col(X)⊇col(U∗) and col(Y)⊇col(V∗) where
col(A) is the column space of A and XTX = YTY = I1.

In this paper, we discuss robust low-rank recovery using
the above mentioned features and three different incoher-
ence conditions: (i) ‖U∗‖2,∞ ≤

√
μ1r
n1

and ‖V∗‖2,∞ ≤√
μ1r
n2

; (ii) ‖X‖2,∞ ≤
√

μ2d1

n1
and ‖Y‖2,∞ ≤

√
μ2d2

n2
; (iii)

both (i) and (ii), where r is the given rank of L∗ and μ1, μ2

are constants.

Algorithm
We use a non-convex approach to achieve the above objec-
tive. The algorithm consists of an initialization phase fol-
lowed by a gradient descent phase. At each stage, we keep
track of the factors P, Q such that L = XPQTYT .

Hard-thresholding

We first introduce the sparse estimator via hard-thresholding
which is used in both phases. Given a threshold θ, Tθ(A)
removes elements of A that are not among the largest θ-
fraction of elements in their respective rows and columns,
breaking ties arbitrarily for equal elements:

Tθ(A)ij =

{
0 if |Aij | ≤ Aθi· or |Aij | ≤ Aθ·j,
Aij otherwise,

(7)
where Aθi·,Aθ·j are the (n2θ)

th and (n1θ)
th largest ele-

ment in absolute value in row i and column j respectively.
1This can always achieved via orthogonalisation.

Initialization

S is first initialized as S0 = Tα(M). Next, we obtain
U0Σ0V

T
0 as the r-truncated SVD of L0, which is calculated

via L0 = M− S0. We can then construct P0 = XTU0Σ
1
2
0

and Q0 = YTV0Σ
1
2
0 . Such an initialization scheme gives

P, Q the desirable properties for use in the second phase.

Gradient Descent

In case (i), we need the following sets:

P = {A ∈ R
d1×r|‖XA‖2,∞ ≤

√
2μ1r

n1
‖P0‖2}, (8)

Q = {A ∈ R
d2×r|‖YA‖2,∞ ≤

√
2μ1r

n2
‖Q0‖2}. (9)

Otherwise, we can simply take P as Rd1×r and Q as Rd2×r.
To proceed, we first regularise P0 and Q0:

P = ΠP(P0), Q = ΠQ(Q0). (10)

At each iteratiion, we first update S with the sparse esti-
mator using a threshold of α+min(10α+ 0.1):

S = Tα+min(10α,0.1)(M−XPQTYT ). (11)

For P, Q, we define the following objective function

L(P,Q) =
1

2
‖XPQTYT +S−M‖2F +

1

64
‖PTP−QTQ‖2F .

(12)
P and Q are updated by minimizing the above function sub-
ject to the constraints imposed by the sets P and Q. That
is,

P = ΠP(P− η∇PL), (13)
Q = ΠQ(Q− η∇QL), (14)

where the step size η is determined analytically below. With
properly initialized P and Q, such an optimization design
converges to P∗ and Q∗. The procedure is summarized in
Algorithm 1.

Analysis

We first provide theoretical justification of our proposed ap-
proach. Then we evaluate its computational complexity. The
proofs can be found in the supplementary material.

Convergence

The initialization phase provides us with the following guar-
antees on P and Q.
Theorem 1 In cases (i) and (iii), if α ≤ 1

16κrμ1
, we have

d(P0,Q0,P
∗,Q∗) ≤ 18αrμ1

√
rκσ∗

1 . (15)

In case (ii), if α ≤ 1
16κμ2

√
d1d2

, we have

d(P0,Q0,P
∗,Q∗) ≤ 18αμ2

√
rd1d2κσ∗

1 , (16)

where κ is the condition number of L∗ and d is a distance
metric defined in the appendix.
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Algorithm 1 Non-convex solver for robust principal com-
ponent analysis with features
Input: Observation M, features X,Y, rank r, corruption

approximation α and step size η.
Initialization:

1: S = Tα(M)
2: UΣVT = r-SVD(M− S)

3: P = XTUΣ
1
2

4: Q = YTVΣ
1
2

Gradient descent:
5: P = ΠP(P)
6: Q = ΠQ(Q)
7: while not converged do
8: S = Tα+min(10α,0.1)(M−XPQTYT )
9: P = ΠP(P− η∇PL)

10: Q = ΠQ(Q− η∇QL)
11: end while
Return: L = XPQTYT , S

Theorem 2 For η ≤ 1
192‖L0‖2

, there exist constants c1 > 0,
c2 > 0, c3 > 0, c4 > 0, c5 > 0 and c6 > 0 such that, in case
(i), when α ≤ c1

μ1(κr)
3
2

, we have the following relationship

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c2ησ

∗
r )

td(P0,Q0,P
∗,Q∗)2,

(17)
in case (ii), when α ≤ c3

μ2dr
1
2 κ

3
2

, we have

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c4ησ

∗
r )

td(P0,Q0,P
∗,Q∗)2.

(18)
and in case (iii), when α ≤ c5 min( 1

μ2dκ
, 1

μ1(κr)
3
2
), we have

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c6ησ

∗
r )

td(P0,Q0,P
∗,Q∗)2.

(19)

Complexity

From Theorem 2, it follows that our algorithm converges at
a linear rate under assumptions (ii) and (iii). To converge be-
low ε of the initial error, O(log( 1ε )) iterations are needed. At
each iteration, the most costly step is matrix multiplication
which takes O(rn2) time. Overall, our algorithm has total
running time of O(rn2log( 1ε )).

Experimental results

We have found that when the step size is set to 0.5, reason-
able results can be obtained. For all algorithms in compar-
ison, we run a total of 3000 iterations or until ‖M − L −
S‖F /‖M‖F < 10−7 is met.

Phase transition

Here, we vary the rank and the error sparsity to investigate
the behavior of both our algorithm and existing state-of-art
algorithms in terms of recoverability. True low-rank matri-
ces are created via L∗ = JKT , where 200 × r matrices
J,K have independent elements drawn randomly from a
Gaussian distribution of mean 0 and variance 5 · 10−3 so
r becomes the rank of L∗. Next, we corrupt each column

Figure 1: Domains of recovery by various algorithms: (a) for
random signs and (b) for coherent signs.

of L∗ such that α of the elements are set independently
with magnitude U(0, r

40 ). However, this does not guaran-
tee α row corruption. We thus select only matrices whose
maximum row corruption does not exceed α+ 6.5% but we
still feed α to the algorithms in order to demonstrate that
our algorithm does not need the exact value of corruption
ratio. We consider two types of signs for error: Bernoulli
±1 and sgn(L∗). The resulting M thus becomes the simu-
lated observation. In addition, let L∗ = UΣVT be the SVD
of L∗. Feature X is formed by randomly interweaving col-
umn vectors of U with 5 arbitrary orthonormal bases for the
null space of UT , while permuting the expanded columns
of V with 5 random orthonormal bases for the kernel of VT

forms feature Y. Hence, the feasibility conditions are ful-
filled: col(X) ⊇col(L0), col(Y) ⊇col(LT

0 ). For each (r, α)
pair, three observations are constructed. The recovery is suc-
cessful if for all these three problems,

‖L− L∗‖F
‖L∗‖F

< 10−3 (20)

from the recovered L.
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Figure 2: (i) Running times for observation matrices of in-
creasing dimensions for (i) PCP, PCPF, fast RPCA, AltProj,
our algorithm and (ii) IRPCA-IHT and our algorithm when
‖L−L∗‖F

‖L∗‖F
≤ 1%.

Figures 1(I) plot results from algorithms incorporating
features. Besides, our algorithm contrasts with fast RPCA
in Figure 1(II). Other feature-free algorithms are investi-
gated in Figure 1(III). Figures 1(a) illustrate the random
sign model and Figures 1(b) for the coherent sign model.
All previous non-convex attempts fail to outperform their
convex equivalents. IRPCA-IHT is unable to deal with even
moderate levels of corruption. The frontier of recoverability
that has been advanced by our algorithm over PCPF is phe-
nomenal, massively ameliorating fast RPCA. The anoma-
lous asymmetry in the two sign models is no longer observed
in non-convex algorithms.

Running Time

Next, we highlight the speed of our algorithm for large-scale
matrices, typical of video sequences (Xiong, Liu, and Tao
2016). 1500×1500 to 2500×2500 random observation ma-
trices are generated, where the rank is chosen to be 20% of
the column number and random sign error corrupts 11% of
the entries, with features X,Y having a dimension of 50%
of the column number. The running times of all algorithms
except IRPCA-IHT are plotted in 2 (i) because IRPCA-IHT
is not able to achieve a relative error (‖L−L∗‖F

‖L∗‖F
) less than 1%

for larger matrices. For fair comparison, we have relaxed the
rank to 0.3% of the column number and error rate to 0.1% to
compare our algorithm with IRPCA-IHT for matrices rang-
ing from 2000×2000 to 10000×10000. We have used fea-
tures X,Y having a dimension of 80% of the column num-
ber to speed up the process. The result is shown in Figure 2
(ii). All times are averaged over three trials. It is evident that,
for large matrices, our algorithm overtakes all existing algo-
rithms in terms of speed. Note that features in PCPF even
slow down the recovery process.

Image Classification

Once images are denoised, classification can be performed
on them. The classification results directly reflect the image
denoising ability. For a set of correlated images, low-rank
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Figure 3: Relative error (‖L−L∗‖F

‖L∗‖F
) for sparsity values: 10%,

15%, 20%, 25%, 30%, 35%.

algorithms are normally used to remove noise that is sparse.
The same classifier is thus able to compare the different low-
rank models.

The MNIST dataset is such an example which contains
hand-written digits divided into training and testing sets. Let
the observation matrix be composed of 2000 vectorized ran-
dom images from the test set stacked column-wise. In this
case, the left feature obtained from the training set is also ap-
plicable to the test set because of the Eigendigit nature. This
imparts our algorithm to supervised learning where there are
clean related training samples available. The right feature
does not posses such property and is set to the identity ma-
trix. We add a range of sparse noise to the test set separately
where the noise sets the pixel to 255. For PCPF, we take
d = 300 as in (Chiang, Hsieh, and Dhillon 2016) and for
IRPCA-IHT and our algorithm we use d = 150 instead.

The relative error between the recovered matrix by the
competing algorithms and the clean test matrix is plotted in
Figure 3. Our algorithm is most accurate in removing the
added artificial noise. To evaluate how classifiers perform on
the recovered matrices, we train the linear and kernel SVM
using the training set and test the corresponding models on
the recovered images. Table 1 tabulates the linear SVM. Ta-
ble 2 tabulates the kernel SVM. Both classifiers confirm the
recovery result obtained by various models corroborating
our algorithm’s pre-eminent accuracy.

Face denoising

It is common practice to decompose raw facial images as
a low-rank component for faithful face representation and
a sparse component for defects. This is because the face
is a convex Lambertian surface which under distant and
isotropic lighting has an underlying model that spans a 9-
D linear subspace (Basri and Jacobs 2003), but theoreti-
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α clean noisy PCP PCPF AltProj IRPCA-IHT fast RPCA our algorithm
10 30.45 82.75 83.35 81.4 65.2 81.1 86.9
15 25.1 82.95 83.4 81.15 49.65 79.65 84.8
20 89.65 23.15 83.5 84 79.3 37.8 78.65 83.8
25 18.65 81.35 82.65 74.05 30.35 75.3 83.15
30 18.6 77.95 79 71.5 24.1 72.9 82.05
35 16.95 71.2 73.4 67.75 21.05 71.45 79.05

Table 1: Classification results obtained by a linear SVM.

α clean noisy PCP PCPF AltProj IRPCA-IHT fast RPCA our algorithm
10 87 87.25 87.3 86.45 89.3 89.25 90.3
15 75.85 87.15 87.4 86.75 82.85 87.2 89.8
20 92.25 64.35 87.6 87.55 84.65 71.2 85.55 88.55
25 55.85 87 86.95 79.4 62.35 82.65 87.8
30 47.15 81.15 81.55 76.75 53.5 78.3 85.65
35 40.55 74.8 75.7 71 47.4 76.75 85.15

Table 2: Classification results obtained by an SVM with RBF kernel.

(i)

(ii) (iii) (iv)

(v) (vi) (vii)

Figure 4: (i) original; (ii) PCPF; (iii) our algorithm; (iv)
IRPCA-IHT; (v) PCP; (vi) fast RPCA; (vii) AltProj.

cal lighting conditions cannot be realised and there are un-
avoidable occlusion and albedo variations in real images.
We demonstrate that there can be a substantial boost to the
performance of facial denoising by leveraging dictionaries
learnt from the images themselves.

The extended Yale B database is used as our observation
which consists images under different illuminations for a
fixed pose. We study all 64 images of a randomly chosen

person. A 32556× 64 observation matrix is formed by vec-
torizing each 168 × 192 image. For fast RPCA and our al-
gorithm, a sparsity of 0.2 is adopted. We learn the feature
dictionary as in (Xue, Panagakis, and Zafeiriou 2017). In
a nutshell, the feature learning process can be treated as a
sparse encoding problem. More specifically, we simultane-
ously seek a dictionary D ∈ R

n1×c and a sparse representa-
tion B ∈ R

c×n2 such that:
minimize

D,B
‖M−DB‖2F

subject to γi ≤ t for i = 1 . . . n2,
(21)

where c is the number of atoms, γi’s count the number of
non-zero elements in each sparsity code and t is the sparsity
constraint factor. This can be solved by the K-SVD algo-
rithm. Here, feature X is the dictionary D, feature Y corre-
sponds to a similar solution using the transpose of the obser-
vation matrix as input. We set c to 40, t to 40 and used 10
iterations.

As a visual illustration, recovered images from all algo-
rithms are exhibited in Figure 4. For this challenging sce-
nario, our algorithm totally removed all shadows. PCPF is
smoother than PCP but still suffers from shade. AltProj
and fast RPCA both introduced extra artefacts. Although
IRPCA-IHT managed to remove the shadows but brought
back a severely distorted image. To quantitatively verify
the improvement made by our proposed method, we exam-
ine the structural information contained within the denoised
eigenfaces. Singular values of the recovered low-rank ma-
trices from all algorithms are plotted in Figure 5. All non-
convex algorithms are competent in incorporating the rank
information to keep only 9 singular values, vastly outper-
forming convex approaches. Among them, our algorithm has
the most rapid decay that is found naturally (Wright et al.
2011).

Conclusion
This work proposes a new non-convex algorithm to solve
RPCA with the help of features when the error sparsity is
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Figure 5: Log-scale singular values of the denoised matrices.

roughly known. Exact recovery guarantee has been estab-
lished for three different assumptions about the incoher-
ence conditions on features and the data observation ma-
trix. Simulation experiments suggest that our algorithm is
able to recover matrices of higher ranks corrupted by errors
of higher sparsity than previous state-of-the-art approaches.
Large synthetic matrices also show that our algorithm scales
best with observation matrix dimension. MNIST and Yale
B datasets further justify that our algorithm leads other ap-
proaches by a fair margin. Future work may involve finding
a more accurate initialization scheme.
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