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Abstract

Spectral clustering has found extensive use in many areas.
Most traditional spectral clustering algorithms work in three
separate steps: similarity graph construction; continuous la-
bels learning; discretizing the learned labels by k-means clus-
tering. Such common practice has two potential flaws, which
may lead to severe information loss and performance degra-
dation. First, predefined similarity graph might not be optimal
for subsequent clustering. It is well-accepted that similarity
graph highly affects the clustering results. To this end, we
propose to automatically learn similarity information from
data and simultaneously consider the constraint that the sim-
ilarity matrix has exact c connected components if there are
c clusters. Second, the discrete solution may deviate from the
spectral solution since k-means method is well-known as sen-
sitive to the initialization of cluster centers. In this work, we
transform the candidate solution into a new one that better
approximates the discrete one. Finally, those three subtasks
are integrated into a unified framework, with each subtask it-
eratively boosted by using the results of the others towards
an overall optimal solution. It is known that the performance
of a kernel method is largely determined by the choice of ker-
nels. To tackle this practical problem of how to select the most
suitable kernel for a particular data set, we further extend our
model to incorporate multiple kernel learning ability. Exten-
sive experiments demonstrate the superiority of our proposed
method as compared to existing clustering approaches.

Introduction

Clustering is a fundamental technique in machine learning,
pattern recognition, and data mining (Huang et al. 2017). In
past decades, a variety of clustering algorithms have been
developed, such as k-means clustering and spectral cluster-
ing.

With the benefits of simplicity and effectiveness, k-means
clustering algorithm is often adopted in various real-world
problems. To deal with the nonlinear structure of many prac-
tical data sets, kernel k-means (KKM) algorithm has been
developed (Schölkopf, Smola, and Müller 1998), where data
points are mapped through a nonlinear transformation into a
higher dimensional feature space in which the data points
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are linearly separable. KKM usually achieves better perfor-
mance than the standard k-means. To cope with noise and
outliers, robust kernel k-means (RKKM) (Du et al. 2015) al-
gorithm has been proposed. In this approach, the squared �2
norm of error construction term is replaced by �2,1 norm.
RKKM demonstrates superior performance on a number of
benchmark data sets. The performance of such model-based
methods heavily depends on whether the data fit the model.
Unfortunately, in most cases, we do not know the distribu-
tion of data in advance. To some extent, this problem is alle-
viated by multiple kernel learning.

Spectral clustering is another widely used clustering
method (Kumar, Rai, and Daume 2011). It enjoys the ad-
vantage of exploring the intrinsic data structures by ex-
ploiting the different similarity graphs of data points (Yang
et al. 2015). There are three kinds of similarity graph
constructing strategies: k-nearest-neighborhood (knn); ε-
nearest-neighborhood; The fully connected graph. Here,
some open issues arise (Huang, Nie, and Huang 2015): 1)
how to choose a proper neighbor number k or radius ε; 2)
how to select an appropriate similarity metric to measure
the similarity among data points; 3) how to counteract the
adverse effect of noise and outliers; 4) how to tackle data
with structures at different scales of size and density. Unfor-
tunately, all of these issues heavily influence the clustering
results (Zelnik-Manor and Perona 2004). Nowadays, many
data are often high dimensional, heterogeneous, and without
prior knowledge, and it is therefore a fundamental challenge
to define a pairwise similarity graph for effective spectral
clustering.

Recently, (Zhu, Change Loy, and Gong 2014) construct
robust affinity graphs for spectral clustering by identifying
discriminative features. It adopts a random forest approach
based on the motivation that tree leaf nodes contain discrimi-
native data partitions, which can be exploited to capture sub-
tle and weak data affinity. This approach shows better per-
formance than other state-of-the-art methods including the
Euclidean-distance-based knn (Wang et al. 2008), dominant
neighbourhoods (Pavan and Pelillo 2007), consensus of knn
(Premachandran and Kakarala 2013), and non-metric based
unsupervised manifold forests (Pei, Kim, and Zha 2013).

The second step of spectral clustering is to use the spec-
trum of the similarity graph to reveal the cluster structure of
the data. Due to the discrete constraint on the cluster labels,
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this problem is NP-hard. To obtain a feasible approximation
solution, spectral clustering solves a relaxed version of this
problem, i.e., the discrete constraint is relaxed to allow con-
tinuous values. It first performs eigenvalue decomposition
on the Laplacian matrix to generate an approximate indica-
tor matrix with continuous values. Then, k-means is often
implemented to produce final clustering labels (Huang, Nie,
and Huang 2013). Although this approach has been widely
used in practice, it may exhibit poor performance since the
k-means method is well-known as sensitive to the initializa-
tion of cluster centers (Ng et al. 2002).

To address the aforementioned problems, in this paper, we
propose a unified spectral clustering framework. It jointly
learns the similarity graph from the data and the discrete
clustering labels by solving an optimization problem, in
which the continuous clustering labels just serve as interme-
diate products. To the best of our knowledge, this is the first
work that combine the three steps into a single optimization
problem. As we show later, it is not trivial to unify them.
The contributions of our work are as follows:

1. Rather than using predefined similarity metrics, the simi-
larity graph is adaptively learned from the data in a kernel
space. By combining similarity learning with subsequentl
clustering into a unified framework, we can ensure the op-
timality of the learned similarity graph.

2. Unlike existing spectral clustering methods that work in
three separate steps, we simultaneously learn similarity
graph, continuous labels, and discrete cluster labels. By
leveraging the inherent interactions between these three
subtasks, they can be boosted by each other.

3. Based on our single kernel model, we further extend it to
have the ability to learn the optimal combination of mul-
tiple kernels.

Notations. Given a data set [x1, x2, · · · , xn], we denote
X ∈ Rm×n with m features and n samples. Then the i-
th sample and (i, j)-th element of matrix X are denoted by
xi ∈ Rm×1 and xij , respectively. The �2-norm of a vector x
is defined as ‖x‖2 = x� · x, where � means transpose. The
squared Frobenius norm is denoted by ‖X‖2F =

∑
ij x

2
ij .

The �1-norm of matrix X is defined as the absolute summa-
tion of its entries, i.e., ‖X‖1 =

∑
i

∑
j |xij |. I denotes the

identity matrix. Tr(·) is the trace operator. Z ≥ 0 means all
the elements of Z are nonnegative.

Preliminary Knowledge

Sparse Representation

Recently, sparse representation, which assumes that each
data point can be reconstructed as a linear combination of
the other data points, has shown its power in many tasks
(Cheng et al. 2010; Peng et al. 2016). It often solves the fol-
lowing problem:

min
Z
‖X−XZ‖2F+α‖Z‖1, s.t. Z ≥ 0, diag(Z) = 0, (1)

where α > 0 is a balancing parameter. Eq. (1) simultane-
ously determines both the neighboring samples of a data

point and the corresponding weights by the sparse recon-
struction from the remaining samples. In principle, more
similar points should receive bigger weights and the weights
should be smaller for less similar points. Thus Z is also
called similarity graph matrix (Kang, Peng, and Cheng
2015). In addition, sparse representation enjoys some nice
properties, e.g., the robustness to noise and datum-adaptive
ability (Huang, Nie, and Huang 2015). On the other hand,
model (1) has a drawback, i.e., it does not consider nonlin-
ear data sets where data points reside in a union of manifolds
(Kang, Peng, and Cheng 2017a).

Spectral Clustering

Spectral clustering requires Laplacian matrix L ∈ Rn×n as
an input, which is computed as L = D − Z�+Z

2 , where
D ∈ Rn×n is a diagonal matrix with the i-th diagonal ele-
ment

∑
j

zij+zij
2 . In traditional spectral clustering methods,

similarity graph Z ∈ Rn×n is often constructed in one of
the three ways aforementioned. Supposing there are c clus-
ters in the data X , spectral clustering solves the following
problem:

min
F

Tr(F�LF ), s.t. F ∈ Idx, (2)

where F = [f1, f2, · · · , fn]� ∈ Rn×c is the cluster indica-
tor matrix and F ∈ Idx represents the clustering label vec-
tor of each point fi ∈ {0, 1}c×1 contains one and only one
element “1” to indicate the group membership of xi. Due
to the discrete constraint on F , problem (2) is NP-hard. In
practice, F is relaxed to allow continuous values and solve

min
P

Tr(P�LP ), s.t. P�P = I, (3)

where P ∈ Rn×c is the relaxed continuous clustering la-
bel matrix, and the orthogonal constraint is adopted to avoid
trivial solutions. The optimal solution is obtained from the c
eigenvectors of L corresponding to the c smallest eigenval-
ues. After obtaining F , traditional clustering method, e.g.,
k-means, is implemented to obtain discrete cluster labels
(Huang, Nie, and Huang 2013).

Although this three-steps approach provides a feasible so-
lution, it comes with two potential risks. First, since the
similarity graph computation is independent of the subse-
quent steps, it may be far from optimal. As we discussed
before, the clustering performance is largely determined by
the similarity graph. Thus, final results may be degraded.
Second, the final solution may unpredictably deviate from
the ground-truth discrete labels (Yang et al. 2016). To ad-
dress these problems, we propose a unified spectral cluster-
ing model.

Spectral Clustering with Single Kernel

Model

One drawback of Eq. (1) is that it assumes that all the points
lie in a union of independent or disjoint subspaces and are
noiseless. In the presence of dependent subspaces, nonlinear
manifolds and/or data errors, it may select points from dif-
ferent structures to represent a data point and makes the rep-
resentation less informative (Elhamifar and Vidal 2009). It is
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recognized that nonlinear data may represent linearity when
mapped to an implicit, higher-dimensional space via a ker-
nel function. To fully exploit data information, we formulate
Eq. (1) in a general manner with a kernelization framework.

Let φ : RD → H be a kernel mapping the data samples
from the input space to a reproducing kernel Hilbert space
R. Then X is transformed to φ(X) = [φ(x1), · · · , φ(xn)].
The kernel similarity between data samples xi and xj

is defined through a predefined kernel as Kxi,xj
=<

φ(xi), φ(xj) >. By applying this kernel trick, we do not
need to know the transformation φ. In the new space, Eq. (1)
becomes (Zhang, Nie, and Xiang 2010)

min
Z
‖φ(X)− φ(X)Z‖2F + α‖Z‖1,

⇐⇒min
Z

Tr(φ(X)Tφ(X)− φ(X)Tφ(X)Z

− ZTφ(X)Tφ(X) + ZTφ(X)Tφ(X)Z) + α‖Z‖1,
⇐⇒min

Z
Tr(K − 2KZ + Z�KZ) + α‖Z‖1,

s.t. Z ≥ 0, diag(Z) = 0,
(4)

This model recovers the linear relations among the data in
the new space, and thus the nonlinear relations in the origi-
nal representation. Eq. (4) is more general than Eq. (1) and
is supposed to learn arbitrarily shaped data structure. More-
over, Eq. (4) goes back to Eq. (1) when a linear kernel is
applied.

To fulfill the clustering task, we propose our spectral clus-
tering with single kernel (SCSK) model as following:

min
Z,F,P,Q

Tr(K − 2KZ + Z�KZ) + α‖Z‖1︸ ︷︷ ︸
similarity learning

+ βTr(P�LP )︸ ︷︷ ︸
continuous label learning

+ γ‖F − PQ‖2F︸ ︷︷ ︸
discrete label learning

,

s.t. Z ≥ 0, diag(Z) = 0,

P�P = I, Q�Q = I, F ∈ Idx,

(5)

where α, β, and γ are penalty parameters, and Q is a rota-
tion matrix. Due to the spectral solution invariance property
(Yu and Shi 2003), for any solution P , PQ is another so-
lution. The purpose of the last term is to find a proper or-
thonormal Q such that the resulting PQ is close to the real
discrete clustering labels. In Eq. (5), the similarity graph and
the final discrete clustering labels are automatically learned
from the data. Ideally, whenever data points i and j belong
to different clusters, we must have zij = 0 and it is also true
vice versa. That is to say, we have zij 	= 0 if and only if
data points i and j are in the same cluster, or, equivalently
fi = fj . Therefore, our unified framework Eq. (5) can ex-
ploit the correlation between the similarity matrix and the
labels. Because of the feedback of inferred labels to induce
the similarity matrix and vice versa, we say that our cluster-
ing framework has a self-taught property.

In fact, Eq. (5) is not a simple unification of the pipeline
of steps. It learns a similarity graph with optimal structure
for clustering. Ideally, Z should have exactly c connected

components if there are c clusters in the data set (Kang,
Peng, and Cheng 2017b). This is to say that the Laplacian
matrix L has c zero eigenvalues (Mohar et al. 1991), i.e.,
the summation of the smallest c eigenvalues is zero. To en-
sure the optimality of the similarity graph, we can minimize∑c

i=1 σi(L). According to Ky Fan’s theorem (Fan 1949),∑c
i=1 σi(L) = min

P�P=I
Tr(P�LP ). Therefore, the spectral

clustering term, i.e., the second term in Eq. (5), will ensure
learned Z is optimal for clustering.

Optimization

To efficiently and effectively solve Eq. (5), we design an al-
ternated iterative method.
Computation of Z: With F , P , Q fixed, the problem is re-
duced to

min
Z

Tr(K − 2KZ + Z�KZ) + α‖Z‖1 + βTr(P�LP ),

s.t. Z ≥ 0, diag(Z) = 0.
(6)

We introduce an auxiliary variable S to make above objec-
tive function separable and solve the following equivalent
problem:

min
Z

Tr(K − 2KZ + Z�KZ) + α‖S‖1 + βTr(P�LP ),

s.t. Z ≥ 0, diag(Z) = 0, S = Z.
(7)

This can be solved by using the augmented Lagrange mul-
tiplier (ALM) type of method. We turn to minimizing the
following augmented Lagrangian function:

L(S,Z, Y ) =Tr(K − 2KZ + Z�KZ) + α‖S‖1
+ βTr(P�LP ) +

μ

2
‖S − Z +

Y

μ
‖2F ,

(8)

where μ > 0 is the penalty parameter and Y is the Lagrange
multiplier. This problem can be minimized with respect to
S, Z, and Y alternatively, by fixing the other variables.

For S, by letting H = Z − Y
μ , it can be updated element-

wisely as below

Sij = max(|Hij | − α/μ, 0) · sign(Hij). (9)

For Z, by letting E = S + Y
μ , it can be updated column-

wisely as:

min
Zi

ZT
i (

μ

2
I +K)Zi + (

β

2
dTi − μET

i − 2Ki,:)Zi, (10)

where di ∈ Rn×1 is a vector with the j-th element dij being
dij = ‖Pi,: − Pj,:‖2. It is easy to obtain Zi by setting the
derivative of Eq. (10) w.r.t. Zi to be zero.
Computation of P: With F , Z, and Q fixed, it is equivalent
to solving

min
P

βTr(P�LP ) + γ‖F − PQ‖2F s.t. P�P = I. (11)

The above problem with orthogonal constraint can be effi-
ciently solved by the algorithm proposed by Wen and Yin
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Algorithm 1 The algorithm of SCSK
Input: Kernel matrix K, parameters α > 0, β > 0, γ > 0, μ > 0.
Initialize: Random matrices Z, P , and Q. Y = 0 and F = 0.
REPEAT

1: Update S according to Eq. (9).
2: S = S − diag(diag(S)) and S = max(S, 0).
3: Update Z according to Eq. (10).
4: Y = Y + μ(S − Z).
5: Update P by solving the problem of Eq. (11).
6: Update Q according to Eq. (13).
7: Update F according to Eq. (16).
UNTIL stopping criterion is met.

(Wen and Yin 2013).
Computation of Q: With F , Z, and P fixed, we have

min
Q
‖F − PQ‖2F s.t. Q�Q = I. (12)

It is the orthogonal Procrustes problem (Schönemann 1966),
which admits a closed-form solution. The solution is

Q = UV �, (13)

where U and V are left and right parts of the SVD decom-
position of F�P .
Computation of F: With Z, P and Q fixed, the problem
becomes

min
F
‖F − PQ‖2F , s.t. F ∈ Idx. (14)

Note that Tr(F�F ) = n, the above subproblem can be
rewritten as below:

max
F

Tr(F�PQ) s.t. F ∈ Idx. (15)

The optimal solution can be easily obtained as follows:

Fij =

{
1, j = argmax

k
(PQ)ik

0, otherwise
(16)

The updates of Z, P , F , and Q are coupled with each
other, so we could reach an overall optimal solution. The
details of our SCSK optimization are summarized in Algo-
rithm 1.

Complexity Analysis

With our optimization strategy, the updating of S requires
O(n2) complexity. The solution of Q involves SVD and its
complexity is O(nc2 + c3). To update P , we need O(nc2 +
c3). The complexity for F is O(nc2). Note that the number
of clusters c is often a small number. Therefore, the main
computation load is from solving Z, which involves matrix
inversion. Fortunately, Z is solved in parallel.

Spectral Clustering with Multiple Kernels

Model

Although the model in Eq. (5) can automatically learn the
similarity graph matrix and discrete cluster labels, its per-
formance will strongly depend on the choice of kernels. It

is often impractical to exhaustively search for the most suit-
able kernel. Moreover, real world data sets are often gener-
ated from different sources along with heterogeneous fea-
tures. Single kernel method may not be able to fully utilize
such information. Multiple kernel learning has the ability to
integrate complementary information and identify a suitable
kernel for a given task. Here we present a way to learn an
appropriate consensus kernel from a convex combination of
a number of predefined kernel functions.

Suppose there are a total number of r different
kernel functions {Ki}ri=1. An augmented Hilbert
space can be constructed by using the mapping of
φ̃(x) = [

√
w1φ1(x),

√
w2φ2(x), ...,

√
wrφr(x)]

� with
different weights

√
wi(wi ≥ 0). Then the combined kernel

Kw can be represented as (Zeng and Cheung 2011)

Kw(x, y) =< φw(x), φw(y) >=

r∑
i=1

wiK
i(x, y). (17)

Note that the convex combination of the positive semi-
definite kernel matrices {Ki}ri=1 is still a positive semi-
definite kernel matrix. Thus the combined kernel still satis-
fies Mercer’s condition. Then our proposed method of spec-
tral clustering with multiple kernels (SCMK) can be formu-
lated as

min
Z,F,P,Q,w

Tr(Kw − 2KwZ + Z�KwZ) + α‖Z‖1+

βTr(P�LP ) + γ‖F − PQ‖2F ,
s.t. Z ≥ 0, diag(Z) = 0,

P�P = I, Q�Q = I, F ∈ Idx,

Kw =

r∑
i=1

wiK
i,

r∑
i=1

√
wi = 1, wi ≥ 0.

(18)

Now above model will learn the similarity graph, discrete
clustering labels, and kernel weights by itself. By iteratively
updating Z, F , and w, each of them will be iteratively re-
fined according to the results of the others.

Optimization

In this part, we show an efficient and effective algorithm to
iteratively and alternatively solve Eq. (18).

w is fixed: Update other variables when w is fixed: We
can directly calculate Kw, and the optimization problem is
exactly Eq. (5). Thus we just need to use Algorithm 1 with
Kw as the input kernel matrix.

Update w: Optimize with respect to w when other vari-
ables are fixed: Solving Eq. (18) with respect to w can be
rewritten as (Cai et al. 2013)

min
w

r∑
i=1

wihi

s.t.
r∑

i=1

√
wi = 1, wi ≥ 0,

(19)

where
hi = Tr(Ki − 2KiZ + Z�KiZ). (20)
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Algorithm 2 The algorithm of SCMK
Input: A set of kernel matrix {Ki}ri=1, parameters α > 0,
β > 0, γ > 0, μ > 0.
Initialize: Random matrices Z, P , and Q. Y = 0 and F =
0. wi = 1/r.
REPEAT

1: Calculate Kw by Eq. (17).
2: Do steps 1-7 in Algorithm 1.
3: Calculate h by Eq. (20).
4: Calculate w by Eq. (22).
UNTIL stopping criterion is met.

The Lagrange function of Eq. (19) is

J (w) = w�h+ γ(1−
r∑

i=1

√
wi). (21)

By utilizing the Karush-Kuhn-Tucker (KKT) condition with
∂J (w)
∂wi

= 0 and the constraint
r∑

i=1

√
wi = 1, we obtain the

solution of w as follows:

wi =

⎛
⎝hi

r∑
j=1

1

hj

⎞
⎠−2

. (22)

We can see that w is closely related to Z. Therefore, we
could obtain both optimal similarity matrix Z and kernel
weight w. We summarize the optimization process of Eq.
(18) in Algorithm 2.

Experiments

Table 1: Description of the data sets

# instances # features # classes
YALE 165 1024 15
JAFFE 213 676 10
ORL 400 1024 40
AR 840 768 120
COIL20 1440 1024 20
BA 1404 320 36
TR11 414 6429 9
TR41 878 7454 10
TR45 690 8261 10
TDT2 9394 36771 30

Data Sets

There are altogether ten real benchmark data sets used in our
experiments. Table 1 summarizes the statistics of these data
sets. Among them, the first six are image data, and the other
four are text corpora1,2.

1http://www-users.cs.umn.edu/ han/data/tmdata.tar.gz
2http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

The six image data sets consist of four famous face
databases (ORL, YALE3, AR4 and JAFFE5), a toy image
database COIL206, and a binary alpha digits data set BA7.
Specifically, COIL20 contains images of 20 objects. For
each object, the images were taken five degrees apart as
the object is rotating on a turntable. There are 72 images
for each object. Each image is represented by a 1,024-
dimensional vector. BA consists of digits of “0” through “9”
and letters of capital “A” through “Z”. There are 39 exam-
ples for each class. YALE, ORL, AR, and JAFEE contain
images of individuals. Each image has different facial ex-
pressions or configurations due to times, illumination condi-
tions, and glasses/no glasses.

Kernel Design

To assess the effectiveness of multiple kernel learning, we
adopted 12 kernels. They include: seven Gaussian kernels
of the form K(x, y) = exp(−‖x − y‖22/(td2max)), where
dmax is the maximal distance between samples and t varies
over the set {0.01, 0.0, 0.1, 1, 10, 50, 100}; a linear kernel
K(x, y) = x�y; four polynomial kernels K(x, y) = (a +
x�y)b with a ∈ {0, 1} and b ∈ {2, 4}. Furthermore, all
kernels are rescaled to [0, 1] by dividing each element by the
largest pair-wise squared distance.

Comparison Algorithms

For single kernel methods, we run downloaded kernel k-
means (KKM) (Schölkopf, Smola, and Müller 1998), spec-
tral clustering (SC) (Ng et al. 2002), robust kernel k-
means (RKKM) (Du et al. 2015), and SCSK on each ker-
nel separately. To demonstrate the advantage of our unified
framework, we also implement three separate steps method
(TSEP), i.e., learn the similarity matrix by (4), spectral clus-
tering, k-means (repeat 20 times). And we report both the
best and the average results over all these kernels.

In addition, we also implement the recent simplex sparse
representation (SSR) (Huang, Nie, and Huang 2015) method
and robust affinity graph construction methods by using
random forest approach: ClustRF-u and ClustRF-a (Zhu,
Change Loy, and Gong 2014). ClustRF-u assumes all tree
nodes are uniformly important, while ClustRF-a assigns an
adaptive weight to each node. Note that these three methods
can only process data in the original feature space. More-
over, ClusteRF has a high demand for memory and cannot
process high dimensional data directly. Thus we follow the
authors’ strategy and perform PCA on TR11, TR41, and
TR45 to reduce the dimension. We use different numbers
of dominant components and report the best clustering re-
sults. Nevertheless, we still cannot handle TDT2 data set
with them.

For multiple kernel methods, we implement our proposed
method and directly use the downloaded programs for the

3http://vision.ucsd.edu/content/yale-face-database
4http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
5http://www.kasrl.org/jaffe.html
6http://www.cs.columbia.edu/CAVE/software/softlib/coil-

20.php
7http://www.cs.nyu.edu/ roweis/data.html
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(a) Accuracy(%)

Data KKMKKM-m SC SC-mRKKMRKKM-mClustRF-uClustRF-a SSR TSEPTSEP-mSCSKSCSK-m MKKMAASCRMKKMSCMK

YALE 47.12 38.97 49.4240.52 48.09 39.71 57.58 57.58 54.5562.58 44.60 63.05 52.88 45.70 40.64 52.18 63.25

JAFFE 74.39 67.09 74.8854.03 75.61 67.98 97.65 98.59 87.3298.30 73.88 99.53 90.06 74.55 30.35 87.07 99.69

ORL 53.53 45.93 57.9646.65 54.96 46.88 60.75 62.75 69.0070.15 41.45 74.05 53.56 47.51 27.20 55.60 74.52

AR 33.02 30.89 28.8322.22 33.43 31.20 24.17 35.59 65.0065.03 46.41 78.90 68.21 28.61 33.23 34.37 79.29

COIL2059.49 50.74 67.7043.65 61.64 51.89 74.44 72.99 76.3277.68 61.03 81.48 62.59 54.82 34.87 66.65 82.21

BA 41.20 33.66 31.0726.25 42.17 34.35 39.89 44.01 23.9745.92 30.75 46.02 31.50 40.52 27.07 43.42 45.57

TR11 51.91 44.65 50.9843.32 53.03 45.04 29.24 34.54 41.0671.05 42.08 74.22 55.09 50.13 47.15 57.71 74.26

TR41 55.64 46.34 63.5244.80 56.76 46.80 53.19 60.93 63.7869.45 50.17 70.17 53.05 56.10 45.90 62.65 70.25

TR45 58.79 45.58 57.3945.96 58.13 45.69 42.17 48.41 71.4576.54 51.07 77.74 59.53 58.46 52.64 64.00 77.47

TDT2 47.05 35.58 52.6345.26 48.35 36.67 - - 20.8654.78 46.35 56.04 45.02 34.36 19.82 37.57 56.29

(b) NMI(%)

Data KKMKKM-m SC SC-mRKKMRKKM-mClustRF-uClustRF-a SSR TSEPTSEP-mSCSKSCSK-m MKKMAASCRMKKMSCMK

YALE 51.34 42.07 52.9244.79 52.29 42.87 58.76 60.25 57.2660.13 46.10 60.58 52.72 50.06 46.83 55.58 61.04

JAFFE 80.13 71.48 82.0859.35 83.47 74.01 97.00 98.16 92.9398.61 71.95 99.18 88.86 79.79 27.22 89.37 99.20

ORL 73.43 63.36 75.1666.74 74.23 63.91 78.69 79.87 84.2383.28 50.76 84.78 70.93 68.86 43.77 74.83 85.21

AR 65.21 60.64 58.3756.05 65.44 60.81 57.09 66.64 84.1684.69 64.63 89.61 80.34 59.17 65.06 65.49 89.93

COIL2074.05 63.57 80.9854.34 74.63 63.70 83.91 82.26 86.8984.16 71.36 87.03 72.41 70.64 41.87 77.34 86.72

BA 57.25 46.49 50.7640.09 57.82 46.91 54.66 58.17 30.2959.47 32.45 60.34 42.91 56.88 42.34 58.47 60.55

TR11 48.88 33.22 43.1131.39 49.69 33.48 18.97 24.77 27.6062.71 29.88 64.60 44.48 44.56 39.39 56.08 64.89

TR41 59.88 40.37 61.3336.60 60.77 40.86 52.63 56.78 59.5664.07 39.58 64.92 47.97 57.75 43.05 63.47 64.89

TR45 57.87 38.69 48.0333.22 57.86 38.96 38.12 43.70 67.8270.03 40.17 70.75 50.47 56.17 41.94 62.73 70.79

TDT2 55.28 38.47 52.2327.16 54.46 42.19 - - 02.4457.74 45.38 59.25 48.73 41.36 02.14 47.13 58.66

(c) Purity(%)

Data KKMKKM-m SC SC-mRKKMRKKM-mClustRF-uClustRF-a SSR TSEPTSEP-mSCSKSCSK-m MKKMAASCRMKKMSCMK

YALE 49.15 41.12 51.6143.06 49.79 41.74 63.64 63.03 58.1864.77 55.38 65.87 56.19 47.52 42.33 53.64 67.39

JAFFE 77.32 70.13 76.8356.56 79.58 71.82 97.65 98.59 96.2499.06 77.08 99.23 91.24 76.83 33.08 88.90 99.51

ORL 58.03 50.42 61.4551.20 59.60 51.46 67.25 66.00 76.5076.00 52.39 77.02 57.96 52.85 31.56 60.23 78.31

AR 35.52 33.64 33.2425.99 35.87 33.88 40.71 46.79 69.5272.44 57.25 83.08 70.69 30.46 34.98 36.78 83.20

COIL2064.61 55.30 69.9246.83 66.35 56.34 80.83 77.71 89.0384.03 74.89 84.24 75.58 58.95 39.14 69.95 83.78

BA 44.20 36.06 34.5029.07 45.28 36.86 41.95 49.14 40.8555.03 43.07 55.49 40.45 43.47 30.29 46.27 55.72

TR11 67.57 56.32 58.7950.23 67.93 56.40 35.75 49.76 85.0285.95 63.15 86.25 63.36 65.48 54.67 72.93 85.84

TR41 74.46 60.00 73.6856.45 74.99 60.21 55.58 65.60 75.4077.02 56.33 78.53 57.19 72.83 62.05 77.57 78.49

TR45 68.49 53.64 61.2550.02 68.18 53.75 45.51 57.83 83.6277.28 60.52 79.70 61.06 69.14 57.49 75.20 79.78

TDT2 52.79 49.26 50.3942.81 62.13 52.60 - - 46.7967.75 56.07 70.69 64.53 54.89 21.73 60.02 72.84

Table 2: Clustering results obtained on benchmark data sets. ’-m’ denotes the average performance on the 12 kernels. Both the
best results for single kernel and multiple kernel methods are highlighted in boldface.

methods in comparison on a combination of these 12 ker-
nels:

MKKM8. The MKKM (Huang, Chuang, and Chen

8http://imp.iis.sinica.edu.tw/IVCLab/research/Sean/mkfc/code

2012b) extends k-means in a multiple kernel setting. How-
ever, it imposes a different constraint on the kernel weight
distribution.

3371



1e−06
1e−05

0.0001
0.001

0.010.001

0.01

0.1

0

0.2

0.4

0.6

αβ

Ac
c

(a) γ = 10−5

1e−06
1e−05

0.0001
0.001

0.010.001

0.01

0.1

0

0.2

0.4

0.6

αβ

Ac
c

(b) γ = 10−4

1e−06
1e−05

0.0001
0.001

0.010.001

0.01

0.1

0

0.2

0.4

0.6

αβ

Ac
c

(c) γ = 10−3

Figure 1: Parameter influence on accuracy for YALE data set.

AASC9. The AASC (Huang, Chuang, and Chen 2012a) is
an extension of spectral clustering to the situation when mul-
tiple affinities exist. It is different from our approach since
our method tries to learn an optimal similarity graph.

RMKKM10. The RMKKM (Du et al. 2015) extends k-
means to deal with noise and outliers in a multiple kernel
setting.

SCMK. Our proposed method of spectral clustering with
multiple kernels. For the purpose of reproducibility, the code
is publicly available11.

For our method, we only need to run once. For those
methods that involve K-means, we follow the strategy sug-
gested in (Yang et al. 2010); i.e., we repeat clustering 20
times and present the results with the best objective values.
We set the number of clusters to the true number of classes
for all clustering algorithms.

Results

We present the clustering results of different methods on
those benchmark data sets in Table 2. In terms of accuracy,
NMI and Purity, our proposed methods obtain superior re-
sults. The big difference between the best and average re-
sults confirms that the choice of kernels has a huge influence
on the performance of single kernel methods. This motivates
our extended model for multiple kernel learning. Besides,
our extended model for multiple kernel clustering usually
improves the results over our model for single kernel clus-
tering.

Although the best results of the three separate steps ap-
proach are sometimes close to our proposed unified method,
their average values are often lower than our method. We no-
tice that random forest based affinity graph method achieves
good performance on image data sets. This observation can
be explained by the fact that ClustRF is suitable to handle
ambiguous and unreliable features caused by variation in il-
lumination, face expression or pose on those data sets. On
the other hand, it is not effective for text data sets. In most

9http://imp.iis.sinica.edu.tw/IVCLab/research/Sean/aasc/code
10https://github.com/csliangdu/RMKKM
11https://github.com/sckangz/AAAI18

cases, ClustRF-a behaves better than ClustRF-u. This jus-
tifies the importance of considering neighbourhood-scale-
adaptive weighting on the nodes.

Parameter Sensitivity

There are three parameters in our model: α, β, and γ. We use
YALE data set as an example to demonstrate the sensitivity
of our model SCMK to parameters. As shown in Figure 1,
our model is quite insensitive to α and β, and γ over wide
ranges of values. In terms of NMI and Purity, we have simi-
lar observations.

Conclusion

In this work, we address two problems existing in most clas-
sical spectral clustering algorithms, i.e., constructing simi-
larity graph and relaxing discrete constraints to continuous
one. To alleviate performance degradation, we propose a
unified spectral clustering framework which automatically
learns the similarity graph and discrete labels from the data.
To cope with complex data, we develop our method in kernel
space. A multiple kernel approach is proposed to solve ker-
nel dependent issue. Extensive experiments on nine real data
sets demonstrated the promising performance of our meth-
ods as compared to existing clustering approaches.
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