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Abstract

Temporal point processes are a statistical framework for mod-
elling the times at which events of interest occur. The Hawkes
process is a well-studied instance of this framework that cap-
tures self-exciting behaviour, wherein the occurrence of one
event increases the likelihood of future events. Such pro-
cesses have been successfully applied to model phenomena
ranging from earthquakes to behaviour in a social network.
We propose a framework to design new loss functions to train
linear and nonlinear Hawkes processes. This captures stan-
dard maximum likelihood as a special case, but allows for
other losses that guarantee convex objective functions (for
certain types of kernel), and admit simpler optimisation.
We illustrate these points with three concrete examples: for
linear Hawkes processes, we provide a least-squares style loss
potentially admitting closed-form optimisation; for exponen-
tial Hawkes processes, we reduce training to a weighted logis-
tic regression; and for sigmoidal Hawkes processes, we pro-
pose an asymmetric form of logistic regression.

Introduction

Temporal point processes are a classical statistical frame-
work for modelling the times at which certain events of
interest occur, such as failure times of a hard drive or
the impact times of an earthquake (Cox and Isham 1980;
Daley and Vere-Jones 2003). The simplest incarnation of
these models is the Poisson process, which assumes the
times between successive events are independent, and the
number of events occurring in a time window follows a suit-
able Poisson distribution (Kingman 1993). Such models are
a core tool in queuing theory (Erlang 1909; Kendall 1953).

Despite their versatility, Poisson processes have an im-
portant limitation: they are incapable of modelling self-
excitation, wherein the occurrence of one event increases
the likelihood of further events. This characteristic is present
in many real-world phenomena, such as the occurrence of
an earthquake triggering an aftershock. The Hawkes process
(Hawkes 1971; Laub, Taimre, and Pollett 2015) is an impor-
tant extension of the classical Poisson process to allow for
such “burstiness”. The model has been applied in fields rang-
ing from seismology (Ogata 1988), finance (Bowsher 2007;
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Hardiman, Bercot, and Bouchaud 2013), and social media
(Crane and Sornette 2008; Zhou, Zha, and Song 2013).

Given historical data of event times, the standard way to
fit a Hawkes process is to maximise its log-likelihood (Ozaki
1979). This approach is appealing owing to its conceptual
simplicity; however, for a generic nonlinear Hawkes process
(defined formally in the next section), the resulting objective
may be non-convex. Further, even for linear Hawkes pro-
cesses, optimisation of the likelihood requires an involved
iterative optimisation. This raises a natural question: how
might we design other losses for training Hawkes processes
that have favourable properties compared to the likelihood?

In this paper, we provide a framework to design loss func-
tions for (non-)linear Hawkes processes. Specifically, given
a particular choice of nonlinearity, we provide loss function
that is suitable for estimating the parameters of the corre-
sponding nonlinear Hawkes process, and which is further
convex given a particular structure on the kernel. We study
three concrete instantiations of this framework:

(a) for linear Hawkes processes, we propose a loss with a
potential closed-form solution; to our knowledge, the
only extant closed-form solution for Hawkes processes
arises in EM training (Lewis and Mohler 2011).

(b) for exponential Hawkes processes1, we establish the
suitability of the logistic loss, which allows us to reduce
training to a logistic regression problem.

(c) for sigmoidal Hawkes processes, we show the viability
of a modified logistic regression objective, which pro-
vides a convex objective for training.

At a technical level, our proposal rests upon three simple
observations: (1) the Hawkes likelihood can be interpreted
as a binary classification objective; (2) the asymptotic opti-
miser of the likelihood is a scaled density estimate; and (3)
the broader family of proper losses (Buja, Stuetzle, and Shen
2005) retains this optimal solution, and thus also the funda-
mental target of interest. While these observations are con-
ceptually simple, the explication of their connections for fit-
ting Hawkes processes is to our knowledge novel, and their
implications we believe of interest.

1The term “exponential Hawkes” is sometimes used to mean a
linear Hawkes process with exponential kernel. We use the term to
mean a Hawkes process with exponential link, but arbitrary kernel.
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Background

Our framework requires some background on temporal point
processes, as well as loss functions for binary classification.
A glossary of important symbols is provided in Table 1.

Temporal point processes

Temporal point processes model the times at which events of
interest occur via a stochastic process (Nt )t≥0, where Nt−Ns

measures the number of events that occur in the time interval
(s, t]. We focus on two such processes.

Inhomogeneous Poisson process Fix some locally inte-
grable λ : R+ → R+, and for any 0 ≤ s < t, let Λ(s, t) .

=∫ t

s
λ(x) dx. An inhomogeneous Poisson process (IPP) with

intensity λ(·) satisfies (Daley and Vere-Jones 2003):
(a) N0 = 0 almost surely
(b) for any s < t, Nt − Ns ∼ Poisson(Λ(s, t))
(c) for any s < t ≤ s′ < t ′, Nt − Ns ⊥⊥ Nt′ − Ns′ .
Condition (a) posits that events occur strictly after time 0.
Condition (b) posits that the number of events in any interval
has a Poisson distribution, with mean given by the integrated
intensity in that interval. Condition (c) posits the the number
of events in two disjoint intervals is independent.

IPPs may also be understood as the following generative
model for event times: given some end time T , the number
of events N is drawn from a Poisson with mean Λ(0,T), and
the N event times are then drawn i.i.d. from a distribution P
with density (Cox and Isham 1980, pg. 46)

p(t) = λ(t)/Λ(0,T). (1)

Given a history T
.
= {tn}Nn=1 of event times, suppose we

seek an intensity from a family {λ(·; θ) | θ ∈ Θ} for suit-
able parameter space Θ. We may minimise the negative log-
likelihood of θ, which for T .

= maxn tn is (upto constants)
(Daley and Vere-Jones 2003, Equation 2.1.9)

LIPP(θ;T)
.
=

N∑
n=1

− log λ(tn; θ) +
∫ T

0
λ(u; θ) du. (2)

When the integral above does not have a closed form, it may
be approximated numerically (Davis and Rabinowitz 1984).

Hawkes process The Hawkes process extends IPPs so as
to model self-excitation. Given a history T = {tn}Nn=1 of
event times, a nonlinear Hawkes process with link F : R →
R posits the intensity (Brémaud and Massoulié 1996)

λ(t;T) = F

( ∑
n:t>tn

g(t − tn)

)
(3)

for a decay function g : R+ → R. The linear Hawkes process
(Hawkes 1971) is the case F(z) = z and g(·) nonnegative.

One can parametrise the Hawkes process via a family of
decay functions. A popular choice is the exponential decay

g(z; θ) = μ + α · e−δ ·z, (4)

with θ = {μ, α, δ}. For a linear Hawkes process, one requires
μ, α > 0, so that there is a background intensity μ, and every

Symbol Meaning

λ Intensity function
F Hawkes link function
g Decay function
P, p Event dist. & density
Q, q Uniform dist. & density

Symbol Meaning

� Loss function
Ψ Proper link function
T Observed event times
T Maximal event time
T,T′ Random event times

Table 1: Glossary of important symbols.

time an event occurs, there is a local increase in the probabil-
ity of further events, viz. the phenomena of self-excitation. A
nonlinear Hawkes process allows α < 0, and thus can model
self-inhibition (Reynaud-Bouret and Schbath 2010).

The negative log-likelihood of the Hawkes process is
identical to that of the IPP, with Equation 3 as the intensity.
Concretely, given a history T, it is (Ozaki 1979)

LHP(θ;T)
.
=

N∑
n=1

− log λ(tn;T, θ) +
∫ T

0
λ(t;T, θ) dt . (5)

For a general nonlinear Hawkes process, as with IPPs, the
integral in Equation 5 must be approximated numerically.

Loss functions for binary classification

Given examples of instances paired with labels in {±1}, the
binary classification problem is to predict the labels of un-
seen instances. Formally, fix an instance space X, distribu-
tions P,Q over X, and loss function � : {±1} × R → R+.
Then, we seek a scorer s : X→ R with low expected loss or
risk for positive (negative) instances drawn from P (Q), i.e.2

LBC(s; P,Q) .
= E

X∼P
[�(+1, s(X))]+ E

X′∼Q
[�(−1, s(X′))] . (6)

Given samples S .
= {(xi,+1)}N

i=1 ∪ {(xj,−1)}M
j=1, suppose

we seek a scorer from a family {s(x; θ) | θ ∈ Θ}, e.g. lin-
ear models s(x; θ) = 〈θ, x〉. We may minimise the weighted
empirical risk, which for optional weight w > 0 is

LBC(θ; S)
.
=

1
N

N∑
i=1
�(+1, s(xi ; θ)) +

w

M

M∑
j=1
�(−1, s(xj ; θ)), (7)

Classically, one is interested in the zero-one loss �(y, v) =
�yv < 0�+1/2 ·�v = 0�. Owing to its intractability, it is com-
mon to instead use a convex surrogate loss. A useful fam-
ily of surrogates are that of strictly proper composite losses
(Buja, Stuetzle, and Shen 2005; Reid and Williamson 2010).
These are the fundamental losses of probabilistic classifica-
tion, where the nonparametric risk minimiser is

s∗ .
= argmin

s∈RX
LBC(s; P,Q) = Ψ ◦ η, (8)

i.e. s∗(x) = Ψ(η(x)), for invertible link function Ψ and label-
probability function η(x) .

= Pr(Y = +1 | X = x).
Intuitively, with a powerful class of scorers {s(·; θ) | θ ∈

Θ} = RX, and sufficiently many samples, minimising a

2Generally, the expectations over P,Q are weighted by the cor-
responding marginal label probability, Pr(Y = ±1). We assume
without loss of generality that Pr(Y = +1) = 1/2, since the weight-
ing may be absorbed into the loss.
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strictly proper composite loss allows one to accurately re-
cover the underlying probability of an instance being pos-
itive. A canonical example is the logistic loss �(y, v) =
log(1 + e−yv), for which Ψ−1(v) = (1 + e−v)−1.

Beyond the likelihood: proper losses and IPPs

Since the Hawkes likelihood is equivalent to that of an IPP,
we first generalise the IPP objective via three simple ideas:

(a) the IPP objective can be viewed as a special kind of bi-
nary classification (Equations 9, 11),

(b) the non-parametric minimiser of the IPP objective is a
scaling of the event times’ density (Lemma 1),

(c) any strictly proper composite loss preserves this optimal
solution (Lemma 3), and thus provides a risk (Equation
17) which is a candidate alternative to the MLE.

IPPs as binary classification

For fixed T = {tn}Nn=1 with T = maxn tn, the IPP objective
was motivated as the log-likelihood of a particular proba-
bilistic model. Ostensibly, this is an unsupervised or “one-
class” learning problem, where the only observations are T.

A simple trick lets us move to a more familiar “two-class”
supervised learning problem. Let us approximate3 the inte-
gral in Equation 2 by a Riemann sum, computed on a parti-
tion of [0,T] into M uniformly spaced “background events”
{tm}Mm=1. Since these events are T/M apart, we have

L̂IPP(θ;T)
.
=

N∑
n=1

− log λ(tn; θ) +
T
M

·

M∑
m=1
λ(tm; θ)

∝
1
N

N∑
n=1

− log λ(tn; θ) +
T
N
·

1
M

M∑
m=1
λ(tm; θ), (9)

where the second equation simply scales the first by 1/N .
Equation 9 is a weighted empirical binary classification risk
(Equation 7), with weight w = T/N and asymmetric loss

(∀v > 0) �(+1, v) = − log v �(−1, v) = v. (10)

Plainly, this is a classification problem with instances be-
ing times in [0,T], the observed event times treated as “pos-
itive”, and uniformly distributed background event times
treated as “negative”. Intuitively, IPPs seek to distinguish
whether a candidate time comes from the underlying pro-
cess, or from a uniform background process.

More generally, tackling the integral directly, we have

LIPP(θ;T) ∝ E

T∼P̂
[− log λ(T; θ)] +

T
N
· E

T′∼Q

[
λ(T′; θ)

]
, (11)

where P̂ is a discrete distribution that is uniform over T,
Q is the uniform distribution over [0,T], and T,T′ are ran-
dom variables distributed according to the respective distri-
butions. This is clearly a binary classification risk as per
Equation 6, and we thus may view IPP fitting as solving a
particular classification problem.

3We do not discretise time entirely, as done in e.g. (Hall and
Willett 2016), since we use the exact times for the observed events.

Given this interpretation, a natural question is whether
other choices of loss beyond Equation 10 are possible. There
are at least two reasons to embark on such a quest. First, cer-
tain losses may admit simpler optimisation compared to the
standard likelihood. Second, one may wish to model the in-
tensity as λ = F◦s, where either − log F or F is non-convex;
alternate convex losses are thus of interest.

We now present a means of exploring other losses, by
studying the fundamental target of interest in the IPP risk.

The minimiser of the IPP classification risk

The original (and compelling) justification for the IPP ob-
jective is that it arises naturally from the log-likelihood. An
alternate justification is that it has a sensible minimiser. In
more detail, recall that conditioned on the number of points
N , the event times in an IPP are i.i.d. from a distribution P
with density given by Equation 1. For fixed N , in the regime
of infinitely many sample paths, Equation 11 approaches

E
T∼P

[�(+1, λ(T; θ))] +
T
N
· E

T′∼Q
[�(−1, λ(T′; θ))] . (12)

To explore other losses for the IPP, one strategy is to de-
termine, akin to Equation 8, the choice of λ that minimises
Equation 12 in a non-parametric setting where the intensity
family {λ(·; θ) | θ ∈ Θ} = RX+ . This minimiser is the ob-
ject we converge to given infinitely many samples, and an
arbitrarily flexible class of intensities; it thus represents the
fundamental target of interest. One can then choose alternate
losses that retain this target, i.e., have the same minimiser.

We now show the optimal λ is simply a scaled version of
the underlying density for the event times. This implies IPPs
are fundamentally entwined with density estimation.

Lemma 1. For � per Equation 10, uniform distribution Q
over X .

= [0,T], and distribution P over X with density p, let

λ∗
.
= argmin

λ∈RX+

E
T∼P

[�(+1, λ(T))]+
T
N
· E
T′∼Q

[�(−1, λ(T′))] (13)

Then, λ∗ = N · p.

The proof of Lemma 1 is a simple consequence of the fact
that � is strictly proper composite with a specific link.

Lemma 2. The loss � of Equation 10 is strictly proper com-
posite with inverse link Ψ−1(v) = v/(1 + v) for v > 0.

Proof. By (Reid and Williamson 2010, Corollary 12),
a differentiable loss is strictly proper composite iff
�′(−1, v)/(�′(−1, v) − �′(+1, v)) is invertible, in which case
this is the inverse link Ψ−1. Since the given � has �′(−1, v) =
1 and �′(+1, v) = −1/v for v > 0, the result follows. �

Let us return to Lemma 1 in light of this. Recall that for a
strictly proper composite loss, the optimal scorer is a trans-
form of η(t) = Pr(Y = +1 | T = t). If Q has density
q, the optimal scorer is thus also a transform of the den-
sity ratio p/q, since by Bayes’ rule (and the assumption
Pr(Y = +1) = 1/2),

η(t)
1 − η(t)

=
Pr(Y = +1 | T = t)
Pr(Y = −1 | T = t)

=
Pr(T = t | Y = +1)
Pr(T = t | Y = −1)

=
p(t)
q(t)
. (14)
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But since Q is uniform over [0,T] by construction, p/q is
merely T · p; thus, estimating η implicitly estimates the den-
sity p. We now use this to sketch the proof of Lemma 1.

Proof of Lemma 1. Equation 13 concerns the weighted loss

�wt(+1, v) .
= �(+1, v) �wt(−1, v) .

= (T/N) · �(−1, v). (15)

Lemma 2 implies � has link Ψ(u) = u/(1 − u). Thus, by
(Menon and Ong 2016, Lemma 5), �wt is also strictly proper
composite with link Ψwt(u) = (N/T) · u/(1 − u). Conse-
quently, by definition, the optimal scorer in Equation 13 is
Ψwt ◦ η. Now, by Equation 14, η(t)/(1 − η(t)) = p(t)/q(t) =
T · p(t), since Q is uniform over [0,T]. Thus, the optimal
scorer is (N/T) · T · p(t) = N · p(t). �

The generalised IPP objective

Lemma 1 shows the fundamental target of interest in IPPs is
the density of P. A reasonable alternative loss to Equation 10
should retain this target, i.e. be optimised by predicting the
density. We thus seek to construct losses with this property.

In fact, any strictly proper composite loss � is a viable can-
didate. By definition, any such loss recovers a transform of
the class probability η; hence, following the same reasoning
as in Lemma 1, it will recover a transform of p. Formally,
we have the following analogue of Lemma 1.
Lemma 3. For strictly proper composite loss � with link Ψ,
uniform distribution Q over X

.
= [0,T], and distribution P

over X with density p, let

s∗ .
= argmin

s∈RX
E

T∼P
[�(+1, s(T))]+

T
N
· E
T′∼Q

[�(−1, s(T′))] (16)

Then, F ◦ s∗ = N · p for F(v) .
= Ψ−1(v)/(1 − Ψ−1(v)).

Proof. Equation 16 concerns the weighted loss �wt as in
Equation 15. By (Menon and Ong 2016, Lemma 5), �wt is
strictly proper composite with link Ψwt(u) = Ψ(u/(w + (1 −
w) · u)), where w

.
= T/N . Since η(t) = T p(t)/(1+T p(t)), we

have optimal scorer s∗(t) = Ψ (p(t)/(p(t) + 1/N)). Further
algebra then reveals that F ◦ s∗ = N · p. �

Thus, for scorers {s(·; θ) | θ ∈ Θ} and strictly proper com-
posite �, the generalised IPP procedure involves fitting

LGPP(θ;T)
.
=

N∑
n=1
�(+1, s(tn; θ)) +

∫ T

0
�(−1, s(t; θ)) dt (17)

λ(t; θ) .
= F(s(t; θ)) F(v) .

=
Ψ−1(v)

1 − Ψ−1(v)
, (18)

where Ψ is the link function of �. By Lemma 3, this proce-
dure is optimised by an intensity that is a scaled version of
the underlying density, as with the standard IPP objective.

The standard IPP procedure is recovered for � as per
Equation 10: here, Ψ−1(v) = v/(1 + v) (by Lemma 2), and
thus F(v) = v; consequently, the scorer s is equivalent to
the intensity. For general Ψ, however, the intensity is a non-
linear transform of the scorer. We study concrete examples,
and discuss suitable choices of loss �, in the next section.

Discussion and related work

The relation between IPPs and density estimation has prior
precedent. At a practical level, (Diggle 1985) proposed a
variant of kernel density estimation to fit IPPs. At a theo-
retical level, our Lemma 1 on the non-parametric minimiser
of the IPP objective complements a result of (Fithian and
Hastie 2013) on a parametric minimiser: they showed that
fitting log-linear IPPs, where λ(t) = exp(a + 〈b,Φ(t)〉) for
feature mappingΦ : R+ → RD , is equivalent to fitting a den-
sity estimate with p̂(t) ∝ exp(〈b,Φ(t)〉). They did not how-
ever propose to generalise the IPP objective (Equation 17).

Viewed as a sibling of density estimation, the connec-
tion of IPPs to binary classification (Equations 9, 11) is not
surprising: binary classification is an established viewpoint
for anomaly detection (Steinwart, Hush, and Scovel 2006),
(Hastie, Tibshirani, and Friedman 2009, Section 14.2.4), viz.
the problem of estimating a level set of the density. Further,
the risk of proper losses with a uniform background may be
understood in terms of more general proper scoring rules for
density estimation (Gneiting and Raftery 2007). However,
in the context of IPPs, the explication of this fact and the
derivation of its consequences are to our knowledge novel.

Our justification of Equation 17 is that it preserves an
asymptotic, nonparametric minimiser; while necessary for
any sensible alternative, it is not sufficient, as it ignores
finite-sample effects. We shall revisit this point shortly.

New losses for (non-)linear Hawkes processes

The generalised IPP objective (Equation 17) provides an al-
ternative to the log-likelihood. Recall that two motivations
for exploring alternate losses is in obtaining objectives that
are convex, as well as less involved to optimise. We make
these points concrete by applying this framework to non-
linear Hawkes processes (Equation 3), which correspond to
a particular form of intensity λ. In particular, we consider
nonlinear Hawkes processes satisfying two assumptions:

A1 the link function F(·) is invertible

A2 the decay function (Equation 3) has the form

g(z; θ) = μ +
L∑
i=1
αi · ki(z) (19)

for θ =
(
μ, α1, . . . , αL

)
and triggering kernels ki : R+ → R+.

Assumption A1 holds for the standard identity link F(z) =
z, but also for a range of nonlinear links that shall be subse-
quently discussed. Assumption A2 is equivalent to requiring
that, given event history T, the intensity is

λ(t;T) = F

(
μ +

L∑
i=1
αi ·

∑
n:t>tn

ki(t − tn)

)
.

With L = 1 and kernel k(z) = e−δ ·z , this captures the ex-
ponential decay g(z) = μ + α · e−δ ·z of Equation 4. Note
that we assume δ is fixed, and not learned. This is a strong
assumption, but can be removed at the expense of convex-
ity (see discussion); further, one can mimic learning δ via
a (sample size dependent) number of kernels with different
δ’s (Xu, Farajtabar, and Zha 2016).
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We now provide a convex objective for fitting processes
satisfying these assumptions. Figure 1 summarises.

INPUT: Invertible nonlinearity F(·); kernels {ki}Li=1

PROCEDURE:
(1) Construct canonical proper loss per Equation 24,

or alternate loss with link per Equation 23
(2) Find the linear scorer that minimises 22
(3) Estimate intensity using Equation 18

Figure 1: Framework to fit nonlinear Hawkes processes.

A linear model view of Hawkes processes
Before proceeding, we note that a useful way to view the
Hawkes process is as follows. Suppose our decay function
has the form of Equation 19. Given event times T = {tn}Nn=1,
define the feature mapping Φ : R+ → RL+1 by
Φ(t;T) .

=
(
1,Φk (t;T)

)
Φk (t;T)

.
=

(∑
t>tn ki(t − tn)

)L
i=1 . (20)

Then, under Assumption A2, the intensity for the nonlinear
Hawkes process (Equation 3) may be written compactly as
λ(t;T, θ) = F (s(t;T, θ)) s(t;T, θ) = 〈θ,Φ(t;T)〉, (21)

where θ =
(
μ, α1, . . . , αL

)
∈ RL+1. That is, the intensity is

a nonlinear transform of a linear scoring model. For a linear
Hawkes process, the parameters θ must be nonnegative.

Canonical losses for nonlinear Hawkes processes
Equation 21 lets us interpret the negative log-likelihood for
the nonlinear Hawkes process (Equation 5) as an instance of
the generalised IPP objective (Equation 17). For the linear
scorer class {s(·; θ) = 〈θ,Φ(·;T)〉 | θ ∈ Θ}, we have

LHP(θ;T) =
N∑
n=1
�(+1, 〈θ,Φ(tn)〉) +

∫ T

0
�(−1, 〈θ,Φ(t)〉) dt (22)

for the loss �(+1, v) = − log F(v), �(−1, v) = F(v), which is
evidently strictly proper composite with link

Ψ−1(v) = F(v)/(1 + F(v)), (23)
recalling that F is invertible (A1). Thus, by Equation 18, we
model λ = F ◦ s as per the Hawkes intensity (Equation 21).

Inspired by the previous section, suppose we wish to fit
a nonlinear Hawkes process with link F(·). Then, a viable
alternative is to replace � in Equation 22 with any strictly
proper composite loss having inverse link as per Equation
23, since this retains the fundamental target of intensity λ =
F ◦ s. One simple choice is the canonical proper loss for this
choice of Ψ−1 (Buja, Stuetzle, and Shen 2005), viz.

�(−1, v) =
∫ v

c0

F(x)
1 + F(x)

dx �(+1, v) = �(−1, v) − v

(24)

for a suitable c0 guaranteeing finiteness of the integral. Im-
portantly, unlike the standard likelihood, this loss is guaran-
teed to be convex, regardless of the choice of F.

To make this idea concrete, we study its application for
three distinct F(·). Our results are summarised in Table 2.

F(z) �(+1, v) �(−1, v)
z −v 1/2 · v2

exp(z) log(1 + exp(v)) − v log(1 + exp(v))
(1 + exp(−z))−1 log(1 + 2 · exp(v)) − 2 · v log(1 + 2 · exp(v))

Table 2: Proposed losses for various nonlinearities F(·).

Fitting linear Hawkes via the LSIF loss

Consider first the case of a linear Hawkes process, with
F(x) = x. Despite the convexity of the log-likelihood in θ, a
viable alternative has a salient feature: consider

(∀v > 0) �(+1, v) = −v �(−1, v) = 1/2 · v2, (25)

which is strictly proper composite with Ψ−1(v) = v/(1 + v)
(Menon and Ong 2016, Lemma 1), as required by Equation
23. This was studied as the least squares importance filtering
(LSIF) loss by (Kanamori, Hido, and Sugiyama 2009), who
showed that for a linear model, as in Equation 22, the loss
potentially admits a closed-form solution

θ∗ = (N/T) ·
(
E

T′∼Q

[
Φ(T′)Φ(T′)T

] )−1
· E

T∼P̂
[Φ(T)] . (26)

This is only “potentially” the minimiser as for the linear
Hawkes process, the parameters θ are required to be non-
negative. There is no guarantee that this holds for Equation
26; as a heuristic, one may threshold the weights at zero, and
use this as an initialisation for explicit risk optimisation.

The above closed-form solution has clear conceptual ap-
peal. It is also fast to compute for small L, requiring O(N +
L3) complexity, where the second term arises from the ma-
trix inverse. We caution however that in fitting a Hawkes
process, even computing Φ in Equation 20 naı̈vely require
O(N2) time, while the optimisation itself will be O(N) for
standard gradient-following procedures. Nonetheless, the
ease of computing Equation 26 suggests it may be minimally
useful as an initialisation to the standard MLE optimisation.

Such least-squares style loss functions have in fact pre-
viously appeared in the Hawkes literature (Reynaud-Bouret
and Schbath 2010; Bacry, Gaı̈ffas, and Muzy 2015), albeit
derived from very different means. Interestingly, (Reynaud-
Bouret and Schbath 2010) establish that with suitable reg-
ularisation, the finite-sample minimiser of the objective is
consistent, as with the standard MLE. We emphasise that
such a loss is only one special case of our framework.

Fitting exponential Hawkes via the logistic loss

Consider now the case of F(x) = exp(x), which we term an
exponential Hawkes process. By a simple calculation,∫ v

−∞

F(x)
1 + F(x)

dx = log(1 + exp(v)).

Thus, the corresponding canonical loss is

�(+1, v) = log(1 + ev) − v �(−1, v) = log(1 + ev), (27)

viz. the logistic loss underpinning logistic regression. Since
our underlying scorer is linear (Equation 21), this suggests
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that an exponential Hawkes process can be fit via standard
logistic regression. In fact, a stronger statement is possible.
Given observed and background events {tn}Nn=1, {tm}Mm=1, let
us fit θ = (μ, α1, . . . , αL) via the weighted logistic risk,

N∑
n=1

log(1+exp(−s(tn; θ))+w·
M∑
m=1

log(1+exp(s(tm; θ))) (28)

for w > 0. Then, as w → +∞, (α1, . . . , αL) will converge
exactly to those that optimise the log-likelihood of the expo-
nential Hawkes process. The reason is simple: (Fithian and
Hastie 2013) showed that fitting of a log-linear IPP model,
λ(t) = exp(a + 〈b,Φ(t)〉), is equivalent to a weighted logis-
tic regression objective, in the limit of an infinite weight on
the negative class. As the Hawkes likelihood is equivalent
to that of an IPP with a particular intensity, for sufficiently
large w, fitting an exponential Hawkes process is equivalent
to weighted logistic regression, even on a finite sample.

Fitting sigmoidal Hawkes via modified logistic loss

Our last example is a sigmoid nonlinearity F(z) = a · (1 +
exp(−z))−1 for any a � {−1, 0}. For this link, the likelihood
objective is non-convex, since F(·) is. The canonical proper
composite loss is however convex. By a simple calculation,∫ v

−∞

F(x)
1 + F(x)

dx =
a

1 + a
· log(1 + (1 + a) · exp(v)).

Thus, the corresponding canonical loss is (by rescaling)
�(+1, v) = log(1 + (1 + a) · exp(v)) − (1 + a)/a · v
�(−1, v) = log(1 + (1 + a) · exp(v)). (29)

When a = 1, we get the form as shown in Table 2. This
can be seen as a modified version of the logistic loss, and its
convexity makes it appealing compared to the MLE.

Discussion and related work

A subtlety in the Hawkes process is that replacing the em-
pirical P̂ with P is delicate, as the event times are no longer
i.i.d. Our framework nonetheless produces meaningful re-
sults for the LSIF and logistic loss (confer existing consis-
tency analysis and finite-sample equivalence).

Assumption A1 ensures the function F(v)/(1 + F(v)) is
invertible; without this one cannot have a valid link for a
proper composite loss. Assumption A2 does not obviate the
use of proper losses; however, if the kernel parameters are
used in a nonlinear manner, then neither the closed-form
LSIF solution nor the reduction to vanilla logistic regression
is viable. The objectives are nonetheless viable to optimise
with generic nonlinear solvers; alternately, one could iterate
between optimising the kernel parameters and θ.

To our knowledge, the only existing closed-form solution
for the linear Hawkes process is as part of the EM algo-
rithm with an exponential decay function (Lewis and Mohler
2011; Zipkin et al. 2016). By contrast, the closed-form LSIF
solution holds for any decay of the form in Equation 19.

The reduction of exponential Hawkes fitting to logistic
regression is in the spirit of prior connections of IPP opti-
misation to established statistical techniques, such as Pois-
son regression (Berman and Turner 1992) and the MAXENT
procedure (Renner and Warton 2013).

Literature on fitting of nonlinear Hawkes processes has
been relatively sparse. An interesting recent exception is the
work of (Wang et al. 2016), who proposed an algorithm that
jointly estimates the parameters θ and the link F(·). At its
core is the elegant Isotron algorithm for fitting single index
models (Kalai and Sastry 2009). Despite its generality, the
algorithm suffers from worse sample complexity compared
to standard model fitting where F(·) is assumed known.

Empirical illustration

We validate our theoretical analyses by illustrating the via-
bility of using losses other than the standard maximum like-
lihood to fit various (non-)linear Hawkes processes.

Parameter recovery on synthetic data

We first assess the new loss functions in a controlled setting.

Basic setup For fixed N , we use thinning (Ogata 1981) to
generate N samples from a nonlinear Hawkes process with
known link F(·), and exponential decay g(·) with δ = 1
and known parameters θ∗ = (μ, α) (Equation 4). From these
samples, we compute a parameter estimate θ̂ via maximum
likelihood estimation (MLE) – i.e. optimising Equation 2 –
and an alternate loss to be specified. Given this θ̂, we com-
pute the mean absolute error (MAE) 1/2 · ‖θ̂−θ∗‖1. We repeat
this for 1000 independent samples from the process.

Link & loss We consider the three Hawkes links F(·) of
the prequel, and for each compare the MLE to their proper
composite alternatives; Table 3 summarises. For the logistic
loss, we apply a weighting w = 108 on the background class,
following Equation 28; for other losses, we set w = 1.

The parameters θ∗ are varied for each link, with precise
settings derived from previous studies (Ozaki 1979; Wang
et al. 2016); Since α < 0 for the exponential and sigmoidal
link, the corresponding processes exhibit self-inhibition.

Link F(z) θ∗ Comparison loss Reference

z (0.5, 0.8) LSIF Eqn. 25
exp(z) (0.5,−0.1) Weighted logistic Eqn. 27
(1 + exp(−z))−1 (0.5,−0.1) Modified logistic Eqn. 29

Table 3: Parameter settings for synthetic data.

We optimised the MLE and (modified) logistic loss with
L-BFGS, enforcing a stationarity constraint that α < δ and
a tolerance criterion of 10−8. For the LSIF loss, we use the
closed-form solution of Equation 26.

Results Figure 2 confirms that the proper loss solutions
have commensurate accuracy to the MLE for various N .
This reassures that when the Hawkes process is well spec-
ified, these losses behave sensibly, and indeed recover the
optimal parameters asymptotically. Of note is that for the ex-
ponential link, the MLE and weighted logistic solution are
indistinguishable, as predicted by the theory.

3809



(a) Linear. (b) Exponential. (c) Sigmoid.

Figure 2: MAE for Hawkes parameter estimation with various links. Shown are boxplots over 1000 independent samples.

(a) LastFM. Shown are boxplots over
500 (user, artist) pairs.

(b) bitcoin. Shown is a barplot for a sin-
gle trading day.

Figure 3: Absolute error for various nonlinear Hawkes processes trained with MLE and proper loss on real-world datasets.

Event prediction on real data

We compare the various losses on two real-world datasets:
LastFM (Celma 2010), comprising the times that users lis-
ten to songs by artists, where Hawkes processes have pre-
viously been applied for temporal recommendation (Du et
al. 2015); and bitcoin, comprising times of trades on the
MtGox Bitcoin exchange for a single day (Heusser 2013).
For each dataset, we aim to predict the number of events
happening in some specified future time window.

Basic setup For each dataset, we split the recorded event
times into a train and test set. We fit various Hawkes pro-
cesses with an exponential decay (δ = 1 on LastFM,
δ = 0.1 on bitcoin) on the training times. By drawing 100
independent samples from the learned process, we estimate
the number of events in the testing period. We compute the
absolute error between this prediction and the ground truth.

The precise split methodology varies for each dataset. For
LastFM, we select 500 random (user, artist) pairs for which
there are at least 100 listening events over the span of at least
two months. For each pair, we define the testing period to be
the last month of the recorded history.

For bitcoin, we use all trades occurring in the window
1PM - 3PM for training, and make predictions in the window
3PM - 4PM. This dataset only has a single day’s worth of
trading, so we simply report the absolute error for this day.

Results Figures 3a and 3b confirm that even on real-world
data, the performance of the MLE and the corresponding
proper loss are largely indistinguishable. Of interest is that
for the sigmoid link, the proper loss solution offers consis-

tent (albeit statistically insignificant) improvement over the
MLE, possibly owing to the non-convexity of the latter. We
further confirm that for the exponential link, the MLE and
logistic regression solution are practically identical.

Overall, we find our proper loss objectives produce sensi-
ble results on synthetic and real-world datasets.

Conclusion

We presented a new family of losses to train (non-)linear
Hawkes processes, giving three concrete examples: for lin-
ear Hawkes processes, we provided a least-squares style loss
with a closed-form solution; for exponential Hawkes pro-
cesses, we showed how training can be reduced to weighted
logistic regression; and for sigmoidal Hawkes processes, we
proposed a modified form of logistic regression.

There are several directions for future work. On the theo-
retical end, translating conditions on F(·) that guarantee sta-
tionarity (Brémaud and Massoulié 1996; Karabash 2012) to
conditions on the corresponding canonical proper loss would
be of interest. On the practical end, a more detailed empiri-
cal study, extensions to stochastic excitations (Lee, Lim, and
Ong 2016), multivariate Hawkes processes (Bacry, Mastro-
matteo, and Muzy 2015), and exploring possible uses of the
closed form LSIF solution in conjunction with EM algo-
rithm (Veen and Schoenberg 2008), would be of interest.
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