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Abstract

Embedding-based methods for knowledge base completion
(KBC) learn representations of entities and relations in a vec-
tor space, along with the scoring function to estimate the
likelihood of relations between entities. The learnable class
of scoring functions is designed to be expressive enough
to cover a variety of real-world relations, but this expres-
sive comes at the cost of an increased number of parame-
ters. In particular, parameters in these methods are superflu-
ous for relations that are either symmetric or antisymmet-
ric. To mitigate this problem, we propose a new L1 regular-
izer for Complex Embeddings, which is one of the state-of-
the-art embedding-based methods for KBC. This regularizer
promotes symmetry or antisymmetry of the scoring function
on a relation-by-relation basis, in accordance with the ob-
served data. Our empirical evaluation shows that the proposed
method outperforms the original Complex Embeddings and
other baseline methods on the FB15k dataset.

Introduction

Large-scale knowledge bases, such as YAGO (Suchanek,
Kasneci, and Weikum 2007), Freebase (Bollacker et al.
2008), and WordNet (Fellbaum 1998) are utilized in
knowledge-oriented applications such as question answer-
ing and dialog systems. Facts are stored in these knowl-
edge bases as triplets of form (subject entity, relation,
object entity).

Although a knowledge base may contain more than a mil-
lion facts, many facts are still missing (Nickel et al. 2016).
Knowledge base completion (KBC) aims to find such miss-
ing facts automatically. In recent years, vector embedding
of knowledge bases has been actively pursued as a promis-
ing approach to KBC. In this approach, entities and rela-
tions are embedded into a vector space as their representa-
tions, in most cases as vectors and sometimes as matrices.
A variety of methods have been proposed, each of which
computes the likeliness score of given triplets using different
vector/matrix operations over the representations of entities
and relations involved.

In most of the previous methods, the scoring function is
designed to cover general non-symmetric relations, i.e., rela-
tions r such that for some entities e1 and e2, triplet (e1, r, e2)
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holds but not (e2, r, e1). This reflects the fact that the subject
and object in a relation are not interchangeable in general
(e.g., parent of ).

However, the degree of symmetry differs from relation to
relation. In particular, a non-negligible number of symmetric
relations exist in knowledge bases (e.g., sibling of ). More-
over, many non-symmetric relations in knowledge base are
actually antisymmetric, in the sense that for every distinct
pair e1, e2 of entities, if (e1, r, e2) holds, then (e2, r, e1)
never holds.1 For relations that show certain regularities
such as above, the expressiveness of models to capture gen-
eral relations might be superfluous, and a model with less
parameters might be preferable.

It thus seems desirable to encourage the scoring function
to produce sparser models, if the observed data suggests a
relation being symmetric or antisymmetric. As we do not
assume any background knowledge about individual rela-
tions, the choice between these contrasting properties must
be made solely from the observed data. Further, we do not
want the model to sacrifice the expressiveness to cope with
relations that are neither purely symmetric or antisymmetric.

Complex Embeddings (ComplEx) (Trouillon et al. 2016b)
are one of the state-of-the-art methods for KBC. ComplEx
represents entities and relations as complex vectors, and it
can model general non-symmetric relations thanks to the
scoring function defined by the Hermitian inner product of
these vectors. However, for symmetric relations, the imagi-
nary parts in relation vectors are redundant parameters since
they only contribute to non-symmetry of the scoring func-
tion. ComplEx is thus not exempt from the issue we men-
tioned above: the lack of symmetry/antisymmetry consider-
ation for individual relations. Our experimental results show
that this issue indeed impairs the performance of ComplEx.

In this paper, we propose a technique for training Com-
plEx relation vectors adaptively to the degree of symme-
try/antisymmetry observed in the data. Our method is based
on L1 regularization, but not in the standard way; the goal
here is not to make a sparse, succinct model but to adjust
the degree of symmetry/antisymmetry on the relation-by-
relation basis, in a data-driven fashion. In our model, L1
regularization is imposed on the products of coupled param-

1Note that even if a relation is antisymmetric in the above sense,
its truth-value matrix may not be antisymmetric.
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eters, with each parameter contributing to either the symme-
try or antisymmetry of the learned scoring function.

Experiments with synthetic data show that our method
works as expected: Compared with the standard L1 regular-
ization, the learned functions is more symmetric for sym-
metric relations and more antisymmetric for antisymmet-
ric relations. Moreover, in KBC tasks on real datasets, our
method outperforms the original ComplEx with standard L1
and L2 regularization, as well as other baseline methods.

Background

Let R be the set of reals, and C be the set of complex num-
bers. Let i ∈ C denote the imaginary unit. [v]j denotes the
jth component of vector v, and [M]jk denotes the (j, k)-
element of matrix M. A superscript T (e.g., vT) represents
vector/matrix transpose. For a complex scalar, vector, or ma-
trix Z, Z represent its complex conjugate, with Re(Z) and
Im(Z) denoting its real and imaginary parts, respectively.

Knowledge Base Completion

Let E and R respectively be the sets of entities and the
(names of) binary relations over entities in an incomplete
knowledge base. Suppose a relational triplet (s, r, o) is not
in the knowledge base for some s, o ∈ E and r ∈ R. The
task of KBC is to determine the truth value of such an un-
known triplet; i.e., whether relation r holds between subject
entity s and object entity o.

A typical approach to KBC is to learn a scoring function
φ(s, r, o) to estimate the likeliness of an unknown triplet
(s, r, o), using as training data the existing triplets in the
knowledge base and their truth values. A higher score in-
dicates that the triplet is more likely to hold.

The scoring function φ is usually parameterized, and the
task of learning φ is recast as that of tuning the model pa-
rameters. To indicate this explicitly, model parameters Θ are
sometimes included in the arguments of the scoring func-
tion, as in φ(s, r, o;Θ).

Complex Embeddings (ComplEx)

The embedding-based approach to KBC defines the scoring
function in terms of the vector representation (or, embed-
dings) of entities and relations. In this approach, model pa-
rameters Θ consist of these representation vectors.

ComplEx (Trouillon et al. 2016b) is one of the latest
embedding-based methods for KBC. It represents entities
and relations as complex vectors. Let ej ,wr ∈ C

d respec-
tively denote the d-dimensional complex vector representa-
tions of entity j ∈ E and relation r ∈ R. The scoring func-
tion of ComplEx is defined by

φ(s, r, o;Θ) = Re
(
eTs diag(wr)eo

)
(1)

= Re (〈wr, es, eo〉)
= 〈Re(wr),Re(es),Re(eo)〉

+ 〈Re(wr), Im(es), Im(eo)〉
+ 〈Im(wr),Re(es), Im(eo)〉
− 〈Im(wr), Im(es),Re(eo)〉, (2)

where diag(v) denotes a diagonal matrix with the diagonal
given by vector v, and 〈u,v,w〉 =

(∑d
k=1[u]k[v]k[w]k

)
,

with Θ = {ej ∈ C
d | j ∈ E} ∪ {wr ∈ C

d | r ∈ R}. The
use of complex vectors and Hermitian inner product makes
ComplEx both expressive and computationally efficient.

Learning (Anti)symmetric Relations with L1

Regularization

Roles of Real/Imaginary Parts in Relation Vectors

Many relations in knowledge bases are either symmetric or
antisymmetric. For example, all 18 relations in WordNet
are either symmetric (4 relations) or antisymmetric (14 re-
lations). Also, relations that take different “types” of entities
as the subject and object are necessarily antisymmetric; take
relation born in for example, which is defined for a person
and a location. Clearly, if (Barack Obama, born in,Hawaii)
holds, then (Hawaii, born in,Barack Obama) does not.

Now, let us look closely at the scoring function of Com-
plEx given by Eq. (1). We observe the following: If the re-
lation vector wr is a real vector, then φ(s, r, o) = φ(o, r, s)
for any s, o ∈ E ; i.e., the scoring function φ(s, r, o) is sym-
metric with respect to s and o. This can be seen by sub-
stituting Im(wr) = 0 in Eq. (2), in which case the last
two terms vanish. If, to the contrary, wr is purely imagi-
nary, φ(s, r, o) is antisymmetric in s and o, in the sense that
φ(s, r, o) = −φ(o, r, s). Again, this can be verified with
Eq. (2), but this time by substituting Re(wr) = 0.

As we see from these two cases, the real parts in the com-
ponents of wr are responsible for making the scoring func-
tion φ symmetric, whereas the imaginary parts in wr are
responsible for making it antisymmetric.

Each relation has a different degree of symmetry/
antisymmetry, but the original ComplEx, which is usually
trained with L2 regularization, does not take this difference
into account. Specifically, L2 regularization is equivalent to
making a prior assumption that all parameters, including the
real and imaginary parts of relation vectors, are independent.
As we have discussed above, this independence assumption
is unsuited for symmetric and antisymmetric relations. For
instance, we expect the vector for symmetric relations to
have a large number of nonzero real parts and zero imagi-
nary parts.

Multiplicative L1 Regularization for Coupled
Parameters

On the basis of the observation above, we introduce a new
regularization term for training ComplEx vectors. This term
encourages individual relation vectors to be more symmetric
or antisymmetric in accordance with the observed data. The
resulting objective function is

min
Θ

∑
(s,r,o)∈Ω

log(1 + exp(−yrsoφ(s, r, o;Θ)))

+λ(αR1(Θ) + (1− α)R2(Θ)) (3)

where Ω is the training samples of triplets; yrso ∈ {+1,−1}
gives the truth value of the triplet (s, r, o); hyperparameter
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λ ≥ 0 determines the overall weight on the regularization
terms; and α ∈ [0, 1] (also a hyperparameter) controls the
balance between two regularization terms R1 and R2. These
terms are defined as follows:

R1(Θ) =
∑
r∈R

d∑
k=1

|Re([wr]k) · Im([wr]k)| , (4)

R2(Θ) = ‖Θ‖22 . (5)

In Eq. (5), Θ is treated as a vector, with all the parameters it
contains as the vector components.

Eq. (3) differs from the original ComplEx objective in that
it introduces the proposed regularizer R1, which is a form
of L1-norm penalty (see Equation (4)). In general, L1-norm
penalty terms promote producing sparse solutions for the
model parameters and are used for feature selection or the
improve the interpretability of the model. Note, however,
that our L1 penalty encourages sparsity of pairwise prod-
ucts. This means that only one of the coupled parameters
needs to be propelled towards zero to minimize the summa-
rized in Eq. (4). To distinguish from the standard L1 regular-
ization, we call the regularization term in R1 multiplicative
L1 regularizer, since it is based on the L1 norm of the vec-
tor of the product of the real and imaginary parts of each
component.

As we explain in the next subsection, standard L1 regu-
larization implies the independence of parameters as a prior.
By contrast, our regularization term R1 dictates the interac-
tion between the real and imaginary parts of a component in
a relation vector; if, as a result of L1 regularization, one of
these parts falls to zero, the other can freely move to min-
imize the objective (3). This encourages selecting either of
the coupled parameters to be zero, but not necessarily both.

Unlike the standard L1 regularization, the proposed reg-
ularization term is non-convex, and makes the optimization
harder2. However, in our experiments reported below, mul-
tiplicative L1 regularization outperforms the standard one in
KBC, and is robust against random initialization.

Since the real and imaginary parts of a relation vector gov-
ern the symmetry/antisymmetry of the scoring function for
the relation, this L1 penalty term is expected to help guide
learning a vector for relation r in accordance with whether
r is symmetric, antisymmetric, or neither of them, as ob-
served in the training data. For example, if the data suggests
r is likely to be symmetric, our L1 regularizer should en-
courage the imaginary parts to be zero while allowing the
real parts to take on arbitrary values. Because parameters
are coupled componentwise, the proposed model can also
cope with non-symmetric, non-antisymmetric relations with
different degree of symmetry/antisymmetry.

2Notice that the objective function in ComplEx is already non-
convex without a regularization term.

MAP Interpretation

MAP estimation finds the best model parameters Θ̂ by max-
imizing a posterior distribution:

Θ̂ = argmax
Θ

log p(Θ|D)

= argmax
Θ

log p(D|Θ) + log p(Θ), (6)

where D is the observed data. The first term represents the
likelihood function, and the second term represents the prior
distribution of parameters.

Our objective function Eq. (3) can also be viewed as MAP
estimation in the form of Eq. (6); the first term in our objec-
tive corresponds to the likelihood function, and the regular-
izer terms define the prior.

Let us discuss the prior distribution implicitly assumed
by using the proposed multiplicative L1 regularizer R1.3 Let
C,C ′, C ′′, . . . denote constants. Our multiplicative L1 regu-
larization is equivalent to assuming the prior

p(Θ) =
∏
r∈R

p(wr)

with

p(wr) =
d∏

k=1

C exp

(
−|Re([wr]k) · Im([wr]k)|

C ′

)
.

In other words, a 0-mean Laplacian prior is assumed on the
distribution of Re([wr]k) · Im([wr]k). The equivalence can
be seen by

log p(Θ) = log
∏
r∈R

p(wr)

= log
∏
r∈R

d∏
k=1

C exp

(
−|Re([wr]k) · Im([wr]k)|

C ′

)

= −C ′′∑
r∈R

d∑
k=1

|Re([wr]k) · Im([wr]k)|+ C ′′′.

Neglecting the scaling factor C ′′ and the constant term C ′′′,
we see that this is equal to the regularizer R1 in Eq. (4).

Now, suppose the standard L1 regularizer

Rstd L1(Θ) =
∑
r∈R

d∑
k=1

(|Re([wr]k)|+ |Im([wr]k)|) (7)

is instead of the proposed R1(Θ). In terms of MAP estima-
tion, in this case, its use is equivalent to assuming a prior
distribution

p(wr) =
d∏

k=1

p(Re([wr]k)) p(Im([wr]k)) (8)

where both p(Re([wr]k)) and p(Im([wr]k)) obey a 0-mean
Laplacian distribution. Notice that the distribution (8) as-
sumes the independence of the real and imaginary parts of

3For brevity, we neglect the regularizer R2 and focus on R1 in
this discussion.
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components. This assumption can be harmful if parame-
ters are (positively or negatively) correlated with each other,
which is indeed the case with symmetric or antisymmetric
relations.

Training Procedures

Optimizing our objective function (Eq. (3)) is difficult with
standard online optimization methods, such as stochastic
gradient descent. In this paper, we extend the Regular-
ized Dual Averaging (RDA) algorithm (Xiao 2009), which
can produce sparse solutions effectively and is used in
learning sparse word representations (Faruqui et al. 2015;
Sun et al. 2016). Let us indicate the parameter value at time
t by superscript (t). RDA keeps track of the online average
subgradients at time t: g̃(t) = (1/t)

∑t
τ=1 g

(τ), where g(t)

is the subgradient at time t. In this paper, we calculate the
subgradients g(t) in terms of only the loss function and L2
norm penalty term; i.e., they are the derivatives of the objec-
tive without the L1 penalty term.

The update formulas for multiplicative L1 regularizer are
given as follows:

Re([wr]
(t+1)
k ) =

{
0, if

∣∣∣[g̃r]
(t)
k

∣∣∣ ≤ β
∣∣∣Im([wr]

(t)
k )

∣∣∣ ,
γ, otherwise,

Im([wr]
(t+1)
k ) =

{
0, if

∣∣∣[g̃′
r]

(t)
k

∣∣∣ ≤ β
∣∣∣Re([wr]

(t)
k )

∣∣∣ ,
γ′ otherwise,

where β = λα is a constant, gr,g
′
r ∈ R

d are the real and
imaginary parts of the subgradients with respect to relation
r, and

γ = −ηt
(
[g̃r]

(t)
k − β

∣∣∣Im([wr]
(t)
k )

∣∣∣ sign([g̃r]
(t)
k )

)
,

γ′ = −ηt
(
[g̃′

r]
(t)
k − β

∣∣∣Re([wr]
(t)
k )

∣∣∣ sign([g̃′
r]

(t)
k )

)
.

From these formulas, we notice the interaction of the real
and imaginary parts of a component; the imaginary part ap-
pears in the update formula for the real part, and vice versa.
The term β| Im([w

(t)
r ]k)| can be regarded as the strength

of L1 regularizer specialized for Re([wr]k) at time t; if
Im([wr]k) = 0, then Re([wr]k) keeps a nonzero value γ.
Likewise, if Re([wr]k) = 0, Im([wr]k) is free to take on
a nonzero value. Notice that the above update formulas are
applied only to relation vectors. Entity vectors are learned
with a standard optimization method.

Related Work

Knowledge Base Embedding

RESCAL (Nickel, Tresp, and Kriegel 2011) is an
embedding-based KBC method whose scoring function is
formulated as eTs Wreo, where es, eo ∈ R

d are the vector
representations of entities s and o, respectively, and (possi-
bly non-symmetric) matrix Wr ∈ R

d×d represents a rela-
tion r. Although RESCAL is able to output non-symmetric
scoring functions, each relation vector Wr holds d2 parame-
ters. This can be problematic both in terms of overfitting and

computational cost. To avoid this problem, several methods
have been proposed recently.

DistMult (Yang et al. 2015) restricts the relation ma-
trix to be diagonal, Wr = diag(wr), and it can compute
the likelihood score in time O(d) by way of φ(s, r, o) =
eTs diag(wr)eo. However, this form of function is neces-
sarily symmetric in s and o; i.e., φ(s, r, o) = φ(o, r, s).
To reconcile efficiency and expressiveness, Trouillon et al.
(2016b) proposed ComplEx, using the complex-valued rep-
resentations and Hermitian inner product to define the scor-
ing function (Eq. (1)). ComplEx is founded on the unitary
diagonalization of normal matrices (Trouillon et al. 2016a).
Unlike DistMult, the scoring function can be nonsymmetric
in s and o. Hayashi and Shimbo (2017) found that ComplEx
is equivalent to another state-of-the-art KBC method, Holo-
graphic Embeddings (HolE) (Nickel, Rosasco, and Poggio
2016).

ANALOGY (Liu, Wu, and Yang 2017) also assumes that
Wr is real normal. They showed that any real normal ma-
trix can be block-diagonalized, where each diagonal block is

either a real scalar or a 2× 2 real matrix of form
(

a b
−b a

)
.

Notice that this 2 × 2 matrix is exactly the real-valued en-
coding of a complex value a+ ib. In this sense, ANALOGY
can be regarded as a hybrid of ComplEx (corresponding to
the 2 × 2 diagonal blocks) and DistMult (real scalar diago-
nal elements). It can also be viewed as an attempt to reduce
of the number of parameters in ComplEx, by constraining
some of the imaginary parts of the vector components to be
zero. Although the idea resembles our proposed method, in
ANALOGY, the reduced parameters (the number of scalar
diagonal components) is a hyperparameter. By contrast, our
approach lets the data adjust the number of parameters for
individual relations, by means of the multiplicative L1 regu-
larizer.

Sparse Modeling

Sparse modeling is often used to improve model inter-
pretability or to enhance performance when the size of train-
ing data is insufficient relative to the number of model
parameters. Lasso (Tibshirani 1994) is a sparse model-
ing technique for linear regression. Lasso uses L1 norm
penalty to effectively find which parameters can be dis-
pensed with. Following Lasso, several variants for inducing
structural sparsity have been proposed, e.g., (Tibshirani et al.
2005; Kong et al. 2014). One of them, the exclusive group
Lasso (Kong et al. 2014) uses an l1,2-norm penalty, to en-
force sparsity at an intra-group level. An interesting connec-
tion exists between our regularization terms in Eq. (3) and
the exclusive group Lasso. Let Rj(wr), j = 1, 2 represents
the terms in Rj(Θ) that are concerned with relation r. When
α = 2/3, we can show that the regularizer terms αR1(wr)+

(1− α)R2(wr) = (1/3)
∑d

k=1(Re([wr]k) + Im([wr]k))
2.

The right-hand side can be seen as an instance of the exclu-
sive group Lasso.

Word representation learning (Mikolov et al. 2013; Pen-
nington, Socher, and Manning 2014) has proven useful for a
variety of natural language processing tasks. Sparse mod-
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(a) Symmetric relation using standard L1 regularization (b) Symmetric relation using multiplicative L1 regularization

(c) Antisymmetric relation using standard L1 regularization (d) Antisymmetric relation using multiplicative L1 regularization

(e) Non-symmetric/non-antisymmetric relation using standard L1
regularization

(f) Non-symmetric/non-antisymmetric relation using multiplica-
tive L1 regularization

Figure 1: Visualization of the vector representations trained on synthetic data. Each column represents a complex-valued vector
component, with the upper and lower cells representing the real and imaginary parts, respectively. The black cells represent
non-zero values.

Table 1: Classification accuracy (%) on synthetic data.

Models sym anti other all

ComplEx w/ std L1 89.8 92.1 65.7 81.5
ComplEx w/ mul L1 93.5 94.4 65.3 83.3

eling has been applied to improve the interpretability of
the learned word vectors while maintaining the expressive
power of the model (Faruqui et al. 2015; Sun et al. 2016).
Unlike our proposed method, however, the improvement of
the model performance was not the main focus.

Experiments

Demonstrations on Synthetic Data

We conducted experiments with synthetic data to verify that
our proposed method can learn symmetric and antisymmet-
ric relations, given such data.

We randomly created a knowledge base of 3 relations and
50 entities. We generated a total of 6,712 triplets, and sam-
pled 5369 triplets as training set, then one-half of the remain-
ing triplet as validation set and the other as test set. The truth
values of triplets were determined such that the first relation
was symmetric, the second was antisymmetric, and the last
was neither symmetric or antisymmetric.

We compared the standard and multiplicative L1 regular-
izers on this dataset. For the standard L1 regularization, the
regularizer Rstd (Eq. (7)) was used in place of R1 (Eq. (4)) in
the objective function (3). The dimension of the embedding
space was set to d = 50. For the multiplicative L1 regu-
larizer, hyperparameters were set as follows: α = 1.0, λ =
0.05, η = 0.1.

Figure 1 displays which real and imaginary parts of the
learned relation vectors have non-zero values. The multi-
plicative L1 regularizer produced the expected results: most
of the imaginary parts were zero in the symmetric relation
and the real parts were zero in the antisymmetric relation.

Table 1 shows the triplet classification accuracy on the test
set. Triplet classification is the task of predicting the truth
value of given triplets in the test set. For a given triplet, the
prediction of the systems was determined by the sign of the

Table 2: Dataset statistics for FB15k and WN18.

Dataset |E| |R| #train #valid #test

FB15k 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

output score (+ = true, − = false). The multiplicative L1 reg-
ularizer (‘ComplEx w/ mul L1’) outperformed the standard
L1 regularizer (‘ComplEx w/ std L1’) considerably for both
symmetric and antisymmetric relations.

Real Datasets: WN18 and FB15k

Following previous work, we used the WordNet (WN18)
and Freebase (FB15k) datasets to verify the benefits of our
proposed method. The dataset statistics are shown in Table 2.
Because the datasets contain only positive triplets, (pseudo-
)negative samples must be generated in this experiment. In
this experiment, negative samples were generated by replac-
ing the subject s and object o in a positive triplet (s, r, o)
with a randomly sampled entity from E .

For evaluation, we performed the entity prediction task. In
this task, an incomplete triplet is given, which is generated
by hiding one of the entities, either s or o, from a positive
triplet. The system must output the rankings of entities in E
for the missing s or o in the triplet, with the goal of placing
(unknown) true s or o higher in the rankings. Systems that
learn a scoring function φ(s, r, o) can use the score for com-
puting the rankings. The quality of the output rankings is
measured by two standard evaluation measures for the KBC
task: Mean Reciprocal Rank (MRR) and Hits@1, 3 and 10.
We here report results in both the filtered and raw settings
(Bordes et al. 2013) for MRR, but only filtered values for
Hits@n.

Experimental Setup

We selected the hyperparameters λ, α, and η via grid search
such that they maximize the filtered MRR on the valida-
tion set. The ranges for the grid search were as follows:
λ ∈ {0.01, 0.001, 0.0001, 0}, α ∈ {0, 0.3, 0.5, 0.7, 1.0},
η ∈ {0.1, 0.05}. During the training, learning rate η was
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Table 3: Results on the WN18 and FB15k datasets: (Filtered and raw) MRR and filtered Hits@{1, 3, 10} (%). * and ** denote
the results reported in (Trouillon et al. 2016b) and (Liu, Wu, and Yang 2017), respectively.

WN18 FB15k

MRR Hits@ MRR Hits@

Models Filter Raw 1 3 10 Filter Raw 1 3 10

TransE* 45.4 33.5 8.9 82.3 93.4 38.0 22.1 23.1 47.2 64.1
DistMult* 82.2 53.2 72.8 91.4 93.6 65.4 24.2 54.6 73.3 82.4
HolE* 93.8 61.6 93.0 94.5 94.9 52.4 23.2 40.2 61.3 73.9
ComplEx* 94.1 58.7 93.6 94.5 94.7 69.2 24.2 59.9 75.9 84.0
ANALOGY** 94.2 65.7 93.9 94.4 94.7 72.5 25.3 64.6 78.5 85.4

ComplEx (α = 0) 94.3 58.2 94.0 94.6 94.8 69.5 24.2 59.8 76.9 85.0
ComplEx w/ std L1 94.3 57.9 94.0 94.5 94.8 71.1 25.5 61.8 78.3 85.6
ComplEx w/ mul L1 94.3 58.5 94.0 94.6 94.9 73.3 25.8 64.3 80.3 86.8

Table 4: Results on WN18 when the size of training data is
reduced to a half

MRR Hits@

Models Filter Raw 1 3 10

ComplEx (α = 0) 48.3 32.9 47.4 48.7 49.8
ComplEx w/ std L1 48.2 33.4 47.2 48.7 50.2
ComplEx w/ mul L1 49.0 34.6 47.7 49.7 51.2

Figure 2: The box plots for the variance of filtered MRR on
the FB15k dataset.

tuned with AdaGrad (Duchi, Hazan, and Singer 2011), both
for entity and relation vectors. The maximum number of
training epochs was set to 500 and the dimension of the vec-
tor space was d = 200. The number of negative triplets gen-
erated per positive training triplet was 10 for FB15k and 5
for WN18.

Results

We compared our proposed model (‘ComplEx w/ mul L1’)
with ComplEx and ComplEx with standard L1 regulariza-
tion (‘ComplEx w/ std L1’). Note that our model reduces to

ComplEx when α = 0.
Table 3 shows the results. The results for TransE, Dist-

Mult, HolE, and ANALOGY are transcribed from the liter-
ature (Trouillon et al. 2016b; Liu, Wu, and Yang 2017). All
the compared models, except for DistMult, can produce a
non-symmetric scoring function.

For most of the evaluation metrics, the multiplicative L1
regularizer (‘ComplEx w/ mul L1’) outperformed or was
competitive to the best baseline. Of particular interest, its
performance on FB15k was much better than that of WN18.
Indeed, the accuracy of the original ComplEx is already
quite high for WN18.

This difference between two datasets comes from the per-
centage of infrequent relations in two datasets. Most of the
1,345 relations in FB15k are infrequent, i.e., each of them
has only several dozen triplets in training data. By contrast,
of the 18 relations in WN18, most have more than one thou-
sand training triplets.

Because sparse modeling is, in general, much effective
when training data is scarce, this difference in the propor-
tion of infrequent relations should have contributed to the
different performance improvements on the two datasets. To
support this hypothesis, we ran additional experiments with
WN18, by reducing the number of training samples to one
half. The test data remained the same as in the previous ex-
periment. The results are shown in Table 4. The standard
and multiplicative L1 regularizers work better than the orig-
inal ComplEx and the improvement in each evaluation met-
ric is greater than that observed with all training data. The
proposed method also outperformed the standard L1 regu-
larization consistently.

The reliability of the result in Table 3 was verified by com-
puting the variance of the filtered MRR scores over 8 trials
on FB15k. For each of the trials, different random choices
were used to generate the initial values of the representa-
tion vectors and the order of samples to process. The re-
sult, shown in Figure 2, confirms that random initial val-
ues have little effect on the result; there is no overlapping
MRR range among the compared methods, and the proposed
method (‘ComplEx w/ mul L1’) consistently outperformed
the standard L1 (‘ComplEx w/ std L1’) and vanilla ComplEx
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(a) The real part on the FB15k dataset (b) The imaginary part on the FB15k dataset

Figure 3: The scatter plots showing the degree of sparsity against the symmetry score for each relation.

with only L2 regularization.

Analysis

We analyzed how the two L1 regularizers, standard and mul-
tiplicative, work for symmetric and antisymmetric relations
on FB15k. Because of the large number of relations FB15k
contains, manually extracting symmetric/antisymmetric re-
lations is difficult. To quantify the degree of symmetry of
each relation r, we define its “symmetry score” by sym(r) =
|T sym

r |/|Tr| where
Tr = {(s, r, o) | (s, r, o) ∈ Ω, yrso = +1},

T sym
r = {(s, r, o) | (s, r, o) ∈ Ω, yrso = yros = +1},

and compute this score for all relations in the FB15k train-
ing set. By definition, symmetric relation r should give
sym(r) = 1.0 and antisymmetric relation r should give
sym(r) = 0.0. Thus, this score should indicate the degree
of symmetry/antisymmetry of relations.

In Figure 3, we plot the percentage of non-zero elements
in the real and imaginary parts of its representation vector
wr against sym(r) for each relation r. Panels (a) and (b)
are for Re(wr) and Im(wr), respectively. It is expected that
the higher (resp. lower) the symmetry is, the more imagi-
nary (resp. real) parts become zero. With the multiplicative
L1 regularizer (denoted by ‘mul L1’ and green crosses in the
figure), the density of real parts correlates with symmetry,
and the density of imaginary parts inversely correlates with
symmetry. By contrast, correlation is weak or not observable
for the standard L1 regularizer (‘std L1’; blue circles). As
well as demonstrated on synthetic data, we conclude that the
gains in Table 3 come mainly from the more desirable rep-
resentations for symmetric/antisymmetric relations learned
with the multiplicative L1 regularization.

However, compared to the results on synthetic data shown
in Figure 1, many non-zero values exist in Re(wr) and
Im(wr) even for completely symmetric/antisymmetric re-
lations. We suspect that this is related to the fact that an anti-
symmetric relations does not imply an antisymmetric truth-
value matrix; even if a relation is antisymmetric, there are

many entity pairs (e1, e2) such that neither of (e1, r, e2) or
(e2, r, e1) holds.

Conclusion

In this paper, we have presented a new regularizer for Com-
plEx to encourage vector representations of relations to
be more symmetric or antisymmetric in accordance with
data. In the experiments, the proposed regularizer improved
over the original ComplEx (with only L2 regularization) on
FB15k, as well as WN18 with limited training data.

Recently, researchers have been making attempt to lever-
age background knowledge to improve KBC, such as by in-
corporating information of entity types, hierarchy, and rela-
tion attributes into the models (Krompaß, Baier, and Tresp
2015; Minervini et al. 2017). Our method does not assume
background knowledge but adapt to symmetry/asymmetry
of relations in a data-driven manner. However, learning more
diverse knowledge about relations from data should be an
interesting future research topic. We would also like to con-
sider different type of regularization for entity vectors.

As another future research direction, we would like to de-
velop a better strategy for sampling negative triplets that are
suitable for our method.
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