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Abstract

Multi-view clustering has attracted intensive attention due to
the effectiveness of exploiting multiple views of data. How-
ever, most existing multi-view clustering methods only aim
to explore the consistency or enhance the diversity of differ-
ent views. In this paper, we propose a novel multi-view sub-
space clustering method (CSMSC), where consistency and
specificity are jointly exploited for subspace representation
learning. We formulate the multi-view self-representation
property using a shared consistent representation and a set
of specific representations, which better fits the real-world
datasets. Specifically, consistency models the common prop-
erties among all views, while specificity captures the inher-
ent difference in each view. In addition, to optimize the non-
convex problem, we introduce a convex relaxation and de-
velop an alternating optimization algorithm to recover the
corresponding data representations. Experimental evaluations
on four benchmark datasets demonstrate that the proposed ap-
proach achieves better performance over several state-of-the-
arts.

Introduction
Subspace clustering is essential to many scientific problems,
e.g., representation learning (Liu and Yan 2011), motion
segmentation (Rao et al. 2010) and image processing (Ma
et al. 2007). Given data from multiple categories lying in a
union of subspaces, clustering a dataset into categories re-
duces to assigning data to their respective subspaces, where
each data sample is expressed by a linear combination of
other samples in the same subspace.

A number of subspace clustering methods have been de-
veloped in recent years (Parsons, Haque, and Liu 2004). For
instance, sparse subspace clustering (Elhamifar and Vidal
2013) finds a sparse representation from the subspaces of
the data. Besides, low-rank representation (Liu et al. 2013)
explores the subspace structures by low-rank constraint to
recover the data. After obtaining self-representation matrix
of the data, spectral clustering (Ng, Jordan, and Weiss 2002)
is applied to get the final clustering result. Additionally, in-
novation pursuit (Rahmani and Atia 2017) proposes another
subspace discovery method, which identifies each subspace
based on its novelty to other subspaces.
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Figure 1: Illustration of our CSMSC approach. Given
data samples with V views X(1),X(2), · · · ,X(V ), our
method pursues a view-consistent self-representation ma-
trix C and a set of view-specific self-representation matrices
D(1),D(2), · · · ,D(V ). The affinity matrix produced with C
and {D(v)}v∈[V ] will be used as input to the spectral clus-
tering method to generate the final clustering result.

Many real-world problems have representations with re-
spect to multiple views (Blum and Mitchell 1998; Chaud-
huri et al. 2009). For instance, an image is described by
color, texture, edges and so on. A document can be simul-
taneously described by several different languages. Thus,
methods only using single view information do not meet
the real-world demand well. Based on a variety of theo-
ries, a lot of methods have been developed to extract com-
prehensive information from multiple views (Xu, Tao, and
Xu 2013), including co-training (Blum and Mitchell 1998;
Kumar, Rai, and Daumé 2011; Kumar and Daumé 2011),
multiple kernel learning (Gönen and Alpaydın 2011) and
subspace learning (Chaudhuri et al. 2009; Cao et al. 2015;
Zhang et al. 2015; Xia et al. 2014).

However, there are several main deficiencies for most ex-
isting methods. On one hand, single view methods do not
leverage as much information as multi-view methods do. On
the other hand, most multi-view methods only consider the
consistency of multi-view data (Kumar and Daumé 2011;
Kumar, Rai, and Daumé 2011; Zhang et al. 2015), or only
explore the diversity of different subspace representations
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(Cao et al. 2015). Although we can simply concatenate
all the features, this strategy ignores the correlation among
views and may lead to a severe “curse of dimensionality”. In
addition, the real world is by nature and merely considering
consistency or diversity is not adequate. Thus, these meth-
ods do not explore the underlying data distribution among
different views comprehensively.

Regarding the problems mentioned above, we propose a
novel subspace learning method which takes consistency
and diversity into consideration simultaneously. Consider-
ing that the multiple view features cover the information of
the same data, thus there should exist many common infor-
mation shared among different views. Specifically, for the
consistent term, we assume that there is a low-rank common
representation to excavate shared information among differ-
ent views. Meanwhile there is some unique information in
each view which could compensate for the accurate recon-
struction. Therefore, with the consistent and specific terms,
we can discover the correlation of multi-view data compre-
hensively, which better fits the real-world datasets. We refer
to this method as Consistent and Specific Multi-view Sub-
space Clustering (CSMSC). Figure 1 gives the illustration of
our method. The self-representation property is constructed
using multiple types of feature, and the self-representation
matrix is composed of the consistent representation shared
by all views and the view-specific representation. The affin-
ity matrix based on the consistent and specific representa-
tions is taken as input to spectral clustering (Ng, Jordan, and
Weiss 2002) to generate final clustering result. Moreover, it
is shown that the complexity of the proposed method scales
only linearly in the number of views and the dimension of
data, and cubically in the number of data samples. The main
contributions of this work are:
• This paper presents a novel subspace representation learn-

ing method Consistent and Specific Multi-view Subspace
Clustering (CSMSC) which simultaneously learns a view-
consistent representation and a set of view-specific repre-
sentations for multi-view subspace clustering.

• We introduce a non-convex optimization problem and
propose a convex relaxed alternating optimization algo-
rithm to recover the corresponding subspace representa-
tions, providing some further practical smoothing conver-
gence.

• Extensive experiments on benchmark datasets demon-
strate that our model outperforms several baseline meth-
ods and state-of-the-art methods.

Related Work

In this section, we review relevant subspace clustering meth-
ods, which pursue the subspace structure from the data and
perform clustering on the learned self-representation matrix.

Many advancements of single-view subspace clustering
methods have been inspired and various methods differ in
the way of extracting information from feature spaces. For
the reconstruction term, Frobenius norm models the noise
(Candès and Plan 2010), l0 norm characterizes random cor-
ruptions (Candès et al. 2011) and l2 norm deals with sample-
specific corruptions and outliers (Liu, Lin, and Yu 2010).

Robust shape interaction (Wei and Lin 2011) assumes data
is clean in the ideal case. For the self-representation term,
nuclear norm pursues low-rank recovery (Liu et al. 2013)
and l0 norm obtains sparse representation under the widest
assumption on data (Yang et al. 2016). For multi-view recon-
struction error term, multi-view intact space learning (Xu,
Tao, and Xu 2015) employs the Cauchy estimator as error
measurement to strength robustness of outliers.

For single view methods, sparse subspace clustering (El-
hamifar and Vidal 2013) finds a sparse representation from
subspaces of the data, while low-rank representation (Liu
et al. 2013) explores subspace structures by low-rank repre-
sentation to recovery the data. Additionally, multi-subspace
representation (Luo et al. 2011) discovers the number of sub-
spaces, the dimensions of each subspace, and the samples in
each subspace simultaneously. Moreover, least squares re-
gression (Lu et al. 2012) discovers the underlying subspace
segmentation of data with connectedness property.

Furthermore, based on a variety of theories, a lot of multi-
view clustering methods have been designed to mine intrin-
sic information between views. For example, co-regularized
multi-view spectral clustering (Kumar, Rai, and Daumé
2011) clusters on different views with a co-regularization
constraint by the hypothesis that individual views often ad-
mit the same underlying clustering of the data. Co-Train
SPC (Kumar and Daumé 2011) assumes that the underly-
ing clustering would co-train a data sample to the same
cluster regardless of the view. Low-rank tensor constrained
multi-view subspace clustering (Zhang et al. 2015) cap-
tures high order correlations of multi-view data. Diversity-
induced multi-view subspace clustering (Cao et al. 2015)
explores the complementary information among multi-view
features using a diversity term. Min-Disagreement (De Sa
2005) minimizes the disagreement of different views using
bipartite graph which is based on spectral clustering algo-
rithm. Multi-view latent representation (Zhang et al. 2017)
is based on the assumption that each view is originated from
one underlying latent representation. Deep non-negative ma-
trix matrix factorization (Zhao, Ding, and Fu 2017) builds a
deep structure to seek a common feature representation with
more consistent knowledge to facilitate clustering.

The Proposed Approach

In this section, we present a novel multi-view learning al-
gorithm which effectively handles subspace clustering and
enables the separation of consistency and specificity proper-
ties at self-representation.

Subspace Clustering

Given data X ∈ R
d×N drawn from multiple subspace,

where N is the number of samples and d indicates the di-
mension of the data. Self-representation means that each
data sample is expressed by a linear combination of other
samples in the same subspace. The self-representation prop-
erty can be denoted as

X = XZ+E, (1)

where Z ∈ R
N×N is the learned self-representation matrix

and E ∈ R
d×N is the error term. The objective function of

3731



self-representation based subspace clustering is often of the
form

minλΩ(Z) + Φ(E), (2)

where Ω(·) and Φ(·) indicate certain regularization strate-
gies and λ > 0 is a parameter that balances these two reg-
ularizers. After achieving the self-representation matrix Z,
affinity matrix S ∈ R

N×N is usually constructed by

S =
|Z|+ |Z|T

2
, (3)

where | · | is the absolute operator. Thus, the final clustering
result is generated by the spectral clustering algorithm (Ng,
Jordan, and Weiss 2002) based on the affinity matrix.

Formulation

Let X(v) ∈ R
dv×N denote the feature matrix corresponding

to the v-th view, dv indicates the dimension of the data in
v-th view and v ∈ [V ], where [V ] stands for {1, 2, ..., V }.
Define Z(v) ∈ R

N×N the learned subspace representation
in each view and E(v) ∈ R

dv×N the error term at self-
representation. If we just consider the consistency term of
all views, the multi-view self-representation formula can be
written as

X(v) = X(v)Z+E(v). (4)

Besides the consistency term comprised in Eq. (4), we argue
that E(v) in Eq. (4) should not simply be considered as resid-
ual, it indeed contains the inherent difference in each view.
Furthermore, though the common representation which re-
mains unchanged among all views is considered in Eq. (4),
the unique part in each view is not considered, and it is ob-
viously not enough or accurate to merely leverage this small
part for data modeling.

We consider

X(v) = X(v)(C+D(v)) +E(v), v ∈ [V ], (5)

where C,D(v) ∈ R
N×N are learned consistent and specific

self-representation matrices with data under different views,
respectively. We decompose the ordinary multi-view repre-
sentation matrix Z(v) in X(v) = X(v)Z(v) + E(v) into the
sum of a shared representation which encodes the part re-
maining unchanged on different views and a view-specific
representation which corresponds to the unique part of v-th
view1.

Due to these constraints, we impose some regularization
to penalize the consistent matrix and the view-specific ma-
trices. For the consistent term, we choose nuclear norm to
guarantee the low rank property in order to excavate more
shared information among different views. Also, nuclear
norm prevents the trivial solution. Besides, we apply l2 norm
to the specific term to ensure connectedness property, thus
the representation matrices are generally dense, which alle-
viates the connectivity issue (Lu et al. 2012). Consequently,

1Section Ablation Study on Consistency and Specificity nu-
merically verifies that merely considering or not considering the
consistent term drops many important information and has poor ef-
fect.

we can pursue the most compatible structure on all views.
Thus, the regular terms are as the form of

Ω(C,D(1), · · · ,D(V )) = λC‖C‖∗+λD

V∑

v=1

‖D(v)‖22, (6)

where ‖·‖∗ denotes nuclear norm, ‖·‖2 is l2 norm and
λC , λD ∈ (0, 1] are trade-off parameters.

Moreover, real-world datasets are often with many noisy
information, thus we introduce an error term to deal with
noisy data. Analogously to (Liu et al. 2013; Zhang et al.
2015), we formulate the error term as the form of

Φ(E(1), · · · ,E(V )) =
V∑

v=1

‖E(v)‖2,1, (7)

where ‖·‖2,1 denotes l2,1 norm, which encourages the
columns of E(V ) to be zero. Consequently, combining all
the conditions discussed above together leads to the objec-
tive function of the proposed method:

min
C,D(v),E(v)

λC‖C‖∗ + λD

V∑

v=1

‖D(v)‖22 +
V∑

v=1

‖E(v)‖2,1

s.t. X(v) = X(v)(C+D(v)) +E(v), v ∈ [V ].
(8)

Therefore, by solving Eq. (8) with multi-view features, a
consistent and a series of specific representations can be ex-
tracted and the data is represented more naturally.

With the learned representations, we construct the affinity
matrix with respect to the consistency and the specificities

S =
|C|+ |C|T

2
+

1

V

V∑

v=1

|D(v)|+ |D(v)|T
2

, (9)

and subsequently apply the spectral clustering algorithm to
the affinity matrix to pursue the final clustering results.

Optimization

Our objective function Eq. (8) simultaneously learns the
consistent and specific representations from multiple views.
However, directly finding the optimal solution of the prob-
lem (8) is extremely difficult. Thus, we leverage a convex re-
laxation and develop an alternating optimization algorithm
to jointly recover the corresponding data representations.
Firstly, we introduce variables K,W(v) ∈ R

N×N as sur-
rogates of C in nuclear norm and E(v) in l2,1 norm:

min
C,D(v),E(v),

W(v),K

λC‖K‖∗ + λD

V∑

v=1

‖D(v)‖22 +
V∑

v=1

‖W(v)‖2,1

s.t. X(v) = X(v)(C+D(v)) +E(v),

C = K,E(v) = W(v), v ∈ [V ].
(10)

This problem can be solved by the Augmented Lagrange
Multiplier (ALM) (Lin, Chen, and Ma 2010) method, which
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minimizes the augmented Lagrange function of the form:

λC‖K‖∗ + λD

V∑

v=1

‖D(v)‖22 +
V∑

v=1

‖W(v)‖2,1+

V∑

v=1

〈Y(v)
1 ,X(v) −X(v)(C+D(v))−E(v)〉+

μ

2

V∑

v=1

‖X(v) −X(v)(C+D(v))−E(v)‖2F+

〈Y2,C−K〉+ μ

2
‖C−K‖2F+

V∑

v=1

〈Y(v)
3 ,E(v) −W(v)〉+ μ

2

V∑

v=1

‖E(v) −W(v)‖2F ,
(11)

where 〈·, ·〉 is the standard Euclidean inner prod-
uct of two matrices, ‖·‖F denotes Forbenius norm,
{Y(v)

1 ,Y
(v)
3 }v∈[V ],Y2 are Lagrange multipliers and μ > 0

is a penalty parameter. To tackle this issue, we divide the
above unconstrained problem into six sub-problems and al-
ternatively optimize them by fixing the other variables. The
procedure depicted as in Algorithm 1 solves problem (8).
Note that Step 4 has closed-form solution thanks to the sin-
gular value shrinkage operator (Cai, Candès, and Shen 2010)
and Step 8 can be efficiently solved by Lemma 4.1 in (Liu et
al. 2013). Detailed procedure of optimization can be found
in the supplementary material.

Analysis

Convergence analysis. The convergence of exact ALM
method has been well studied in (Bertsekas 2014) when the
objective function is smooth. The convergence of inexact
ALM method with at most two pending matrices has also
been proved (Lin, Chen, and Ma 2010). Unfortunately, en-
suring the convergence of inexact ALM method with three
or more pending matrices is still difficult. Since our method
has 3V + 2 pending matrices and the objective function Eq.
(11) is not smooth, as a result, the convergence is hard to
prove theoretically. Owing to the gap generated in each iter-
ation is monotonically decreasing, as shown in Section Per-
formance Evaluation, the validity of the proposed method
could be guaranteed by the convexity of the Lagrange func-
tion to some extent (Eckstein and Bertsekas 1992). Thus it
could be well expected that the proposed method has good
convergence properties. It is worth mentioning that μ should
be upper bounded by Step 12 in Algorithm 1 in order to
guarantee the convergence. This is derived from traditional
theory of the alternating direction method (Lin, Chen, and
Ma 2010).

Complexity analysis. Our algorithm consists of 3V + 2
sub-problems and the complexities of the subproblems are
analyzed as follows. The complexity of updating C,D(v)

and K derived from matrix inversion and nuclear norm are
O(N3), where N is the number of data samples. The com-
plexity of updating E(v) and W(v) is O(dN), where d is the
maximal dimension of data towards all views. Overall, the

Algorithm 1 CSMSC: Consistent and Specific Multi-view
Subspace Clustering

Input: The data set X with multiple types of feature
{X(v)}v∈[V ], the parameters λC and λD.

1: Initialize coefficient matrices C = K = Y
(v)
1 = Y2 =

Y
(v)
3 = 0, v ∈ [V ], generate {D(v)}v∈[V ] as in (Cao

et al. 2015), set parameters μ = 10−6, μmax = 106,
ρ = 1.1, maximum iterations M = 60 and stopping
threshold ε = 10−6.

2: for t ∈ [M ] do
3: Fix the others and update C using

C = (
V∑

v=1

(X
(v)

)
T
X

(v)
+ I)

−1×

(
V∑

v=1

(X
(v)

)
T
(X

(v) − X
(v)

D
(v) − E

(v)
+

Y
(v)
1

μ
) + K − Y2

μ
);

4: Fix the others and update K using
K = argmin

λC

μ
‖K‖∗ +

1

2
‖K − (C +

Y2

μ
)‖2

F ;

5: for each v ∈ [V ] do

6: Fix the others and update D(v) using

D
(v)

=(μ(X
(v)

)
T
X

(v)
+ 2λDI)

−1×

μ(X
(v)

)
T
(X

(v) − X
(v)

C − E
(v)

+
Y

(v)
1

μ
);

7: Fix the others and update E(v) using

E
(v)

=
1

2
(X

(v) −X
(v)

(C+D
(v)

)+W
(v)

+
Y

(v)
1 − Y

(v)
3

μ
);

8: Fix the others and update W(v) using
W

(v)
=

argmin
1

μ
‖W(v)‖2,1 +

1

2
‖W(v) − (E

(v)
+

Y
(v)
3

μ
)‖2

F ;

9: Update the multipliers
Y

(v)

1(t+1)
= Y

(v)

1(t)
+ μ(X

(v) − X
(v)

(C + D
(v)

) − E
(v)

);

Y
(v)

3(t+1)
= Y

(v)

3(t)
+ μ(E

(v) − W
(v)

);

10: end for
11: Update the multiplier

Y2(t+1) = Y2(t) + μ(C − K);

12: Update the parameter μ by μ = min(ρμ, μmax);
13: if converges then
14: break;
15: end if
16: Construct the affinity matrix S using Eq. (9).
17: Apply the spectral clustering algorithm (Ng, Jordan,

and Weiss 2002) to S.
18: end for
Output: The cluster label of X.

complexity is O((V + 2)N3 + 2V dN) for each iteration,
where V is the number of views. Considering the number of
iterations, the complexity of Algorithm 1 is

O(MVN(N2 + d)),

where M is the number of iterations.
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Table 1: Results on four datasets (mean ± standard deviation). Higher value indicates better performance.

Datasets Methods NMI ACC AR F-score Precision Recall

Yale

LRRbest(Liu et al. 2013) 0.709± 0.011 0.697± 0.000 0.515± 0.004 0.547± 0.007 0.529± 0.003 0.567± 0.004
LRRcon(Liu et al. 2013) 0.702± 0.002 0.667± 0.007 0.456± 0.002 0.492± 0.002 0.538± 0.002 0.453± 0.005

Co-Reg SPC(Kumar, Rai, and Daumé 2011) 0.648± 0.002 0.564± 0.000 0.436± 0.002 0.466± 0.000 0.455± 0.004 0.491± 0.003
RMSC(Xia et al. 2014) 0.684± 0.033 0.642± 0.036 0.485± 0.046 0.517± 0.043 0.500± 0.043 0.535± 0.044

LT-MSC(Zhang et al. 2015) 0.765± 0.008 0.741± 0.002 0.570± 0.004 0.598± 0.006 0.569± 0.004 0.629 ± 0.005
DiMSC(Cao et al. 2015) 0.727± 0.010 0.709± 0.003 0.535± 0.001 0.564± 0.002 0.543± 0.001 0.586± 0.003

CSMSC 0.784 ± 0.001 0.752 ± 0.001 0.615 ± 0.005 0.640 ± 0.004 0.673 ± 0.002 0.610± 0.006

Notting-Hill

LRRbest(Liu et al. 2013) 0.579± 0.005 0.794± 0.001 0.558± 0.012 0.653± 0.001 0.672± 0.004 0.636± 0.004
LRRcon(Liu et al. 2013) 0.602± 0.003 0.685± 0.002 0.485± 0.008 0.601± 0.008 0.625± 0.002 0.579± 0.003

Co-Reg SPC(Kumar, Rai, and Daumé 2011) 0.853± 0.003 0.715± 0.000 0.602± 0.004 0.615± 0.000 0.567± 0.004 0.666± 0.004
RMSC(Xia et al. 2014) 0.585± 0.004 0.807± 0.035 0.496± 0.013 0.603± 0.005 0.621± 0.029 0.586± 0.031

LT-MSC(Zhang et al. 2015) 0.779± 0.007 0.868± 0.003 0.777± 0.002 0.825± 0.007 0.830± 0.006 0.814± 0.004
DiMSC(Cao et al. 2015) 0.799± 0.001 0.843± 0.021 0.787± 0.001 0.834± 0.001 0.822± 0.005 0.836± 0.009

CSMSC 0.908 ± 0.001 0.965 ± 0.001 0.923 ± 0.000 0.940 ± 0.001 0.931 ± 0.001 0.949 ± 0.000

ORL

LRRbest(Liu et al. 2013) 0.895± 0.006 0.773± 0.003 0.724± 0.020 0.731± 0.004 0.701± 0.001 0.754± 0.002
LRRcon(Liu et al. 2013) 0.830± 0.005 0.695± 0.000 0.563± 0.000 0.573± 0.007 0.623± 0.009 0.530± 0.009

Co-Reg SPC(Kumar, Rai, and Daumé 2011) 0.853± 0.003 0.715± 0.000 0.602± 0.004 0.615± 0.000 0.567± 0.004 0.666± 0.004
RMSC(Xia et al. 2014) 0.872± 0.012 0.723± 0.025 0.645± 0.029 0.654± 0.028 0.607± 0.033 0.709± 0.027

LT-MSC(Zhang et al. 2015) 0.909± 0.009 0.759± 0.028 0.709± 0.024 0.717± 0.023 0.654± 0.026 0.793± 0.023
DiMSC(Cao et al. 2015) 0.940± 0.003 0.838± 0.001 0.802± 0.000 0.807± 0.003 0.764± 0.012 0.856 ± 0.004

CSMSC 0.942 ± 0.005 0.868 ± 0.012 0.827 ± 0.002 0.831 ± 0.001 0.860 ± 0.002 0.804± 0.003

BBCSport

LRRbest(Liu et al. 2013) 0.690± 0.019 0.832± 0.026 0.667± 0.008 0.774± 0.023 0.726± 0.009 0.762± 0.004
LRRcon(Liu et al. 2013) 0.733± 0.005 0.873± 0.001 0.756± 0.001 0.813± 0.005 0.803± 0.004 0.823± 0.009

Co-Reg SPC(Kumar, Rai, and Daumé 2011) 0.718± 0.003 0.564± 0.000 0.696± 0.001 0.766± 0.002 0.786± 0.008 0.748± 0.012
RMSC(Xia et al. 2014) 0.608± 0.007 0.737± 0.003 0.723± 0.025 0.655± 0.002 0.702± 0.001 0.608± 0.005

LT-MSC(Zhang et al. 2015) 0.556± 0.000 0.717± 0.000 0.496± 0.000 0.634± 0.000 0.552± 0.000 0.743± 0.000
DiMSC(Cao et al. 2015) 0.885 ± 0.002 0.960± 0.000 0.920 ± 0.000 0.929± 0.001 0.914± 0.000 0.930± 0.001

CSMSC 0.881± 0.000 0.963 ± 0.001 0.909± 0.001 0.931 ± 0.000 0.928 ± 0.001 0.933 ± 0.000

Experimental Results

In this section, we extensively evaluate the clustering prop-
erty of the proposed method on three widely used face
datasets (with three views) and one well known document
dataset (with two views). The performance of CSMSC is
compared with six state-of-the-art subspace clustering meth-
ods and two baseline methods in term of six evaluation met-
rics.

Four benchmark datasets are adopted in our evaluation.
Yale is a widely used face dataset which contains 165 gray-
scale images, 15 individuals with 11 images of each cate-
gory. Variations of the data include center light, with glasses,
happy, left light, without glasses, normal, right light, sad,
sleepy, surprised and wink. Notting-Hill video face dataset
(Zhang et al. 2009) is derived from the movie Notting-Hill.
The faces of five main casts are collected, including 4,660
faces in 76 tracks. We randomly sample 110 images of each
cast. ORL face dataset contains 400 images of 40 distinct
subjects. For each category, images were taken at different
times, lights, facial expressions (open / closed eyes, smil-
ing or not) and facial details (with glasses / without glasses).
BBCSport (Xia et al. 2014) contains 544 documents from
the BBC Sport website of sports news articles in five topical
areas in 2004-2005.

Following (Zhang et al. 2015), for face datasets, we resize
the images to 48 × 48 and extract three types of features:
View1 intensity (4,096 dimensions), View2 LBP (Ojala,
Pietikainen, and Maenpaa 2002) (3,304 dimensions) and
View3 Gabor (Lades et al. 1993) (6,750 dimensions). The
standard LBP feature is extracted from 72 × 80 loosely
cropped images with a histogram size of 59 over 910 pixel
patches. The Gabor feature is extracted with one scale λ = 4

at four orientations θ = {0◦, 45◦, 90◦, 135◦} with a loose
face crop at the resolution of 25 × 30 pixels. BBCSport
dataset only has two views, View1: 3,183 dimensions and
View2: 3,203 dimensions, respectively. All descriptors ex-
cept the intensity are scaled to have unit norm.

Compared Methods and Evaluation Metrics

To evaluate the performance of CSMSC, we compare our
method with single-view approach LRR (Liu et al. 2013)
and a series of state-of-the-art multi-view methods. LRRbest

(Liu et al. 2013) is a single view algorithm. It seeks the low-
est rank representation of data to describe samples as lin-
ear combinations with the most informative view. LRRcon

(Liu et al. 2013) firstly concatenates the data from different
views and then feeds into the traditional subspace clustering
method LRR. Co-Reg SPC (Kumar, Rai, and Daumé 2011)
is a pairwise multi-view spectral clustering method, which
co-regularizes the clustering hypotheses for clustering con-
sistent representations across views. RMSC (Xia et al. 2014)
stands for robust multi-view spectral clustering method. It
recovers a shared low-rank transition probability matrix and
uses a Markov chain to cluster. LT-MSC (Zhang et al. 2015)
represents low-rank tensor constrained multi-view subspace
clustering. It captures high order underlying correlations in
multi-view data. DiMSC (Cao et al. 2015) is on behalf of
diversity-induced multi-view subspace clustering which ex-
plores complementary information across different views by
enforcing the diversity.

We also compare with two baselines which are special
cases of the proposed CSMSC method. CMSC represents
consistent multi-view subspace clustering which uses the
consistent part as self-representation matrix Z and the view-
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Table 2: Ablation study of consistency and specificity on four datasets (mean ± standard deviation).

Datasets Methods NMI ACC AR F-score Precision Recall

Yale
CMSC 0.628 ± 0.000 0.485 ± 0.001 0.340 ± 0.001 0.387 ± 0.001 0.462 ± 0.000 0.334 ± 0.001
SMSC 0.677 ± 0.001 0.636 ± 0.003 0.482 ± 0.000 0.515 ± 0.000 0.540 ± 0.001 0.491 ± 0.000

CSMSC 0.784 ± 0.001 0.752 ± 0.001 0.615 ± 0.005 0.640 ± 0.004 0.673 ± 0.002 0.610 ± 0.006

Notting-Hill
CMSC 0.209 ± 0.000 0.465 ± 0.000 0.157 ± 0.000 0.377 ± 0.000 0.470 ± 0.000 0.314 ± 0.000
SMSC 0.776 ± 0.002 0.889 ± 0.001 0.770 ± 0.001 0.819 ± 0.001 0.812 ± 0.000 0.828 ± 0.001

CSMSC 0.908 ± 0.001 0.965 ± 0.001 0.923 ± 0.000 0.940 ± 0.001 0.931 ± 0.001 0.949 ± 0.000

ORL
CMSC 0.834 ± 0.000 0.667 ± 0.001 0.542 ± 0.001 0.554 ± 0.001 0.643 ± 0.001 0.487 ± 0.002
SMSC 0.865 ± 0.001 0.720 ± 0.000 0.625 ± 0.002 0.634 ± 0.001 0.705 ± 0.000 0.576 ± 0.001

CSMSC 0.942 ± 0.005 0.868 ± 0.012 0.827 ± 0.002 0.831 ± 0.001 0.860 ± 0.002 0.804 ± 0.003

BBCSport
CMSC 0.379 ± 0.000 0.550 ± 0.000 0.285 ± 0.000 0.517 ± 0.000 0.812 ± 0.000 0.379 ± 0.000
SMSC − − − − − −

CSMSC 0.881 ± 0.000 0.963 ± 0.001 0.909 ± 0.001 0.931 ± 0.000 0.928 ± 0.001 0.933 ± 0.000

Table 3: Results on Yale with different views (mean ± standard deviation).

Views NMI ACC AR F-score Precision Recall

View1 0.684 ± 0.003 0.642 ± 0.030 0.470 ± 0.001 0.503 ± 0.010 0.527 ± 0.003 0.482 ± 0.004
View2 0.487 ± 0.001 0.412 ± 0.004 0.187 ± 0.004 0.239 ± 0.007 0.251 ± 0.007 0.228 ± 0.002
View3 0.512 ± 0.001 0.406 ± 0.008 0.227 ± 0.001 0.277 ± 0.005 0.298 ± 0.002 0.259 ± 0.004

View1+View2 0.757 ± 0.000 0.727 ± 0.001 0.584 ± 0.005 0.610 ± 0.004 0.625 ± 0.005 0.596 ± 0.005
View2+View3 0.738 ± 0.000 0.701 ± 0.008 0.529 ± 0.006 0.559 ± 0.009 0.597 ± 0.002 0.526 ± 0.000
View1+View3 0.719 ± 0.006 0.697 ± 0.001 0.532 ± 0.008 0.562 ± 0.001 0.579 ± 0.007 0.545 ± 0.003

View1+View2+View3 0.775 ± 0.001 0.752 ± 0.001 0.618 ± 0.000 0.642 ± 0.003 0.661 ± 0.002 0.624 ± 0.000

specific term D(v) is removed as in Eq. (4). SMSC stands for
specific multi-view subspace clustering which runs LRR on
each view as Eq. (1), and then sums these self-representation
matrices Z(v) together as matrix Z. The affinity matrices of
two baselines are constructed following Eq. (3).

Benchmarking clustering is generally difficult. Following
the convention (Cao et al. 2015; Christopher, Prabhakar, and
Hinrich ; Hubert and Arabie 1985; Zhang et al. 2015), we
evaluate the above approaches using six different metrics:
normalized mutual information (NMI), accuracy (ACC), ad-
justed rand index (AR), F-score, precision and recall. Higher
value indicates better clustering performance for all metrics.

Experimental Setup

In our experiments, we tune the parameter λC and λD in the
range of (0,1] and report the best performing results. We run
each experiment 30 times and report the average score and
standard deviation. For all the compared methods, we have
tuned the parameters to the best.

Performance Evaluation

The experimental results on the four datasets are presented
in Table 1. As shown, multi-view methods mostly outper-
form single view methods, which demonstrates the neces-
sity of extracting multiple view information for clustering.
Our proposed method significantly outperforms other meth-
ods on Yale, Notting-Hill and ORL datasets, and shows very
competitive performance on BBCSport dataset. On Notting-
Hill, our method gains large improvements around 10.9%,
12.2%, 13.6%, 10.6%, 10.9% and 11.3% over the second-
best method in terms of NMI, ACC, AR, F-score, Preci-
sion and Recall, respectively. Another attraction is that our

0 10 20 30 40 50 60

Number of iterations

0

200

400

600

800

1000

1200

R
ec

o
n

st
ru

ct
io

n
 e

rr
o

r
Yale

Notting-Hill

ORL

BBCSport

Figure 2: Number of iterations till convergence on each
dataset.

method performs substantially better than the baseline of
LRRcon, which simply concatenates all features together and
then performs LRR on the new feature. This demonstrates
the effectiveness of the proposed multi-view subspace clus-
tering technique. Note that LRRcon performs even worse
than LRRbest on Yale and ORL datasets, which numerically
proves that simply combining all the features is not a good
choice. We further present visualized affinity matrices pro-
duced by LRRcon and CSMSC on four datasets in supple-
mentary material.

Moreover, we investigate the stopping criterion of our
method. Figure 2 plots reconstruction error (vertical axis)
versus number of iterations (horizontal axis) on all four
datasets. As indicated, the error drops quickly in the be-
ginning and then remains stable. On most datasets, CSMSC
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Figure 3: Performance comparison between LRR with each
view and our method versus NMI.

converges within only a small number of iterations2. This
result further empirically confirms our convergence analysis
in Section Analysis.

Ablation Study on Consistency and Specificity

We further analyse the improvement of the proposed
CSMSC by comparing to CMSC which merely considers
consistency, and SMSC which does not consider the consis-
tent part. The experimental results on the four datasets are
presented in Table 2. Note that features of BBCSport dataset
are too sparse to run SVD, thus we can not perform LRR
on BBCSport. It is observed that our CSMSC substantially
outperforms CMSC on four datasets and thus numerically
indicates that considering the view-specific terms of each
view has merits. Besides, our proposed method performs
better than SMSC, consequently declares that isolating the
consistent representation from representations of all views
can enhance performance. The two baselines do not discover
the underlying subspace structure of different views exhaus-
tively and usually incur inferior clustering performance. In
conclusion, the proposed method efficiently combines con-
sistency and specificity associated with multi-view data and
thus outperforms baselines which only consider either term.

Single View versus Multiple Views

In this section, we compare our multi-view method CSMSC
with a respective single-view method LRR. Figure 3 shows
the detailed results by different configurations. Note that
BBCSport dataset only has two bars for two different views.
From Figure 3, we have following observations. First, as we
mentioned before, multi-view is generally more robust and
performs better than single-view, since more perspectives of
information are considered. In fact, CSMSC indeed effec-
tively combines information from different views with the
consistent and specific constraints, demonstrating the advan-
tage of our proposed method. Second, one view excels in
some datasets might not win in the other datasets. For exam-
ple, View2 acts as the best view on Notting-Hill and ORL,
but performs the worst on Yale. View3 is the best view on
Yale but shows degenerated performances on Notting-Hill
and ORL. As a result, fixing a specific view for all datasets

2During our experiments, we found that 20 iterations are gener-
ally applicable to ensure decent results.
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Figure 4: Sensitivity test on λC and λD versus NMI on Yale.

is unreliable, and it is difficult to choose the best view, since
the best view varies from dataset to dataset. In summary,
multi-view approach demonstrates clear advantage over sin-
gle view approach.

To further investigate the improvement of the proposed
method, we conduct LRR on each single view and CSMSC
on multiple views respectively. The parameters in LRR and
CSMSC are set as 0.05. According to Table 3, the cluster-
ing performance with multiple views are usually better than
those of each single view, which empirically proves that
clustering with multiple views is more robust than with sin-
gle view. Also, the performance generally improves when
the number of views is increased. Note that comparing to
LRRbest in Table 1, View1, View2 and View3 in Table 3 are
much worse, which declares that LRR is extremely sensitive
to the parameter.

Parameter Sensitivity

In this section, we conduct a sensitivity test for the parameter
λC and λD by varying from 0.001 to 1. Figure 4 shows the
influence of different parameter values with respect to NMI
on Yale dataset. It can be observed that, when λC or λD

approaches to zero, the performance drops sharply, which
is consistent with Section Ablation Study on Consistency
and Specificity. Moreover, our method performs much sta-
ble when λC and λD becomes larger.

Conclusion

In this paper, we have introduced a novel subspace repre-
sentation learning method of subspace clustering under the
multi-view setting. The proposed method, named Consis-
tent and Specific Multi-view Subspace Clustering, formu-
lates the self-representation property using a consistent rep-
resentation and a set of specific representations, which better
fits the real-world datasets. We introduce a non-convex op-
timization problem and develop a convex relaxed optimiza-
tion algorithm to recover the corresponding data representa-
tions, which provides some further practical smoothing con-
vergence. The performance of our method is quantitatively
evaluated on four datasets, which shows that our method out-
performs baseline methods and state-of-the-art methods for
multi-view subspace clustering.
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Kumar, A., and Daumé, H. 2011. A co-training approach for
multi-view spectral clustering. In Proc. Int. Conf. Mach. Learn.,
393–400.
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