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Abstract

Recently, crowdsourcing has emerged as an effective
paradigm for human-powered large scale problem solving in
various domains. However, task requester usually has a lim-
ited amount of budget, thus it is desirable to have a policy
to wisely allocate the budget to achieve better quality. In this
paper, we study the principle of information maximization
for active sampling strategies in the framework of HodgeR-
ank, an approach based on Hodge Decomposition of pairwise
ranking data with multiple workers. The principle exhibits
two scenarios of active sampling: Fisher information maxi-
mization that leads to unsupervised sampling based on a se-
quential maximization of graph algebraic connectivity with-
out considering labels; and Bayesian information maximiza-
tion that selects samples with the largest information gain
from prior to posterior, which gives a supervised sampling
involving the labels collected. Experiments show that the pro-
posed methods boost the sampling efficiency as compared to
traditional sampling schemes and are thus valuable to practi-
cal crowdsourcing experiments.

Introduction

The emergence of online paid crowdsourcing platforms,
like Amazon Mechanical Turk, presents us new possibili-
ties to distribute tasks to human workers around the world,
on-demand and at scale. Recently, there arises a plethora
of pairwise comparison data in crowdsourcing experiments
on Internet (Liu 2011; Xu et al. 2016; Chen et al. 2013;
Fu et al. 2014; Chen, Lin, and Zhou 2015), where the com-
parisons can be modeled as oriented edges of an underly-
ing graph. As online workers can come and complete tasks
posted by a company, and work for as long or as little as they
wish, the data we collected are highly imbalanced where dif-
ferent alternatives might receive different number of com-
parisons, and incomplete with large amount of missing val-
ues. To analyze the imbalanced and incomplete data effi-
ciently, the newly proposed Hodge theoretic approach (Jiang
et al. 2011) provides us a simple yet powerful tool.

HodgeRank, introduced by (Jiang et al. 2011), is an ap-
plication of combinatorial Hodge theory to the preference or
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rank aggregation from pairwise comparison data. In an ana-
log to Fourier decomposition in signal processing, Hodge
decomposition of pairwise comparison data splits the aggre-
gated global ranking and conflict of interests into different
orthogonal components. It not only generalizes the classical
Borda count in social choice theory to determine a global
ranking from pairwise comparison data under various statis-
tical models, but also measures the conflicts of interests (i.e.,
inconsistency) in the pairwise comparison data. The incon-
sistency shows the validity of the ranking obtained and can
be further studied in terms of its geometric scale, namely
whether the inconsistency in the ranking data arises locally
or globally.

A fundamental problem in crowdsourcing ranking is the
sampling strategy, which is crucial to collect data efficiently.
Typically, there are two ways to design sampling schemes:
random sampling and active sampling. Random sampling is
a basic type of sampling and the principle of random sam-
pling is that every item has the same probability of being
chosen at any stage during the sampling process. The most
important benefit of random sampling over active methods
is its simplicity which allows flexibility and generality to
diverse situations. However, this non-selective manner does
not sufficiently use the information of past labeled pairs, thus
potentially increases the costs in applications. This moti-
vates us to investigate efficient schemes for active sampling.

In this paper, we present a principle of active sampling
based on information maximization in the framework of
HodgeRank. Roughly speaking, Fisher’s information max-
imization with HodgeRank leads to a scheme of unsuper-
vised active sampling which does not depend on actual ob-
served labels (i.e., a fixed sampling strategy before the data
is observed). Since this sampling scheme does not need the
feedback from the worker, it is fast and efficient. Besides, it
is insensitive to outliers. On the other hand, a Bayesian in-
formation maximization equips us a supervised active sam-
pling scheme that relies on the history of pairwise compari-
son data. By exploiting additional information in labels, su-
pervised sampling often exhibits better performances than
unsupervised active sampling and random sampling. How-
ever as the supervised sampling is sensitive to outliers, while
reliability/quality of each worker is heterogeneous and un-
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known in advance, we find that unsupervised active sam-
pling is sometimes more efficient than supervised sampling
when the latter selects outlier samples at the initial stage.
Experimental results on both simulated examples and real-
world data support the efficiency improvements of active
sampling compared against passive random sampling.

Our contributions in this work are threefold:
1. A new version of Hodge decomposition of pairwise

comparison data with multiple voters is presented. Within
this framework, two schemes of information maximization,
Fisher and Bayesian that lead to unsupervised and super-
vised sampling respectively, are systematically investigated.

2. Closed form update and a fast online algorithm are
derived for supervised sampling with Bayesian information
maximization for HodgeRank, which is shown faster and
more accurate than the state-of-the-art method Crowd-BT
(Chen et al. 2013).

3. These schemes exhibit better sampling efficiency than
random sampling as well as a better loop-free control in
clique complex of paired comparisons, thus reduce the pos-
sibility of causing voting chaos by harmonic ranking (Saari
2001) (i.e., the phenomenon that the inconsistency of prefer-
ence data may lead to totally different aggregate orders using
different methods).

Hodge-theoretic approach to ranking

Before introducing our active sampling schemes, we will
first propose a new version of Hodge decomposition of pair-
wise labels to ranking.

From Borda count to HodgeRank

In crowdsourced pairwise comparison experiments, let V
be the set of candidates and |V | = n. A voter (or worker)
α ∈ A provides his/her preference for a pair of candidates
(i, j) ∈ V ×V , yαij : A×V ×V → R such that yαij = −yαji,
where yαij > 0 if α prefers i to j and yαij ≤ 0 otherwise. The
simplest setting is the binary choice, where

yαij =

{
1 if α prefers i to j,
−1 otherwise.

(1)

Such pairwise comparison data can be represented by a
graph G = (V,E), where (i, j) ∈ E is an oriented edge
when i and j are effectively compared by some voters. As-
sociate each (i, j) ∈ E a Euclidean space R

|Aij | where
Aij denotes the voters who compared i and j. Now define
Y := ⊗(i,j)∈ER

|Aij |, a Euclidean space with standard ba-
sis eαij . In other words, for every pair of candidates, a vector
space representing preferences of multiple voters or workers
is attached to the corresponding graph edge, therefore Y can
be viewed as a vector bundle or sheaf on the edge space E.

Statistical rank aggregation problem is to look for some
global rating score from such kind of pairwise comparison
data. One of the well-known methods for this purpose is the
Borda count in social choice theory (Jiang et al. 2011), in
which the candidate that has the most pairwise comparisons
in favour of it from all voters will be ranked first, and so
on. However, Borda count requires the data to be complete
and balanced. To adapt to new features in modern datasets,

i.e. incomplete and imbalanced, the following least squares
problem generalizes the classical Borda count to scenarios
from complete to incomplete voting,

min
x
‖y −D0x‖22 (2)

where x ∈ X := R
|V | is a global rating score, D0 : X →

Y is a finite difference (coboundary) operator defined by
(D0x)(α, i, j) = xi − xj . In other words, here we are look-
ing for a universal rating model independent to α, whose
pairwise difference approximates the voter’s data in least
squares. We note that multiple models are possible if one
hopes to group voters or pursue personalized ratings by ex-
tending the treatment in this paper.

Assume that G is connected, then solutions of (2) sat-
isfy the following graph Laplacian equation which can be
solved in nearly linear computational complexity (Spielman
and Teng 2004; Cohen et al. 2014)

DT
0 D0x = DT

0 y (3)
where L = DT

0 D0 is the weighted graph Laplacian defined
by L(i, j) = −mij (mij = |Aij |) for i �= j and L(i, i) =∑

j:(i,j)∈E mij . The minimal norm least squares estimator
is given by x̂ = L†DT

0 y where L† is the Moore-Penrose
inverse of L.

A new version of Hodge decomposition

With the aid of combinatorial Hodge theory, the residue
of (2) can be further decomposed adaptive to the topol-
ogy of clique complex χG = (V,E, T ), where T =
{(i, j, k) : (i, j) ∈ E, (j, k) ∈ E, (k, i) ∈ E} collects
the oriented triangles (3-cliques) of G. To see this, define
Z = R

|T | and the triangular curl (trace) operator D1 :
Y → Z by (D1y)(i, j, k) =

1
mij

∑
α yαij +

1
mjk

∑
α yαjk +

1
mki

∑
α yαki. Plugging in the definition of D0, it is easy to

see (D1(D0x))(i, j, k) = (xi − xj) + (xj − xk) + (xk −
xi) = 0. In the following, we extend the existing HodgeR-
ank methodology from simple graph with skew-symmetric
preference to multiple digraphs with any preference, which
potentially allows to model different users’ behaviour. In
particular, the existing Hodge decomposition (Jiang et al.
2011) only considers the simple graph, which allows only
one (oriented) edge between two nodes where pairwise com-
parisons are aggregated as a mean flow on the edge. How-
ever, in crowdsourcing applications, each pair is labeled by
multiple workers. Therefore, there will be multiple incon-
sistent edges (edges in different directions) for each pair of
nodes. Also the pairwise comparison data may not be skew-
symmetric, for example home advantage of sports games.
To meet this challenge, we need to extend existing theory to
the following new version of Hodge decomposition theorem
adapted to the multi-worker scenario.
Theorem 1 (Hodge Decomposition Theorem) Consider
chain map

X D0−−→ Y D1−−→ Z
with the property D1 ◦ D0 = 0. Then for any y ∈ Y , the
following orthogonal decomposition holds

y = b+ u+D0x+DT
1 z + w, (4)
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w ∈ ker(DT
0 ) ∩ ker(D1),

where b is the symmetric part of y, i.e. bαij = bαji = (yαij +
yαji)/2, which captures the position bias of pairwise compar-
ison on edge (α, i, j). The other four are skew-symmetric. u
is a universal kernel satisfying

∑
α uα

ij = 0, ∀(i, j) ∈ E
indicating all pairwise comparisons are completely in tie, x
is a global rating score, z captures mean triangular cycles
and w is called harmonic ranking containing long cycles ir-
reducible to triangular ones.

The proof is provided in the supplementary materials. In
fact all the components except b and D0x are of cyclic rank-
ings, where the universal kernel u as a complete tie is bi-
cyclic for every edge (i, j) ∈ E. By adding 3-cliques or
triangular faces to G, the clique complex χG thus enables
us to separate the triangle cycles DT

1 z from the cyclic rank-
ings. Similarly one can define dimension-2 faces of more
nodes, such as quadrangular faces etc., to form a cell com-
plex to separate high order cycles via Hodge decomposition.
Here we choose clique complex χG for simplicity. The re-
maining harmonic ranking w is generically some long cycle
involving all the candidates in comparison, therefore it is the
source of voting or ranking chaos (Saari 2001) (a.k.a. fixed
tournament issue in computer science), i.e., any candidate i
can be the final winner by removing some pairwise compar-
isons containing the opponent j who beats i in such com-
parisons. Fortunately harmonic ranking can be avoided by
controlling the topology of underlying simplicial complex
χG; in fact Hodge theory tells us that harmonic ranking will
vanish if the clique complex χG (or cell complex in gen-
eral) is loop-free, i.e., its first Betti number being zero. In
this case, the harmonic ranking component will be decom-
posed into local cycles such as triangular cycles. Therefore
in applications it is desired to have the simplicial complex
χG loop free, which is studied later in this paper with ac-
tive sampling schemes. For this celebrated decomposition,
the approach above is often called HodgeRank in literature.

When the preference data y is skew-symmetric, the bias
term b vanishes, there only exists a global rating score and
cyclic rankings. Cyclic rankings part mainly consists of
noise and outliers, where outliers have much larger magni-
tudes than normal noise. So a sparse approximation of the
cyclic rankings for pairwise comparison data can be used
to detect outliers. In a mathematical way, suppose Proj
is the projection operator to the cyclic ranking space, then
Proj(γ) with a sparse outlier vector γ is desired to approxi-
mate Proj(y). One popular method is LASSO as following:

min
γ
‖Proj(y)−Proj(γ)‖22 + λ‖γ‖1

Further more, the term b models the user-position bias in
the preference. It means on the edge (α, i, j) and (α, j, i),
there is a bias caused by various reasons, such as which
one is on the offensive. While in most crowdsourcing prob-
lems, we believe there should not have a such term unless
the worker is careless. So this term can be used to model the
workers’ behavior. In formulation, we can add an intercept
term into (2):

min
x
‖y − b−D0x‖22 (5)

where b is a piecewise constant intercept depending on
worker α only: bαij = constantα, ∀i, j. Such an intercept
term can be seen as a mean effect of the position bias for
each worker. The bigger its magnitude is, the more careless
the worker is. Generally, this term can be any piecewise con-
stant vector which models different group effect of bias. This
potentially allows to model different workers’ behavior.

Statistical models under HodgeRank

HodgeRank provides a unified framework to incorpo-
rate various statistical models, such as Uniform model,
Thurstone-Mosteller model, Bradley-Terry model, and es-
pecially Mosteller’s Angular Transform model which is es-
sentially the only model having the asymptotic variance sta-
bilization property. These are all generalized linear models
for binary voting. In fact, generalized linear models assume
that the probability of pairwise preference is fully decided
by a linear function as follows

πij = Prob{i � j} = Φ(x∗
i − x∗

j ), x
∗ ∈ X (6)

where Φ : R → [0, 1] can be chosen as any symmetric cu-
mulated distributed function. In a reverse direction, if an em-
pirical preference probability π̂ij is observed in experiments,
one can map π̂ to a skew-symmetric pairwise comparison
data by the inverse of Φ, ŷij = Φ−1(π̂ij). Then solving
the HodgeRank problem (2) is actually solving the weighted
least squares problem for this generalized linear model. Dif-
ferent choices of Φ lead to different generalized linear mod-
els, e.g. Φ(t) = et/(1 + et) gives Bradley-Terry model and
Φ(t) = (sin(t)+ 1)/2 gives Mosteller’s Angular Transform
model.

Information Maximization for Sampling in

HodgeRank

Our principle for active sampling is information maximiza-
tion. Depending on the scenarios in application, the defini-
tion of information varies. There are often two ways to de-
sign active sampling strategies depending on available infor-
mation: (1) unsupervised active sampling without consider-
ing the actual labels collected, where we use Fisher infor-
mation to maximize algebraic connectivity in graph theory;
(2) supervised active sampling with label information, where
we exploit a Bayesian approach to maximize expected in-
formation. In the following, we will first introduce the unsu-
pervised active sampling, followed by the supervised active
sampling. After that, an online algorithm of supervised ac-
tive sampling will be detailed. Finally, we discuss the online
tracking of topology evolutions of the sampling schemes.

Fisher information maximization: unsupervised
sampling

In case that the cyclic rankings in (4) are caused by Gaussian
noise, i.e. u+DT

1 z + w = ε where ε ∼ N (0,Σε), the least
squares problem (2) is equivalent to the following Maximum
Likelihood problem:

max
x

(2π)−m/2

det(Σε)
exp

(
−1

2
(y −D0x)

TΣ−1
ε (y −D0x)

)
,
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where Σε is the covariance matrix of the noise, m =∑
(i,j)∈E mij . In applications without a priori knowledge

about noise, we often assume the noise is independent and
has unknown but fixed variance σ2

ε , i.e. Σε = σεIm. So
HodgeRank here is equivalent to solve the Fisher’s Maxi-
mum Likelihood with Gaussian noise. Now we are ready
to present a sampling strategy based on Fisher information
maximization principle.

Fisher Information Maximization: The log-likelihood
is

l(x) = −m log(
√
2πσε)− 1

2
(y −D0x)

TΣ−1
ε (y −D0x).

So the Fisher Information is given as

I := −E ∂2l

∂x2
= DT

0 Σ
−1
ε D0 = L/σ2

ε . (7)

where L = DT
0 D0 is the weighted graph Laplacian.

Given a sequence of samples {αt, it, jt}t∈N (edges), the
graph Laplacian can be defined recursively as Lt = Lt−1 +
dTt dt, where dt : X → Y is defined by (dtx)(αt, it, jt) =
xit − xjt and 0 otherwise. Our purpose is to maximize the
Fisher information given history via

max
(αt,it,jt)

f(Lt) (8)

where f : Sn
+ → R is a concave function w.r.t the weights

on edges. Since it is desired that the result does not depend
on the index V , f has to be permutation invariant. A stronger
requirement is orthogonal invariant f(L) = f(OTLO)
for any orthogonal matrix O, which implies that f(L) =
g(λ2, . . . , λn), 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenval-
ues of L (Chandrasekaran, Pablo, and Willsky 2012). Note
that it does not involve sampling labels and is thus an unsu-
pervised active sampling scheme.

Among various choices of f , a popular one is f(Lt) =
λ2(Lt), where λ2(Lt) is the smallest nonzero eigenvalue
(a.k.a. algebraic connectivity or Fiedler value) of Lt, which
corresponds to “E-optimal” in experimental design (Osting,
Brune, and Osher 2014). Despite that (8) is a convex opti-
mization problem with respect to real-valued graph weights,
the optimization over integral weights is still NP-hard and a
greedy algorithm (Ghosh and Boyd 2006) can be used as a
first-order approximation
maxλ2(Lt) ≈ max[λ2(Lt−1) + ‖dtv2(Lt−1)‖2]

= λ2(Lt−1) + max(v2(it)− v2(jt))
2,

where v2 is the second nonzero eigenvector or Fiedler vector
of Lt−1. Figure 1 shows Fiedler value plots of two sampling
schemes, where unsupervised active sampling above effec-
tively raises the Fiedler value curve than random sampling.

While the unsupervised sampling process only depends
on Lt, label information is collected for the computation
of HodgeRank global ranking estimator x̂t = L†

t(D
t
0)

T yt,
where Dt

0 = Dt−1
0 + dt and yt = yt−1 + yαt

itjt
eαt
itjt

.

Bayesian information maximization: supervised
sampling

Since the least squares problem (2) is invariant under the
shift of x, a small amount of regularization is always pre-
ferred. Therefore in practice (2) is understood as the minimal

Algorithm 1: Unsupervised active sampling algo-
rithm.

Input: An initial graph Laplacian L0 defined on the
graph of n nodes.

1 for t = 1, . . . , T do
2 Compute the second eigenvector v2 of Lt−1.;
3 Select the pair (it, jt) which maximizes

(v2(it)− v2(jt))
2.;

4 Draw a sample on the edge (it, jt) with voter αt.;
5 Update graph Laplacian Lt.;
6 end

Output: Sampling sequence {αt, it, jt}t∈N .

Figure 1: Fiedler value comparison of unsupervised active
sampling vs. random sampling.

norm least squares solution, or the ridge regularization,

min
x
‖y −D0x‖22 + γ‖x‖22. (9)

Regularization on x means a prior distribution assumption
on x. So (9) is equivalent to

max
x

exp

(
−‖y −D0x‖22

2σ2
ε

− ‖x‖
2
2

2σ2
x

)
, (10)

when σ2
ε /σ

2
x = γ. So regularized HodgeRank is equivalent

to the Maximum A Posterior (MAP) estimator when both
the likelihood and prior are Gaussian distributions.

With such a Bayesian perspective, a natural scheme for
active sampling is based on the maximization of expected
information gain (EIG) or Kullback-Leibler divergence from
prior to posterior. In each step, the most informative triplet
(object i, object j, annotator α) is added based on the largest
KL-divergence between posterior and prior. The maximiza-
tion of EIG has been a popular criterion in active sampling
(Settles 2009) and applied to some specific pairwise compar-
ison models (e.g. (Chen et al. 2013) applied EIG to Bradley-
Terry model with Gaussian prior and (Pfeiffer et al. 2012) to
Thurstone-Mosteller model). Combining the EIG criterion
with the 
2-regularized HodgeRank formulation in (10), we
obtain a simple closed form update for the posterior for gen-
eral models, which leads to a fast online algorithm.

Bayesian information maximization: Let P t(x|yt) be
the posterior of x given data yt. So given present data yt,
we choose a new pair to maximize the expected information
gain (EIG) of a new pair (i, j):

(i∗, j∗) = argmax
(i,j)

EIG(i,j) (11)
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where
EIG(i,j) := Eyt+1

ij |ytKL(P t+1|P t) (12)

and the KL-divergence

KL(P t+1|P t) :=

∫
P t+1(x|yt+1) ln

P t+1(x|yt+1)

P t(x|yt) dx

Once an optimal pair (i∗, j∗) is determined from (11), we
assign this pair to a random voter α ∈ A and then collect the
corresponding label for the next update.

In the l2-regularized HodgeRank setting, such a optimiza-
tion problem in (11) can be greatly simplified.
Proposition 1 When both the likelihood and prior are
Gaussian distributions, then posterior P t(x|yt) is also
Gaussian.

x|yt ∼ N(μt, σ2
εΣ

t)

μt = (Lt + γI)−1(Dt
0)

T yt,Σt = (Lt + γI)−1.

Thus

2KL(P t+1|P t) (13)

=
1

σ2
ε

(μt − μt+1)T (Lt + γI)(μt − μt+1)− n

+tr((Lt + γI)(Lt+1 + γI)−1)

+ ln
det(Lt+1 + γI)

det(Lt + γI)
(14)

and the posterior yt+1
ij |yt ∼ N(a, b) with a = μt

i −
μt
j , b = (Σt

ii +Σt
jj − 2Σt

ij + 1)σ2
ε .

Remark 1 Note the first term of KL(P t+1|P t) is l2 dis-
tance of gradient flow between μt and μt+1 if γ = 0. The
unknown parameter σε needs a roughly estimation. In bi-
nary comparison data, σε = 1 is good enough. Given the
history Dt

0, y
t and the new edge (i, j), μt+1 is only a func-

tion of yt+1
ij , so does KL(P t+1|P t).

Generally, the posterior of yt+1
ij

p(yt+1
ij |yt) =

∫
p(yt+1

ij |x)P t(x|yt)dx

can be approximated by p(yt+1
ij |x̂t), where x̂t is the

HodgeRank estimator μt. In practice, we receive binary
comparison data yαij ∈ {±1}, hence we can adopt gener-
alized additive models π̂(yαij = 1) = Φ(x̂i− x̂j) to compute
it explicitly.

Such a Bayesian information maximization approach re-
lies on actual labels collected in history, as sampling process
depends on yt through μt. Hence it is a supervised active
sampling scheme, in contrast to the previous one.

Online supervised active sampling algorithm

To update the posterior parameters efficiently, we would
like to introduce an accelerating method using Sherman-
Morrison-Woodbury formula (Bartlett and Maurice 1951).
In active sampling scheme, the Bayesian information max-
imization approach needs to compute EIG for

(
n
2

)
times to

choose one pair. And each EIG consists of the computation

of inverting an n × n matrix, which costs O(n3) and is es-
pecially expensive for large scale data. But notice that Lt+1

and Lt only differs by a symmetric rank-1 matrix, Sherman-
Morrison-Woodbury formula can be applied to greatly ac-
celerate the sampling procedure.

Denote Lt,γ = Lt + γI , so Lt+1,γ = Lt,γ + dTt+1dt+1,
then Sherman-Morrison-Woodbury formula can be rewritten
as follows:

L−1
t+1,γ = L−1

t,γ −
L−1
t,γd

T
t+1dt+1L

−1
t,γ

1 + dt+1L
−1
t,γd

T
t+1

(15)

Proposition 2 Using the Sherman-Morrison-Woodbury for-
mula, Eq (13) can be further simplified as

KL(P t+1|P t) (16)

=
1

2
[
1

σ2
ε

(
yt+1
ij − dt+1μ

t

1 + C
)2C + ln(1− C)− C

1 + C
]

where C = dt+1L
−1
t,γd

T
t+1 and

μt+1 = μt +
yt+1
ij − dt+1μ

t

1 + C
L−1
t,γd

T
t+1. (17)

Now for each pair of nodes (i, j), we only need to com-
pute dt+1L

−1
t,γd

T
t+1 and dt+1μ

t. Since dt+1 has the form of
ei−ej , so it only costs O(1) which is much cheaper than the
original O(n3). The explicit formula of KL-divergence (16)
makes the computation of EIG easy to vectorize, especially
useful in MATLAB. Also note that if we can store the ma-
trix L−1

t,γ , (15) provides the formula to update L−1
t,γ and (17)

provides the update of score function μt. Combining these
two posterior update rules, the entire online active algorithm
is presented in Algorithm 2.

Algorithm 2: Online supervised active sampling al-
gorithm for binary comparison data.

Input: Prior distribution parameters γ, μ0, L−1
0,γ .

1 for t = 0, 1, . . . , T − 1 do
2 For each pair (i, j), compute the expected

information gain in Eq. (12) and Eq. (16) using
σε = 1;

3 Select the pair (i∗, j∗) which has maximal EIG.;
4 Draw a sample on the edge (i∗, j∗) from a

randomly chosen voter αt and observe the next
label yt+1

i∗j∗ .;
5 Update posterior parameters according to (15)

and (17).;
6 end

Output: Ranking score function μT .

Online tracking of topology evolution

In HodgeRank, two topological properties of clique com-
plex χG have to be considered which are obstructions for
obtaining global ranking and harmonic ranking. First of all,
a global ranking score can be obtained, up to a translation,
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(a) Unsupervised. (b) Supervised. (c) Random.

Figure 2: Average Betti numbers for three sampling
schemes.

only if the graph G is connected, so one needs to check the
number of connected components as the zero-th Betti num-
ber β0. Even more importantly, the voting chaos indicated
by harmonic ranking w in (4) vanishes if the clique com-
plex is loop-free, so it is necessary to check the number of
loops as the first Betti number β1. Given a stream of paired
comparisons, persistent homology (Edelsbrunner, Letscher,
and Zomorodian 2002; Carlsson 2009) is in fact an online
algorithm to check topology evolution when simplices (e.g.
nodes, edges, and triangles) enter in a sequential way such
that the subset inclusion order is respected. Here we just dis-
cuss in brief the application of persistent homology to moni-
tor the number of connected components (β0) and loops (β1)
in three different sampling settings.

Assume that the nodes come in a certain order (e.g., pro-
duction time, or all created in the same time), after that pairs
of edges are presented to us one by one guided by the cor-
responding sampling scheme. A triangle {i, j, k} is created
whenever all the three associated edges appeared. Persis-
tent homology may return the evolution of the number of
connected components (β0) and the number of independent
loops (β1) at each time when a new node/edge/triangle is
born. The expected β0 and β1 (with 100 graphs) computed
by Javaplex (Sexton and Johansson 2009) for n = 16 of
three sampling schemes are plotted in Figure 2. It is easy
to see that both unsupervised & supervised active sampling
schemes narrow the nonzero region of β1, which indicates
that these two active sampling schemes both enlarge the
loop-free regions thus reduce the chance of harmonic rank-
ing or voting chaos.

Experiments

In this section, we study examples with both simulated and
real-world data to illustrate the validity of the proposed two
schemes of active sampling.

Simulated data

In this experiment, we use simulated data to illustrate the
performance differences among unsupervised & supervised
active sampling, and random sampling. We first randomly
create a global ranking score x as the ground-truth, uni-
formly distributed on [0,1] for n candidates. Then we sample
pairs from this graph using these three sampling schemes.
The pairwise comparisons are generated by uniform model,
i.e. yαij = 1 with probability (xi− xj +1)/2, yαij = −1 oth-
erwise. Averagely, there are 30%− 35% comparisons are in
the wrong direction, (xi − xj)y

α
ij < 0. The experiments are

Figure 3: The mean Kendall’s τ between ground-truth and
HodgeRank estimator for three sampling schemes.

(a) T=K=120 (b) T=5K=600 (c) T=10K=1200

Figure 4: Sampling counts for pairs with different levels of
ambiguity in supervised active sampling.

repeated 1000 times and ensemble statistics for the HodgeR-
ank estimator are recorded.

• Kendall’s τ comparison. First, we adopt the Kendall rank
correlation (τ ) coefficient (Kendall and Maurice 1948) to
measure the rank correlation between ground-truth and
HodgeRank estimator of these three sampling schemes. Fig-
ure 3 shows the mean Kendall’s τ associated with these three
sampling schemes for n = 16 (chosen to be consistent with
the first two real-world datasets considered later). The x-
axes of the graphs are the number of samples added, taken
to be greater than logn

n percentage so that the random graph
is connected with high probability. From these experimental
results, we observe that both active sampling schemes, with
a similar performance, show better efficiency than random
sampling with higher Kendall’s τ .

• Computational cost. Table 1 shows the computational com-
plexity achieved by online/offline algorithms of supervised
active sampling and unsupervised active sampling. The to-
tal number of edges added is

(
n
2

)
and the value in this table

represents the average time (s) needed of 100 runs for differ-
ent n. All computation is done using MATLAB R2014a, on a
Mac Pro desktop PC, with 2.8 GHz Intel Core i7-4558u, and
16 GB memory. It is easy to see that online supervised algo-
rithm is faster than unsupervised active sampling. Besides,
it can achieve up to hundreds of times faster than offline
supervised algorithm, with exactly the same performances.
And more importantly, as n increases, such a benefit is in-
creasing, which further implies its advantage in dealing with
large-scale data.

• Budget Level. Next, we would like to investigate how the
total budget is allocated among pairs with different lev-
els of ambiguity in supervised active sampling scheme. In
particular, we first randomly create a global ranking score
as the ground truth, uniformly distributed on [0, 1] for n
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Table 1: Computational complexity (s) comparison on sim-
ulated data.

n 16 20 24 28 32 100

Offline Sup. 25.22 81.65 225.54 691.29 1718.34 >7200
Online Sup. 0.10 0.17 0.26 0.38 0.50 15.93

Unsup. 0.75 1.14 4.27 6.73 9.65 310.58

Figure 5: Experimental results of four sampling schemes for
10 reference videos in LIVE database.

candidates, corresponding to K =
(
n
2

)
pairs with differ-

ent ambiguity levels (i.e., 1-abs (ground-truth score differ-
ences). In this experiment, n = 16, we vary the total budget
T = K, 5K, 10K, and report the number of times that each
pair is sampled on average over 100 runs. The results are
presented in Figure 4. It is easy to see that more ambiguous
pairs with Ambiguity Level close to 1 in general receive more
labels than those simple pairs close to 0. This is consistent
with practical applications, in which we should not spend
too much budget on those easy pairs, since they can be de-
cided based on the common knowledge and majority voting,
excessive efforts will not bring much additional information.

Real-world data

The first example gives a comparison of these three sam-
pling schemes on a complete & balanced video quality as-
sessment (VQA) dataset (Xu et al. 2011). It contains 38,400
paired comparisons of the LIVE dataset (LIV 2008) from
209 random observers. As there is no ground-truth scores
available, results obtained from all the paired comparisons
are treated as the ground-truth. To ensure the statistical sta-
bility, for each of the 10 reference videos, we sample using
each of the three methods for 100 times. For comparison, we
also conduct experiments with the state-of-the-art method
Crowd-BT (Chen et al. 2013). Figure 5 shows the results
and these different reference videos exhibit similar observa-
tions. Consistent with the simulated data, the proposed un-
supervised/supervised active sampling performs better than
random sampling scheme in the prediction of global rank-
ing scores, and the performance of supervised active sam-
pling is slightly better than unsupervised active sampling
with higher kendall’s τ . Moreover, our supervised active
sampling consistently manages to improve the kendall’s τ
of Crowd-BT by roughly 5%.

Figure 6: Experimental results of four sampling schemes for
15 reference images in LIVE and IVC databases.

The second example shows the sampling results on an im-
balanced dataset for image quality assessment (IQA), which
contains 43,266 paired comparisons of 15 reference images
(LIV 2008)(IVC 2005) from 328 random observers on Inter-
net. As this dataset is relatively large and edges occurred on
each paired comparison graph with 16 nodes are dense, all
the 15 graphs are also complete graph, though possibly im-
balanced. Figure 6 shows mean Kendall’s τ of 100 runs, and
similarly for all reference images active sampling schemes
show better performance than random sampling. Besides,
our proposed supervised active sampling also performs bet-
ter than Crowd-BT.

In the third example, we test our method to the task of
ranking documents by their reading difficulty. This dataset
(Chen et al. 2013) is composed of 491 documents. Using
the CrowdFlower crowdsourcing platform, 624 distinct an-
notators from the United States and Canada provide us a
total of 12,728 pairwise comparisons. For better visualiza-
tion, we only present the mean Kendall’s τ of 100 runs for
the first 4,000 pairs in Figure 7. As captured in the figure,
the proposed supervised active strategy significantly outper-
forms the random strategy. We also compare our method
with Crowd-BT and it is easy to see that our method also
improves over the Crowd-BT method’s performance.

• Running cost. More importantly, our method is much faster
than Crowd-BT by orders of magnitude due to closed-form
posterior in Proposition 1 and fast online computation in
Proposition 2. Table 2 shows the comparable computational
cost of these two methods using the same settings with Ta-
ble 1. It is easy to see that On VQA dataset, for a refer-
ence video, 100 runs of Crowd-BT take about 10 minutes on
average; while our online supervised algorithm takes only
18 seconds, which is 33 times faster. Besides, our method
can achieve nearly 40 times speed-up on IQA dataset and 35
times faster on reading level dataset. In a word, the main ad-
vantages of our method lies in its computational efficiency
and the ability to handle streaming data.

• Parameter tuning. A crucial question here is how to choose
γ in supervised active sampling experiments. In practice, for
dense graph, we find that γ makes little difference in the ex-
perimental results, a smaller γ, say 0.01, or even 1e−5 is
sufficient. However, for sparse graph such as reading level
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Figure 7: Experimental results of three sampling schemes on
reading level dataset.

Table 2: Average running cost (s) of 100 runs on three real-
world datasets.

Method Our supervised method Crowd-BT

VQA dataset 18 600
IQA dataset 12 480

Reading level dataset 120 4200

dataset, a bigger γ (i.e., γ = 1) may produce better perfor-
mance.

Conclusions

In this paper, we proposed a new Hodge decomposition of
pairwise comparison data with multiple voters and analyzed
two active sampling schemes in this framework. In partic-
ular, we showed that: 1) for unsupervised active sampling
without considering the actual labels, we can use Fisher in-
formation to maximize algebraic connectivity in graph the-
ory; 2) for supervised active sampling with label informa-
tion, we can exploit a Bayesian approach to maximize ex-
pected information gain from prior to posterior. The un-
supervised sampling involves the computation of a partic-
ular eigenvector of graph Laplacians, the Fiedler vector,
which can be precomputed a priori; while the supervised
sampling benefits from a fast online algorithm using the
Sherman-Morrison-Woodbury formula for matrix inverses,
which however depends on the label history. Both schemes
enable us a more efficient budget control than passive ran-
dom sampling, tested with both simulated and real-world
data, hence provide a helpful tool for researchers who ex-
ploit crowdsourced pairwise comparison data.
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Supplementary Materials

A. Proof of Hodge Decomposition Theorem

Let bαij = bαji = (yαij+yαji)/2, then y−b is skew-symmetric,
and 〈y − b, b〉 = 0. So W.L.O.G, we only need to prove the
theorem with skew-symmetric preference y.

Now, consider the following least squares problem for
each (i, j) ∈ E,

ȳij = argmin
c

∑
α

(yαij − c)2.

Define ȳ ∈ Y by ȳαij = ȳij , then define

u := y − ȳ.

Clearly u satisfies
∑

α uα
ij = 0 and hence 〈u, ȳ〉 = 0.

Now consider Hilbert spaces X , Y , Z and chain map

X D0−−→ Y D1−−→ Z
with the property D1 ◦ D0 = 0. Define the product Hilbert
space H = X × Y × Z and let Dirac operator ∇ : H → H
be

∇ =

(
0 0 0
D0 0 0
0 D1 0

)
.

Define a Laplacian operator

Δ = (∇+∇∗)2 = diag(DT
0 D0, D0D

T
0 +DT

1 D1, D1D
T
1 )

where (·)T denotes the adjoint operator. Then by Rank-
nullity Theorem, im(∇) + ker(∇T ) = H, in particular the
middle space admits the decomposition

Y = im(D0) + ker(DT
0 )

= im(D0) + ker(DT
0 )/im(DT

1 ) + im(DT
1 ),

since im(D0) ⊆ ker(D1),

= im(D0) + ker(DT
0 ) ∩ ker(D1) + im(DT

1 ).

Now apply this decomposition to ȳ = y − u ∈ Y , we have
D0x ∈ im(D0), DT

1 z ∈ im(DT
1 ), and w ∈ ker(DT

0 ) ∩
ker(D1).

B. Proof of Proposition 1

The posterior distribution of x is proportional to

exp

(
−‖y −D0x‖22

2σ2
ε

− ‖x‖
2
2

2σ2
x

)

= exp

(
−‖y −D0x‖22 + γ‖x‖22

2σ2
ε

)

∼ exp

(
− (x− μt)T (Lt + γI)(x− μt)

2σ2
ε

)
.

So x|y is gaussian distribution with mean (Lt + γI)−1DT
0 y

and covariance σ2
ε (Lt + γI)−1.

yt+1
ij = (xi − xj) + εt+1

ij

is a linear combination of gaussian variables, so it is also
gaussian.

The KL-divergence between two gaussian distributions
has an explicit formulation

2KL(P t+1|P t)

= (μt − μt+1)T (σ2
εΣ

t)−1(μt − μt+1)

+tr((Σt)−1Σt+1)− ln
det(Σt+1)

det(Σt)
− n

=
1

σ2
ε

(μt − μt+1)T (Lt + γI)(μt − μt+1)− n

+tr((Lt + γI)(Lt+1 + γI)−1)

+ ln
det(Lt+1 + γI)

det(Lt + γI)
.

C. Proof of Proposition 2

Note that μt = L−1
t,γ(D

t
0)

T yt, so

μt+1 = L−1
t+1,γ(D

t+1
0 )T yt+1

= (L−1
t,γ −

L−1
t,γd

T
t+1dt+1L

−1
t,γ

1 + dt+1L
−1
t,γd

T
t+1

)

·((Dt
0)

T yt + dTt+1y
t+1
ij )

= μt +
yt+1
ij − dt+1μ

t

1 + dt+1L
−1
t,γd

T
t+1

L−1
t,γd

T
t+1.

Moreover

tr((Lt,γ)(Lt+1,γ)
−1) = tr(I − dTt+1dt+1L

−1
t,γ

1 + dt+1L
−1
t,γd

T
t+1

)

= n− dt+1L
−1
t,γd

T
t+1

1 + dt+1L
−1
t,γd

T
t+1

,

and
det(Lt+1,γ)

det(Lt,γI)
= det((Lt,γ)

−1Lt+1,γ)

= det(I + (Lt,γ)
−1dTt+1dt+1)

= 1− dt+1(Lt,γ)
−1dTt+1.

Last equation uses dt+1 = ei − ej . Plugging all these iden-
tities into Proposition 1, we can get the result.
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