
Efficient Multi-Dimensional Tensor
Sparse Coding Using t-Linear Combination

Fei Jiang,1 Xiao-Yang Liu,1,2 Hongtao Lu,1 Ruimin Shen1

1Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, 200240, China

2Department of Electrical Engineering,
Columbia University, New York, NY10027, USA

Emails: jiangf@alumni.sjtu.edu.cn; xiaoyang@ee.columbia.edu; htlu@sjtu.edu.cn; rmshen@sjtu.edu.cn

Abstract

In this paper, we propose two novel multi-dimensional ten-
sor sparse coding (MDTSC) schemes using the t-linear com-
bination. Based on the t-linear combination, the shifted ver-
sions of the bases are used for the data approximation, but
without need to store them. Therefore, the dictionaries of the
proposed schemes are more concise and the coefficients have
richer physical explanations. Moreover, we propose an effi-
cient alternating minimization algorithm, including the ten-
sor coefficient learning and the tensor dictionary learning, to
solve the proposed problems. For the tensor coefficient learn-
ing, we design a tensor-based fast iterative shrinkage algo-
rithm. For the tensor dictionary learning, we first divide the
problem into several nearly-independent subproblems in the
frequency domain, and then utilize the Lagrange dual to fur-
ther reduce the number of optimization variables. Experimen-
tal results on multi-dimensional signals denoising and recon-
struction (3DTSC, 4DTSC, 5DTSC) show that the proposed
algorithms are more efficient and outperform the state-of-the-
art tensor-based sparse coding models.

Introduction
As a classical unsupervised feature extraction technique,
sparse coding has been successfully applied to numerous
fields across computer vision (Wright et al. 2010) and pat-
tern recognition (Lu et al. 2015; Liu et al. 2017). Tradi-
tional sparse coding represents a vector-valued signal as a
linear combination of a few bases with large coefficients
in an overcomplete dictionary. When dealing with multi-
dimensional (MD) signals (e.g., images and videos), the
traditional SC first converts the MD signals into a vector
space, and then utilize the vector-based operations. Two ma-
jor drawbacks of this preprocessing are: (i) the vectorization
preprocess will break the intrinsic structures of the MD data
and reduce the reliability of further processing; (ii) such vec-
torization will incur high computational costs since a vector-
ized MD signal will be quite long and requires the large size
dictionary.

Recent research has demonstrated the superiorities of
tensor-based sparse coding schemes for MD signal analy-
sis. By maintaining the original form of MD signals, tensor-
based sparse coding schemes preserve the intrinsic struc-
tures. Existing tensor-based sparse coding algorithms can be
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Figure 1: Equivalence between the t-linear combination (one
basis) and the linear combination (9 bases). The bases on the
right are shifted versions of the left basis, including spatial
shifting and the channel shifting.

divided into two main categories. The first category is based
on Tucker decomposition (Qi et al. 2016; Xie et al. 2017). In
this category, a series of separable dictionaries are utilized
to approximate the structures in each dimension, so that
correlations among the dimensions are not explicitly taken
into consideration. The second category is based on circu-
lar convolution operations, such as CSC (Wohlberg 2014;
Heide, Heidrich, and Wetzstein 2015), TCSC (Bibi and
Ghanem 2017), K-TSVD (Zhang and Aeron 2016), and
GTSC (Jiang et al. 2017). TCSC is an extension of CSC to
high-order tensors. Though TCSC can achieve similar re-
sults as standard CSC techniques with much fewer param-
eters, TCSC is computationally more expensive. K-TSVD
and GTSC are based on the t-linear combination (Kilmer
et al. 2013), where the dictionaries can capture the inherent
patterns of the MD inputs. However, K-TSVD and GTSC are
proposed for dealing with order-3 tensors, not for arbitrary
order tensors. Moreover, the algorithm of K-TSVD is of high
computational complexity and hard to extend to large-scale
high-order tensor applications (Zhang and Aeron 2016).

The basic idea that motivates us to address the above-
mentioned challenges of the traditional sparse coding lies
in two aspects: (i) tensor representation can preserve the in-
trinsic structures of the MD data; (ii) we exploit the t-linear
combination under the circulant algebraic framework, and
find several distinctive properties compared with the linear
combination, including the small-size dictionary, shifting in-
variance and rich physical explanations of the tensor coeffi-
cients. Figure 1 shows the equivalence between the t-linear
combination with one tensor basis and the linear combina-
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tion with 9 vector bases, which means that a basis in the
t-linear combination works actually as a group of bases in
the linear combination. Thus, the dictionary can be much
more concise under the t-linear combination. Moreover, the
memory and the computational complexity are significantly
reduced, especially for the high-order tensors.

To handle the aforementioned challenges, this paper pro-
poses two novel multi-dimensional tensor sparse coding
schemes using the t-linear combination under different spar-
sity measurements. These two schemes can simultaneously
preserve the intrinsic structures of multi-dimensional data by
tensor representations and reduce the computational com-
plexity due to small-size dictionaries under the t-linear com-
bination. The main contributions of the paper can be sum-
marized as follows:
• We exploit the distinctive properties induced by the t-

linear combination, including the small-size dictionary,
shifting invariance and rich physical explanations of the
tensor coefficients. All the properties support the pro-
posed t-linear combination based sparse coding schemes
to utilize more concise dictionaries for the representations
of high-order tensors, leading to significantly reductions
of memory and computational costs.

• We propose two novel multi-dimensional tensor sparse
coding (MDTSC) schemes using t-linear combination,
which extend the traditional SC to arbitrary order tensors.

• We propose an efficient and effective alternative mini-
mization algorithm for the MDTSC with relatively low
memory and computational complexity. For the tensor co-
efficient learning, we design a new tensor-based fast it-
erative shrinkage algorithm with a provable convergence
rate. For the tensor dictionary learning, we divide the
whole problem into several nearly-independent subprob-
lems in the frequency domain. After that, we adopt the
Lagrange dual algorithm to further reduce the number of
optimization variables.

• We demonstrate that it is possible to extend our schemes
to an arbitrary order tensor with experiments on 3D hyper-
spectral images (3DTSC, 4DTSC) and 4D colored video
dataset (5DTSC).

Notations and Preliminaries
We briefly introduce the notations and preliminaries
throughout the paper. We use calligraphy letters for ten-
sors, e.g. X , boldface capital letters for matrices, e.g. X,
boldface lowercase letters for vectors, e.g., x, and lower-
case for scalars, e.g. x. We use [n] to denote the index set
{1, 2, · · · , n}.

For an order-p tensorX of size n1×n2×· · ·×np,X (�) ≡
X (:, :, · · · , �) is the �th frontal tensor,

−→X j ≡ X (:, j, :, · · · , :)
is the jth lateral tensor,Xij = X (i, j, :, · · · , :), andXi1i2···ip
represents the i1i2 · · · ip-th entry of X . By reshaping X into
an order-3 tensor of size n1×n2×n3n4 · · ·np, the �th frontal
matrix slice is denoted as X (:, :, �) ∈ R

n1×n2 . X̂ is the fre-
quency domain representation of X that is obtained by per-
forming Fourier transform along the dimensions (3, · · · , p),
i.e., X̂ = fft(X̂ , [ ], i), for i = 3 : p.

Some norms and operators of matrix and tensor are used.
We denote the �1-norm as ‖X‖1 =

∑∣∣Xi1i2···ip
∣∣, and

the Frobenius norm as ‖X‖F =
√∑

X 2
i1i2···ip . The spec-

tral norm is denoted as ‖X‖ = maxi σi(X), where σi

is the ith singular value of X. The inner product operator
〈X ,Y〉 =

∑
Xi1i2···ipYi1i2···ip . The trace operator Tr(X) =∑

X(i, i). The operators ·, � and ⊗ denote the standard
matrix multiplication, element-wise multiplication and the
Kronecker product, respectively. The superscripts T , H and
† denote the transpose, the conjugate transpose of a matrix,
and the transpose of a tensor, respectively.

To construct our MDTSC schemes, it is necessary to in-
troduce three block-based operators (Martin, Shafer, and
LaRue 2013), i.e., circ(·), unfold(·), and fold(·), in advance.
For X ∈ R

n1×n2···×np , the X (�) is used to form the block
circulant pattern

circ(X ) :=

⎡⎢⎢⎢⎣
X (1) X (np) · · · X (2)

X (2) X (1) · · · X (3)

...
...

. . .
...

X (np) X (np−1) · · · X (1)

⎤⎥⎥⎥⎦ , (1)

and the unfolding and folding operations

unfold(X ) :=

⎡⎢⎢⎢⎣
X (1)

X (2)

...
X (np)

⎤⎥⎥⎥⎦ , fold(unfold(X )) = X , (2)

where circ(X ) ∈ R
n1np×n2np×n3×···×np−1 ,

and unfold(X ) ∈ R
n1np×n2×···×np−1 . Two in-

duced matrix formulations are denoted as X c =
circ(· · · (circ︸ ︷︷ ︸

p−2

(X ) · · · )) ∈ R
n1n3···np×n2n3···np , and

X u = unfold(· · · (unfold︸ ︷︷ ︸
p−2

(X ) · · · )) ∈ R
n1n3···np×n2 .

Other useful definitions from (Kilmer et al. 2013; Mar-
tin, Shafer, and LaRue 2013; Liu and Wang 2017) are given
below:
Definition 1 (Order-3 t-product) (Kilmer et al. 2013) LetA
be n1 × r × n3 and B be r × n2 × n3, the t-product A ∗ B
is the order-3 tensor of size n1 × n2 × n3, where

A ∗ B = fold (circ(A) · unfold(B)) . (3)
Note that (3) only involves standard matrix multiplication.
The following definition extends the t-product to tensors
whose orders are higher than three.
Definition 2 (Order-p t-product) (Martin, Shafer, and
LaRue 2013) Let A be n1 × r × n3 × · · · × np and B be
r × n2 × n3 × · · · × np, the t-product A ∗ B is the order-p
tensor of size n1 × n2 × n3 × · · · × np, where

A ∗ B = fold (circ(A) ∗ unfold(B)) . (4)
Definition 2 is recursive since (4) involves the t-product be-
tween two order-(p− 1) tensors.

The t-product (4) can be converted to the matrix multipli-
cation in the frequency domain as

Ĉ(:, :, �) = Â(:, :, �) · B̂(:, :, �), � ∈ [n3n4 · · ·np]. (5)
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Figure 2: Linear combination vs. t-linear combination.

(a) MDTSC-I  

(b) MDTSC-II 
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Figure 3: MDTSC-I vs. MDTSC-II on order-3 tensors.
MDTSC-II can be regarded as a group sparse formulation
of MDTSC-I, where the elements of the coefficient corre-
sponding to one basis will be activated simultaneously. Red
blocks represent nonzero elements.

Definition 3 (Tensor Transpose) Let X be n1 × n2 × n3 ×
· · · × np, its transpose X † ∈ R

n2×n1×n3×···×np is given by

X †(1) = X (1)†, X †(p+2−�) = X (�)†, 2 ≤ � ≤ p. (6)

Definition 4 (t-linear Combination) Given r order-p coef-
ficients {Cj}rj=1 ⊂ R

1×1×n3×···×np , a t-linear combination
of {Dj}rj=1 ⊂ R

n1×1×n3×···×np is defined as

D1 ∗ C1 +D2 ∗ C2 + · · ·+Dr ∗ Cr. (7)

Definition 5 (Tensor Spectral Norm) The tensor spectral
norm of X ∈ R

n1×n2×n3×···×np , denoted as ‖X‖, is de-
fined as:

‖X‖ = max
�∈[n3n4···np]

‖X̂ (:, :, �)‖. (8)

Multi-dimensional Tensor Sparse Coding

We first describe the motivation of using t-linear for MD
data approximations. Then, we propose two novel multi-
dimensional tensor sparse coding (MDTSC) schemes based
on different sparse measurements. Finally, we show the ad-
vantages of MDTSC over the traditional SC, including the
small-size dictionary, shifting invariance, and rich physical
meanings of coefficients.

From Linear Combination to t-linear Combination

From Definition 4, t-linear combination (7) has similar ex-
pression with linear combination, but with t-product replac-
ing the standard matrix multiplication, as shown in Figure
2. The importance of a basis for the data reconstruction is
determined by the activation of the corresponding tensor co-
efficient.

In the following, we exploit the distinctive properties of t-
linear combination. Firstly, t-linear combination is based on
tensor representation, which preserves the intrinsic structure
information of high-order tensors. Secondly, t-linear combi-
nation based on t-product, which can be converted into linear
combination, as shown in Lemma 1.
Lemma 1 The t-linear combination of r order-p tensor
bases D = {−→D 1, · · · ,

−→D r} ∈ R
n1×r×n3×···×np is equiv-

alent to the linear combination of D = {D1, · · · ,Dr} ∈
R

n1n3···np×rn3···np , i.e., ∀ C ∈ R
r×1×n3×···×np{

X|X = D ∗ C =
−→D 1 ∗ C1 + · · ·+

−→D r ∗ Cr
}

⇔{x|x = Dc = D1c1 + · · ·+Drcr} ,
(9)

where Cj = C(j, 1, :, · · · , :) ∈ R
1×1×n3×···×np , Dj =

−→D c
j ∈ R

n1n3···np×n3···np , and cj = Cuj ∈ R
n3···np .

Lemma 1 can be easily verified by expanding the t-
product to the standard matrix multiplication with circ(·)
and unfold(·) operations. From Lemma 1, we can see that
one tensor basis in the t-linear combination actually repre-
sents a group of bases in the linear combination. It indicates
that much fewer bases under the t-linear combination are
required for a high-order tensor approximation than those
under linear combination. Fewer bases usually indicates a
smaller size dictionary for the data generation, which will
significantly reduce the computational complexity.

Moreover, it is easy to see that the first basis of Dj , i.e.,
Dj(:, 1), is the vectorization of the tensor basis

−→D j , and the
other bases in Dj are the shifted versions of Dj(:, 1). Fig-
ure 1 explicitly shows the shifted bases for an order-3 tensor
basis. It implies that under the t-linear combination, the data
can be generated by the basis and its shifted versions, i.e.,
shifted invariance induced by the t-linear combination.

Based on the above analysis, the challenges of the tra-
ditional SC can be solved by a new data generation using
t-linear combination.

Multi-dimensional Tensor Sparse Coding

To approximate MD signal X� of size n1 × n3 × · · · × np

using t-linear combination, we first reshapeX� into an order-
p tensor as

−→X � ∈ R
n1×1×n3×···×np . Given an overcomplete

tensor dictionary D ∈ R
n1×r×n3×···×np , r > n1,

−→X � can
be approximated as follows:

−→X � = D ∗ C =
−→D 1 ∗ C1 + · · ·+

−→D r ∗ Cr, (10)

where C ∈ R
r×1×n3×···×np is the tensor coefficient, and

Cj = C(j, 1, :, · · · , :).
In the following, we propose two multi-dimensional ten-

sor sparse coding schemes based on different sparsity mea-
surements. On the one hand, due to the equivalence between
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t-linear combination and linear combination (Lemma 1), we
extend the �0 norm of the vector coefficients to the tensor
coefficients, ‖C‖0, as the first tensor coefficient sparse mea-
surement, i.e., the number of the non-zero entries in C. With
‖C‖0, we can select the bases related to the input from the
original tensor bases and their shifted versions. The convex
relaxation ‖C‖1 is used for easy computation. The corre-
sponding problem of MDTSC scheme is defined as follows:

MDTSC-I Representing n2 MD inputs as an order-p ten-
sor X ∈ R

n1×n2×n3×···×np , the first MDTSC is proposed
based on the �1 norm of the coefficient, and the problem is
defined as follows:

min
D,C

1
2‖X − D ∗ C‖2F + β‖C‖1

s.t. ‖−→D j‖2F ≤ 1, j ∈ [r], (11)

where the size of D is n1 × r × n3 × · · · × np, r > n1.
On the other hand, the tensor coefficient Cj has the same

role as cj in the traditional SC, as shown in Figure 2. By se-
lecting the tensor bases related to the input, we will restrict
the active numbers of the tensor coefficients. Thus, we pro-
pose the second sparsity measurement, named group spar-
sity, as below:

Definition 6 Given an order-p tensor C of size r × n2 ×
n3 × · · · × np, its group sparsity is defined as the number of
non-zero entries of Cij , i ∈ [r] and j ∈ [n2].

Since the combinational nature of group sparsity leads to
NP-hardness, we use the following norm as a convex relax-
ation of the group sparsity:

‖C‖1,1,2 =
r∑

i=1

n2∑
j=1

‖Cij‖F . (12)

Note that when p = 3, the group sparsity reduces to the
tensor tubal sparsity in (Zhang and Aeron 2016). The corre-
sponding problem of MDTSC scheme is defined as follows:

MDTSC-II The second MDTSC scheme is based on the
group sparsity measurement, and the problem is defined as
follows:

min
D,C

1

2
‖X − D ∗ C‖2F + β‖C‖1,1,2

s.t. ‖−→D j‖2F ≤ 1, j ∈ [r]. (13)

Figure 3 shows the difference between MDTSC-I and
MDTSC-II. MDTSC-II can be regarded as a group sparsity
formulation of the MDTSC-I. In MDTSC-II, the basis

−→D j

and its shifted versions form a group, which are activated to-
gether, while in MDTSC-I, the basis and its shifted versions
are separated, their activations are independent.

Advantages of MDTSC

The proposed MDTSC are not a trivial extension of the tra-
ditional sparse coding to MD data, which have novel proper-
ties, including the small-size dictionary, shifting invariance,
and the rich physical explanations of the tensor coefficients.

Algorithm 1 Algorithms for the MDTSC.
Input: Input tensor X ∈ R

n1×n2×n3×···np , sparsity param-
eter β, maximum iteration: T ,

1: Initialization: tensor dictionary D ∈ R
n1×r×n3×···np ,

coefficients C ∈ R
r×n2×n3×···np , and Lagrange dual

variables λ ∈ R
r,

2: for t = 1 to T do
3: //Tensor Coefficient Learning
4: Solving C by Algorithm 2,
5: //Tensor Dictionary Learning
6: Making Fourier transform for the MD data to obtain

X̂ and Ĉ
7: Solving (28) for λ by Newton’s method,
8: Calculate D̂(�) from (27), � ∈ [n3n4 · · ·np],
9: Making inverse Fourier transform of D̂ to obtain D.

10: end for
Output: D and C.

Small-size Dictionary Traditional vector-based SC can-
not be sufficiently handled MD inputs due to the curse of
dimensionality. For a MD input of size n1 × 1 × n3 ×
· · · × np, traditional SC requires the size of the dictionary is
(n1n3 · · ·np) × r1, r1 > n1n3 · · ·np, which increased dra-
matically along with the increase in dimensionality. How-
ever, using the t-linear combination, the size of the dictio-
nary is required to be n1×r2×n3×· · ·×np where r2 > n1.
That is to say, for the same MD inputs, the sizes of the dic-
tionary in the traditional SC can be (n3 · · ·np) times larger
than that in the MDTSC. The above conclusion is obtained
by the following Lemma:

Lemma 2 The tensor space R
n1×1×n3×···×np can be

spanned by n1 tensor orthogonal bases based on the t-linear
combination (Kilmer et al. 2013).

Shifting Invariance Though the size of the dictionary in
the MDTSC is small, the shifted versions of the bases are
involved in the t-product, which can be used for the data
reconstruction without explicitly storing them, as shown in
Figure 1.

On the one hand, such shifted invariance can remedy the
limitations that the bases learned from the traditional SC are
translated versions of each other. On the other hand, under
the shifted invariance, the input and its shifted versions can
be represented by the same bases, which can automatically
cluster these shifted versions of the input into one group.
While, for the traditional SC, the shifted versions of the in-
put are often represented with different bases. Usually, the
shifted versions of the input and the original one belong to
the same class. Therefore, the MDTSC can model the shift-
ing invariance for the classification task.

Physical Explanations In the traditional SC, the activated
elements in the coefficient show the importance of the corre-
sponding bases for the data reconstruction. Due to the equiv-
alence between the t-linear combination and the linear com-
bination, the activated elements in the tensor coefficient in-
dicate the importance of the corresponding bases and their
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Algorithm 2 Tensor-based Fast Iterative Shrinkage Thresh-
olding Algorithm (TFISTA)

1: Input: Input tensor X ∈ R
n1×n2×n3×···×np , dictionary

D ∈ R
n1×r×n3×···×np , sparsity parameter β, maximum

iteration: T ,
2: Initialization: tensor coefficients: C0, set B1 = C0,

d1 = 1, and Lipschitz constant L = ‖D† ∗ D‖
3: for t = 1 to T do
4: Compute∇f(Bt) via (18),
5: Compute Ct in the MDTSC-I or MDTSC-II via (22)

and (23), respectively

6: Update dt+1 =
1+
√

1+4d2
t

2 ,
7: Update Bt+1 = Ct + dt−1

dt+1
(Ct − Ct−1),

8: end for
9: Output: Sparse coefficients C = Ct.

shifted versions for the data reconstruction, simultaneously.

Alternating Minimization Algorithm

Solving problems (11) and (13) are quite challenging due to
the non-convex objective functions and the t-product oper-
ator. We propose an efficient algorithm by alternately opti-
mizing C and D while fixing the other variable, as shown in
Algorithm 1.

Tensor Coefficient Learning

Given the dictionaryD, find the sparse coefficient C via solv-
ing

min
C

1

2
‖X − D ∗ C‖2F + β‖C‖1. (14)

First, we show that (14) is a special case of the following
convex minimization problem:

min
C

F (C) := f(C) + βg(C), (15)

Where

• f(C) = 1
2‖X −D ∗C‖2F is Lipschitz continuous and con-

vex, as shown in Lemma 3.

• g(C) is ’simple’, i.e., the proximal operation of g(C) is
easy to calculate (Parikh and Stephen 2014).

Then, we design a tensor-based fast iterative shrink-
age thresholding algorithm (TFISTA) for solving (14) with
O(1/t2) convergence rate where t is the iteration count,
shown in Algorithm 2. Similar to FISTA (Beck and Teboulle
2009), at each iteration t = 0, 1, 2, · · · ,

Ct+1 = argmin{f(Ct) + 〈∇f(Ct), C − Ct〉+
L

2
‖C − Ct‖2F + βg(C)}

= proxrt,g
(
Ct − rt∇f(Ct)

)
,

(16)

and

Ct+1 = Ct+1 +
dt − 1

dt+1
(Ct+1 − Ct). (17)

where L is the Lipschitz constant, rt = β/L, proxrt,g(·) is
the proximal operator (Parikh and Stephen 2014), d1 = 1

and dt+1 =
1+
√

1+4d2
t

2 .
The gradient∇f(C) can be calculated as follows:

∇f(C) = D† ∗ D ∗ C − D† ∗ X , (18)

and L can be calculated by Lemma 3:
Lemma 3 f(C) = 1

2‖X − D ∗ C‖2F is Lipschitz continuous
with the Lipschitz constant L = ‖D† ∗ D‖.
We prove Lemma 3 by the definition of the Lipschitz con-
stant. For ∀ C and B ∈ R

r×1×n3×···×np ,

‖∇f(C)−∇f(B)‖F = ‖D† ∗ D ∗ (C − B)‖F
=‖(D†D)c · (Cu − Bu)‖2
≤‖(D†D)c‖2‖Cu − Bu)‖2 = ‖D† ∗ D‖2‖C − B‖F .

(19)

Since the block circulant matrix (D†D)c can be diagonal-
ized by using the Fourier transform, let A = D† ∗ D, there
is

diag(Â) = (Fnp ⊗ Fnp−1) · · · ⊗ Fr ⊗ Ir)·
Ac · (Fnp

⊗ Fnp−1
) · · · ⊗ Fr ⊗ Ir)

H ,
(20)

where Fni
is the ni × ni discrete Fourier transform matrix,

and Ir is an r × r identity matrix, and the operator diag(·)
diagonalizes the blocks of Â(:, :, �), � ∈ [n3n4 · · ·np].

Due to the unitary invariance of the spectral norm, we ob-
tain the Lipschitz constant as follows:

L = ‖Ac‖ = ‖diag(Â)‖ = ‖D† ∗ D‖. (21)

Finally, we present the solution of (16) with different
sparsity regularization g(C). Let T be Ct − rt∇f(Ct). If
g(C) = ‖C‖1, Ct+1 can be obtained by the soft-thresholding
operator

Ct+1 = sign(T )�max {|T | − rt, 0} , (22)

if g(C) = ‖C‖1,1,2, Ct+1 can be updated by

Ct+1
ij = Tij �max

{
1− rt

‖Tij‖F

}
. (23)

Tensor Dictionary Learning

For learning the dictionary D while fixing C, the optimiza-
tion problem is:

min
D

‖X − D ∗ C‖2F
s.t. ‖Dj‖2F ≤ 1, j ∈ [r], (24)

where bases are coupled together. Therefore, we firstly de-
compose (24) into k, k = n3n4 · · ·np, nearly-independent
problems in the frequency domain as follows:

min
̂D(�),�∈[k]

k∑
�=1

‖X̂ (�) − D̂(�)Ĉ(�)‖2F

s.t.
k∑

�=1

‖D̂(�)(:, j)‖2F ≤ k, j ∈ [r]. (25)
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Table 1: Complexity analysis of the tensor coefficient learning (TCL) and the tensor dictionary learning (TDL) for the TenSR,
TCSC, K-TSVD and the proposed MDTSC.

TenSR TCSC MDTSC KTSVD 3DTSC-II
TCL O(r21r2r3 + r1r

2
2r3 + r1r2r

2
3) O(n2n3r

3) +O(n1n2n3 log n2n3) O(n1n2n3r + n1n2n3 log n2n3) O(r3n2n3 + n3 log n3) O(rn1n2n3 + n3 log n3)

TDL O(
∑3

�=1

∑3
k �=�,k=1

∏k
i=1 ri

∏3
j=k njn�) O(r3n2n3 + n1n2n3 log n2n3) O(r2n2n3 + n1n2n3 log n2n3) O(r2n1n2n3 + rn3

1n2n3 + rn3 log n3) O(r2n2n3 + n3 log n3)

Table 2: Average performance of 6 competing methods with respect to PSNR and SSIM measurements. The results are obtained
by averaging through the 32 scenes of the Columbia MSI database.

Method PSNR (dB) SSIM
σ = 5 σ = 10 σ = 20 σ = 30 σ = 50 σ = 5 σ = 10 σ = 20 σ = 30 σ = 50

Noisy Image 34.15 28.13 22.11 18.58 14.15 0.8932 0.7599 0.6117 0.5324 0.4462
BwK-SVD 37.79 34.11 30.99 29.34 27.35 0.8873 0.7854 0.6571 0.5727 0.4614
3DK-SVD 39.47 36.33 33.47 31.08 29.63 0.9199 0.8612 0.7927 0.7457 0.6761
LRTA 44.25 41.07 37.75 35.79 33.2 0.9711 0.9483 0.9089 0.8762 0.8186
PARAFAC 32.77 32.72 32.48 32.15 30.22 0.8368 0.8344 0.8235 0.8052 0.7051
TenSR 43.74 39.05 35.01 33.31 31.38 0.975 0.9264 0.8473 0.7837 0.7778
4DTSC-I (ours) 44.91 41.74 38.35 36.20 33.58 0.9838 0.9683 0.9343 0.8850 0.8220
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Figure 4: Denoising performances (PSNR) of the 3DTSC-
II on chart and stuffed toy images in the Columbia MSI
databases, where 100(5%) denotes σ = 100 with the spar-
sity of the noise pixels 5%.

Then, we adopt the Lagrange dual (Lee et al. 2007) to
solve the dual variables by Newton’s algorithm. Another ad-
vantage of Lagrange dual is that the number of optimiza-
tion variables is r, which is much smaller than n1n3 · · ·npr
of the primal problem (24). Introducing Lagrange variable
λ ∈ R

r ≥ 0, we first consider the Lagrangian of (25):

Lprime(D̂, λ) =
k∑

�=1

‖X̂ (�) − D̂(�)Ĉ(�)‖2F +

r∑
j=1

λj

(
k∑

�=1

‖D̂(�)(:, j)‖2 − k

)
.(26)

Secondly, minimizing over D̂ analytically, we obtain the
optimal solution of D̂(�), � ∈ [k]:

D̂(�) =
(
X̂ (�)Ĉ(�)H

)(
Ĉ(�)Ĉ(�)H + diag(λ)

)−1

. (27)

Substituting (27) back into the Lagrangian primary function
Lprime(D̂, λ), we obtain the Lagrange dual functionLdual(λ):

Ldual(λ) = −
k∑

�=1

Tr
(
D̂(�)H X̂ (�)Ĉ(�)H

)
− k

r∑
j=1

λj . (28)

The optimal solution of (28) can be obtained by Newton’s
method or conjugate gradient. Once getting λ, the dictionary
can be recovered by (27).

Complexity Analysis

We analyze the computational complexities of our algo-
rithms compared with the recently proposed state-of-the-
art tensor-based sparse coding methods, including TCSC
(Bibi and Ghanem 2017), TenSR (Qi et al. 2016) and K-
TSVD (Zhang and Aeron 2016), where TCSC, TenSR and
our MDTSC can be applied to arbitrary order tensors, while
K-TSVD only for order-3 tensors.

To compare with the TCSC and TenSR, we consider the
order-4 sparse coding, where the input is an order-3 tensor
of size n1 × n2 × n3. The size of the dictionary in TCSC
and our MDTSC is set to n1 × r × n2 × n3, where r > n1.
Three dictionaries are used in the TenSR, and the sizes are
set to ni × ri, where ri > ni, i ∈ [3]. To compare with
K-TSVD, we consider the order-3 sparse coding, where the
input isX ∈ R

n1×n2×n3 and the dictionaryD ∈ R
n1×r×n3 ,

r > n1.
The computational complexities are shown in Table 1. As

can be seen that the computational complexity of the pro-
posed algorithm is significantly reduced. With fixed the in-
put size, the time complexity of the proposed tensor coeffi-
cient learning algorithm (TFISTA) is linear in the number of
bases, while others are all polynomial time complexities.

Experimental Results

In this section, we demonstrate the effectiveness and effi-
ciency of the proposed MDTSC schemes on three different
experiments, two on MSI denoising (3DTSC and 4DTSC)
and one on colored video reconstruction (5DTSC).

Multi-spectral Image Denoising

we evaluate the performance of the proposed MDTSC
schemes using 3D MSI images in Columbia MSI database
(Wang et al. 2004)1 by adding two kinds of commonly ex-
isting noises in MSIs. The MSI dataset contains 32 scenes at

1http://www1.cs.columbia.edu/CAVE/databases/multispectral/
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(1) (10) (20) (30) (40)(5) 39.02dBs (15) 41.41dBs (25) 41.90dBs (35) 41.89dBs (45) 41.43dBs

(50) (60) (70) (80) (90)(55) 41.28dBs (65) 39.49dBs (75) 42.11dBs (85) 42.02dBs (95) 42.54dBs

Training frames Reconstructed frames

Figure 5: Color-coded frames of the basketball video for training, along with the reconstructed frames. The number in brackets
indicates the frame ID. We also report the reconstruction PSNR for each of the reconstructed frames in green.

(a) Noisy Image (b) BwK-SVD (c) 3DK-SVD (d) LRTA

(e) PARAFAC (f) DNMDL (g) KTSVD (h) 3DTSC 

Figure 6: Visual comparison of denoising results at 610nm
band of chart and stuffed toy. The sparsity of the noisy pixels
is 15% and the noise with σ = 100.

a spatial resolution of 512× 512 and a spectral resolution of
31 ranging from 400nm to 700nm.

We compare our MDTSC schemes with state-of-the-
art MSI denoising methods, including band-wise K-SVD
(BwK-SVD) (Aharon, Elad, and Bruckstein 2006), 3D-cube
K-SVD (Elad and Aharon 2006), LRTA (Renard, Bouren-
nane, and Blanc-Talon 2008), PARAFAC (Liu, Bourennane,
and Fossati 2012), DNMDL (Peng et al. 2014), TenSR (Qi et
al. 2016), and K-TSVD (Zhang and Aeron 2016). PSNR and
SSIM are two metrics for denoising, which evaluate the sim-
ilarity between the denoised images and the reference ones
based on MSE and structural consistency, respectively.

3DSC Denoising In the first experiment, we consider the
fixed-location defects without knowing the noisy positions
as (Zhang and Aeron 2016). Let Ω indicates the set of the
noisy pixel locations, then for each (i, j) ∈ Ω and � ∈ [n3],
X (i, j, �) = X (i, j, �)+W(i, j, �), whereX is the clean ten-
sor and W(i, j, �) ∼ N (0, σ) is the additive Gaussian noise
with standard deviation σ. We randomly extract 10, 000
overlapping patches of size 8× 8× 10 from the noisy MSIs.
The size of the dictionary is set to 64 × 256 × 10, the same
as (Zhang and Aeron 2016).

Figure 4 shows the quantitative comparison results in
terms of PSNR, where the proposed 3DSC-II significantly
outperforms the other competing algorithms for high-level
noises (σ = 100, 150, and 200). The visual denoising result
is shown in Figure 6. Compared with other algorithms, the

3DSC-II exhibits clearer details in texture regions or edges,
meanwhile produces cleaner results in smooth regions with
higher PSNR value.

4DSC Denoising In the second experiment, we add
Guassian white noise at different noise levels σ =
5, 10, 20, 30, 50. We extract 5 × 5 × 5 cubes with overlap
of 3 pixels between adjacent cubes. The size of the dictio-
nary is set to 5× 10× 5× 5.

Table 2 show the comparison results in terms of average
PSNR and SSIM among the 32 scenes of the Columbia MSI
dataset. We can see that the proposed 4DSC-I achieves the
best denoising performance compared with the competing
algorithms.

Colored Video Reconstruction

In the third experiment, we show how the proposed scheme
handles an arbitrary order tensor on colored video recon-
struction. We use the basketball video from the OTB50
dataset (Wu, Lim, and Yang 2013). From this video, we se-
lect 10 frames (i ∈ [1, 10, 20, · · · , 90]) , saving as an order-
4 tensor of size 432 × 576 × 3 × 10, for the MD dictio-
nary learning and reconstruct 10 intermediate testing frames
at i ∈ [5, 15, · · · , 95]. We randomly extract overlapping
patches of size 8× 8× 3× 10. The size of the dictionary is
set to 8× 16× 8× 3× 10.

Figure 5 shows example reconstructions of test frames af-
ter training on other frames in the same video. As can be
seen that the dictionary learned from the 5DSC-I can capture
the correlations across frames and the three color channels
simultaneously. We achieve a better reconstruction results
(41.31dBs) on average among the 10 frames with the TCSC
(40.54dBs). While the dictionary size of the TCSC (Bibi and
Ghanem 2017), 3 × 100 × 100 × 100 × 10, is almost 1000
times larger than ours.

Conclusion

In this paper, we have proposed two novel multi-dimensional
tensor sparse coding schemes based on the t-linear combina-
tions to preserve the inherent structures and capture the fea-
tures of the MD data. We explore the advantages of the pro-
posed MDTSC over the traditional SC, including the small-
size dictionary, shifting invariance, and rich physical expla-
nations of the tensor coefficients. Moreover, an efficient al-
ternating minimization algorithm is proposed. The effective-
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ness and efficiency of the proposed MDTSC are demon-
strated by MD signals denoising and reconstruction prob-
lems.

Acknowledgements

The research was supported by NSFC (Nos. 61671290 and
61772330), the Key Program for International S&T Coop-
eration Project of China (No. 2016YFE0129500), Shanghai
Committee of Science and Technology (No. 17511101903),
and the Basic Research Project of Shanghai “Innovation Ac-
tion Plan” (No. 16JC1402800).

References

Aharon, M.; Elad, M.; and Bruckstein, A. 2006. rmk-
svd: An algorithm for designing overcomplete dictionaries
for sparse representation. IEEE Transactions on Signal Pro-
cessing 54(11):4311–4322.
Beck, A., and Teboulle, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
Journal on Imaging Sciences 2(1):183–202.
Bibi, A., and Ghanem, B. 2017. High order tensor formula-
tion for convolutional sparse coding. In Proceedings of the
IEEE International Conference on Computer Vision.
Elad, M., and Aharon, M. 2006. Image denoising via
sparse and redundant representations over learned dictionar-
ies. IEEE Transactions on Image Processing 15(12):3736–
3745.
Heide, F.; Heidrich, W.; and Wetzstein, G. 2015. Fast and
flexible convolutional sparse coding. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 5135–5143.
Jiang, F.; Liu, X.; Lu, H.; and Shen, R. 2017. Graph regular-
ized tensor sparse coding for image representation. In Pro-
ceedings of the IEEE Conference on Multimedia and Expo,
67–72.
Kilmer, M.; Braman, K.; Hao, N.; and Hoover, R. 2013.
Third-order tensors as operators on matrices: A theoretical
and computational framework with applications in imag-
ing. SIAM Journal on Matrix Analysis and Applications
34(1):148–172.
Lee, H.; Battle, A.; Raina, R.; and Ng, A. Y. 2007. Efficient
sparse coding algorithms. In Advances in Neural Informa-
tion Processing Systems, 801–808.
Liu, X., and Wang, X. 2017. Fourth-order tensors
with multidimensional discrete transforms. arXiv preprint
arXiv:1705.01576.
Liu, F.; Wang, S.; Rosenberger, J.; Su, J.; and Liu, H. 2017.
A sparse dictionary learning framework to discover discrim-
inative source activations in eeg brain mapping. In Proceed-
ings of the 31st AAAI Conference on Artificial Intelligence,
1431–1437.
Liu, X.; Bourennane, S.; and Fossati, C. 2012. Denoising
of hyperspectral images using the parafac model and statisti-
cal performance analysis. IEEE Transactions on Geoscience
and Remote Sensing 50(10):3717–3724.

Lu, Z.; Gao, X.; Wang, L.; Wen, J.; and Huang, S. 2015.
Noise-robust semi-supervised learning by large-scale sparse
coding. In Proceedings of the 29th AAAI Conference on Ar-
tificial Intelligence, 2828–2834.
Martin, C. D.; Shafer, R.; and LaRue, B. 2013. An order-
p tensor factorization with applications in imaging. SIAM
Journal on Scientific Computing 35(1):A474–A490.
Parikh, N., and Stephen, B. 2014. Proximal algorithms.
Foundations and Trends R© in Optimization 1(3):127–239.
Peng, Y.; Meng, D.; Xu, Z.; Gao, C.; Yang, Y.; and Zhang, B.
2014. Decomposable nonlocal tensor dictionary learning for
multispectral image denoising. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2949–2956.
Qi, N.; Shi, Y.; Sun, X.; and Yin, B. 2016. TenSR: Multi-
dimensional tensor sparse representation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 5916–5925.
Renard, N.; Bourennane, S.; and Blanc-Talon, J. 2008. De-
noising and dimensionality reduction using multilinear tools
for hyperspectral images. IEEE Geoscience and Remote
Sensing Letters 5(2):138–142.
Wang, Z.; Bovik, A.; Sheikh, H.; and Simoncelli, E. 2004.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing
13(4):600–612.
Wohlberg, B. 2014. Efficient convolutional sparse coding. In
2014 IEEE International Conference on Acoustics, Speech
and Signal Processing, 7173–7177. IEEE.
Wright, J.; Ma, Y.; Mairal, J.; Sapiro, G.; Huang, T.; and
Yan, S. 2010. Sparse representation for computer vision and
pattern recognition. Proceedings of the IEEE 98(6):1031–
1044.
Wu, Y.; Lim, J.; and Yang, M.-H. 2013. Online object track-
ing: A benchmark. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, 2411–2418.
Xie, Q.; Zhao, Q.; Meng, D.; and Xu, Z. 2017. Kronecker-
basis-representation based tensor sparsity and its applica-
tions to tensor recovery. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence.
Zhang, Z., and Aeron, S. 2016. Denoising and completion
of 3d data via multidimensional dictionary learning. In In-
ternational Joint Conference on Artificial Intelligence.

3333


