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Abstract

With the advent of multi-view data, multi-view learning
(MVL) has become an important research direction in ma-
chine learning. It is usually expected that multi-view algo-
rithms can obtain better performance than that of merely us-
ing a single view. However, previous researches have pointed
out that sometimes the utilization of multiple views may even
deteriorate the performance. This will be a stumbling block
for the practical use of MVL in real applications, especially
for tasks requiring high dependability. Thus, it is eager to
design reliable multi-view approaches, such that their per-
formance is never degenerated by exploiting multiple views.
This issue is vital but rarely studied. In this paper, we focus
on clustering and propose the Reliable Multi-View Cluster-
ing (RMVC) method. Based on several candidate multi-view
clusterings, RMVC maximizes the worst-case performance
gain against the best single view clustering, which is equiv-
alently expressed as no label information available. Specifi-
cally, employing the squared χ2 distance for clustering com-
parison makes the formulation of RMVC easy to solve, and
an efficient strategy is proposed for optimization. Theoreti-
cally, it can be proved that the performance of RMVC will
never be significantly decreased under some assumption. Ex-
perimental results on a number of data sets demonstrate that
the proposed method can effectively improve the reliability
of multi-view clustering.

Introduction

In many real-world applications, such as image retrieval
and cross language text classification, the same object can
be represented by multiple different features (Xu, Tao, and
Xu 2013). For example, an image can be characterized by
different descriptors and news can be translated into var-
ious languages. This kind of data is known as multi-view
data, and each feature representation corresponds to a view
(Hou et al. 2010; Sun 2011). Multi-view learning (MVL),
which aims to improve the learning performance by ex-
ploiting the information from different views, has become
an important research direction. Unlike single-view algo-
rithms that concatenate all views into a big one to meet
the setting, MVL designs advanced methods of combin-
ing multiple views to achieve the performance improvement
(Xu, Tao, and Xu 2013). For instance, in (Tao et al. 2017a;
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Nie, Cai, and Li 2017), weights are allocated to different
views automatically and promising results are obtained.

It is generally recognized that the performance of MVL
algorithms will be improved by utilizing more views. How-
ever, the experimental results of some researches (Bickel
and Scheffer 2004; Yang et al. 2013; Zhang et al. 2015)
show that, sometimes the use of multiple views may de-
generate the performance. This problem is also reflected
in our experiments. As shown in Table 1, compared with
the best single-view normalized cut (Ncut) (Shi and Ma-
lik 2000) method, the previous proposed multi-view cluster-
ing approaches (Kumar, Rai, and Daume 2011; Kumar and
Daumé 2011; Cai et al. 2011; Cai, Nie, and Huang 2013;
Li et al. 2015) obtain lower clustering accuracy on at least
two data sets. Such phenomena are contrary to the original
intention of MVL and will hinder the practical use of MVL
in real applications, especially tasks requiring high depend-
ability. Thus, it is vital to have reliable MVL approaches,
whose performance is never statistically significantly worse
than that of merely using a single view.

Though there are already many studies on MVL, little
work has been done explicitly about its reliability. In this pa-
per, we focus on clustering and propose the Reliable Multi-
View Clustering (RMVC) method. To the best of our knowl-
edge, our work is the first to directly study on the reliability
of MVL. More concretely, our goal is to utilizing multiple
views to obtain a clustering which is not worse than that
of using any single view. Specifically, the final clustering is
produced by maximizing the performance gain in the worst
case based on several candidate multi-view clusterings. To
obtain the objective function, there are two key issues to
be solved. On one hand, the widely used clustering perfor-
mance measures (e.g., clustering accuracy and normalized
mutual information (NMI)), are typically discontinuous and
hard to analyze. Using these measures directly causes trou-
ble in optimization. Instead, the squared χ2 distance be-
tween partitions (Meilă 2012), which is quadratic and can
be analyzed conveniently, is employed for comparing clus-
terings. On the other hand, when there is no ground truth, it
is hard to find out the best clustering in the original single-
view outputs. Based on the candidate multi-view clusterings,
a equivalent clustering is defined and can be solved with
a bound linear least squares optimization. The optimiza-
tion of RMVC can be decomposed into two subproblems,
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i.e., a small-scale convex linearly constrained quadratic pro-
gramming and a nonnegative orthogonal matrix factoriza-
tion. Both subproblems can be solved efficiently. Theoret-
ically, RMVC is provably reliable when one of the candi-
date multi-view clustering algorithms realizes the ground-
truth clustering. Experimental results on a number of multi-
view data sets validate that RMVC improves the reliability
of multi-view clustering.

In the following, we first introduce some notations and
definitions. Next, the proposed RMVC method and its the-
oretical analysis are presented. Then, experimental results
follows. Finally we conclude this paper.

Notations and Definitions

Let X = [x1, · · · ,xn] denote a set of points. A clustering is
a partition of the n points into disjoint and nonempty subsets
{Cl, C2 · · · , CK}, which are called clusters. Denote |Ck| as
nk, then

∑K
k=1 nk = n. A clustering can be represented as

a n×K normalized cluster indicator matrix Y with Yik =

n
−1/2
k if i ∈ Ck and 0 otherwise. The columns of Y stand for

the indicator vectors of the K clusters, and they are mutually
orthogonal. In the future, we will refer to a clustering by its
matrix representation.

For two different clusterings (of the same set of points)
with normalized cluster indicator matrices Y1 ∈ R

n×K1

and Y2 ∈ R
n×K2 (K1 and K2 may be not equal), the χ2

distance between them is defined as follows.

Definition 1. (Meilă 2012) Let ‖·‖F represent the Frobenius
norm and the superscript (·)T denotes matrix transposition.
Then the χ2 distance between Y1 and Y2 is defined as

d2χ2(Y1,Y2) = ‖Y1Y
T
1 −Y2Y

T
2 ‖2F . (1)

It can be found that d2χ2 is a quadratic function, making
it a convenient instrument in deductions. It has been proved
that d2χ2 distance is equivalent to the Misclassification Er-
ror distance (dME), which corresponds to the well-known
clustering accuracy. Compared with d2χ2 , dME is not every-
where differentiable and is theoretically much harder to an-
alyze (Meilă 2012).

The Proposed Method

In this section we first present the problem setting of RMVC
and its formulation, and then give the solution.

Problem Setting and Formulation

Suppose we are given a data set with V views. On each view,
a single-view clustering algorithm (e.g. Normalized cut (Shi
and Malik 2000)) is performed, thereby producing V single-
view clustering results {Y(v)

0 }Vv=1. On the other hand, we
run m multi-view clustering algorithms to obtain m multi-
view clusterings {Y1, · · · ,Ym}. Besides, the m clusterings
can also be obtained by implementing a multi-view clus-
tering algorithm with different parameters, or a hybrid of
the above two. Based on the given m multi-view cluster-
ings, our task is to find a clustering Y that is not worse than
Y

(v)
0 , ∀1 ≤ v ≤ V .

Unlike classification or regression, the label vector or nor-
malized cluster indicator matrix of each clustering is not
unique. In fact, for each unique clustering with K clusters,
there are K! equivalent representations. Thus, it is unre-
alistic to directly use the Euclidean distance between dif-
ferent Ys to measure the clustering performance (Meilă
2012). Moreover, the commonly used clustering evaluation
metrics, e.g., clustering accuracy and NMI, are typically
non-differentiable and non-convex. Using them for perfor-
mance measure will make the resultant formulation diffi-
cult to solve. Instead, the squared χ2 distance with appeal-
ing properties, is employed for comparing clusterings. The
smaller the squared χ2 distance between a clustering and the
ground truth is, the better the clustering is. Concretely, the
performance gain of Y against the best single-view results
in {Y(v)

0 }Vv=1 is measured by the difference of squared χ2

distance between clusterings, i.e.,

max
Y∈Y

(
min

1≤v≤V
d2χ2(Y

(v)
0 ,Y∗)− d2χ2(Y,Y∗)

)
, (2)

where Y∗ refers to the ground-truth clustering, and Y1 is the
feasible region of Y.

To solve Eq. (2), the difficulty lies in the fact that the
ground-truth Y∗ is unknown. Otherwise, it is trivial to get
the solution Y = Y∗. To alleviate this challenge, α =
[α1;α2; · · · ;αm] ≥ 0 is assumed to be the weights of multi-
view clusterings {Y1, · · · ,Ym}. The larger the weight is,
the closer the clustering is to the ground-truth Y∗. Using
these candidate multi-view clusterings to approximate the
ground truth, one optimizes the following functional instead:

max
Y∈Y

m∑
i=1

αi

(
min

1≤v≤V
d2χ2(Y

(v)
0 ,Yi)− d2χ2(Y,Yi)

)
. (3)

Note that the minimization operation increases the diffi-
culty of the problem, because it may return different single-
view Y

(v)
0 for different candidate multi-view clustering Yi.

To solve this problem, we define Y0 such that ∀1 ≤ i ≤ m

d2χ2(Y0,Yi) = min
1≤v≤V

d2χ2(Y
(v)
0 ,Yi). (4)

It can be found that Y0 is a equivalent expression of the best
single-view clustering.

As a matter of fact, when there is no prior knowledge on
the candidate multi-view clustering algorithms, it is difficult
to know their weights (i.e., α) explicitly. To make the pro-
posal more practical, α is assumed to be from a simplex
M = {α|1Tα = 1;α ≥ 0}. Since there is no way to de-
termine the relative importance of multiple multi-view clus-
tering algorithms, we aim to optimize the worst-case perfor-
mance gain as follows,

max
Y∈Y

min
α∈M

m∑
i=1

αi

(
d2χ2(Y0,Yi)− d2χ2(Y,Yi)

)
. (5)

1Y is the set of possible normalized cluster indicator matrices.
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Relation to Other Approaches

Reliability is a common concern of many disciplines of ma-
chine learning. In semi-supervised learning, where exploit-
ing the unlabeled data does not necessarily bring positive ef-
fect, there are also researches working on this topic (Li and
Zhou 2011; 2015; Li, Kwok, and Zhou 2016; Li, Zha, and
Zhou 2017). Specifically, based on several low-density sepa-
rators, (Li and Zhou 2011) constructed safe semi-supervised
SVMs (S4VM). Later, SAFE semi-supervised Regression
(SAFER) was considered as a geometric projection issue
(Li, Zha, and Zhou 2017).

Although S4VM and SAFER also study on the reliability,
our proposed RMVC is different from them in two aspects.
Firstly, their tasks are different. S4VM and SAFER are de-
signed for classification and regression, respectively, while
RMVC focus on clustering. Unlike classification and regres-
sion, the label vector of a clustering is not unique, thus the
comparison between different clusterings cannot be made
directly on the label vectors. Secondly, S4VM and SAFER
are single-view methods while RMVC is in the scope of
MVL, which leads to the differences in the number of base-
line results. Both S4VM and SAFER only need to handle
one baseline result, while RMVC is required to find out the
best one from a set of single-view results. This add difficulty
to RMVC, because there is no ground-truth clustering avail-
able.

Another related work is clustering ensembles (Zhou 2012;
Xie and Sun 2013; Tao et al. 2017b), which aim to obtain a
better final partition by combining different component clus-
terings. With totally different motivation, our primary goal is
to make the utilization of multiple views “reliable”, whereas
this has not been considered in previous ensemble clustering
approaches.

Solution

Substituting the χ2 distance between clusterings defined in
Eq. (1) into Eq. (5), the optimization problem becomes into

max
Y∈Y

min
α∈M

m∑
i=1

αi

(‖Y0Y
T
0 −YiY

T
i ‖2F

−‖YYT −YiY
T
i ‖2F

)
.

(6)

It can be found that Eq. (6) is quartic with respect to Y.
Thus, it is hard to optimize for Y directly in the max-min
problem and we employ a two-step strategy. That is to say,
we first take A = YYT as a variable and then decompose A
into the product of Y and its transpose. Specifically, the op-
timization of Eq. (6) is decomposed into two subproblems:

max
A=AT

min
α∈M

m∑
i=1

αi

(‖A0 −Ai‖2F − ‖A−Ai‖2F
)
, (7)

min
Y∈Y

‖YYT − Â‖2F , (8)

where A0 = Y0Y
T
0 and Ai = YiY

T
i correspondingly, and

Â denotes the optimal solution of Eq. (7).
As seen from the above deductions, if A0 is obtained, the

exact form of Y0 is not necessary for solving Eq. (7). In the
following, we first calculate A0 and then solving subprob-
lems in Eq. (7) and Eq. (8).

Calculating A0 According to Eq. (4), we have ∀1 ≤ i ≤
m,

‖A0‖2F − 2Tr(AT
i A0) + ‖A(v)

0 ‖2F
= min

1≤v≤V
{‖A(v)

0 ‖2F − 2Tr(AT
i A

(v)
0 )}+ ‖A(v)

0 ‖2F ,
(9)

where A
(v)
0 = Y

(v)
0 (Y

(v)
0 )T , and Tr(·) is the matrix trace.

Define vec(·) as a operation that outputs a vector whose
elements are taken column-wise from a matrix, and mat(·)
as its inverse operation. For convenience, denote a =
vec(A) for arbitrary matrix A. Note that ‖A‖2F = aTa, and
for symmetric matrices A and B, Tr(AB) = aTb. Denote
qi = min

1≤v≤V
{‖A(v)

0 ‖2F − 2Tr(AT
i A

(v)
0 )}, then we have

aT0 a0 − 2aTi a0 = qi, 1 ≤ i ≤ m. (10)

Eliminating the quadratic term aT0 a0, it arrives at

2(ai − aj)
Ta0 = qj − qi, 1 ≤ i < j ≤ m. (11)

Let P = 2[(a2 − a1)
T ; · · · ; (am − a1)

T ; · · · ; (am −
am−1)

T ], and q = [q1− q2; · · · ; q1− qm; · · · ; qm−1− qm],
then,

Pa0 = q. (12)

Eq. (12) has many solutions since it is an underdetermined
equation system. If there exists a Ŷ0 ∈ {Y(v)

0 }Vv=1, such
that Ŷ0 = argmin

1≤v≤V
d2χ2(Y

(v)
0 ,Yi) (i = 1, · · · ,m), then Ŷ0

is a solution to Eq. (12). Hence, we first judge whether there
is such a solution, if not, then solve Eq. (12).

As shown in Eq. (7), as long as the squared Frobe-
nius norm of the difference between A0 and Ai equals to
min

1≤v≤V
d2χ2(Y

(v)
0 ,Yi) (i = 1, · · · ,m), which solution of

Eq. (12) is adopted has no effect on the resolution of Eq.
(7).

In this paper, we suppose there are at least two points in
each cluster. According to the definition of normalized clus-
ter indicator matrix Y, it is easy to derive that the elements
of YYT are within [0, 1

2 ]. Therefore, if A0 is strictly equal
to Y0Y

T
0 , then 0 ≤ a0 ≤ 1

2 . Thus, to suit the original inten-
tion better, we aim to solve a0 with the following formula-
tion:

min
0≤a≤ 1

2

‖Pa− q‖2 , (13)

which is a bounded linear least squares problem and can
be efficiently solved with the lsqlin function in the MOSEK
package2. Once a0 is solved, A0 = mat(a0).

Solving Eq. (7) Problem (7) is a convex-concave opti-
mization since the objective function is convex with respect
to α and concave with respect to A. Problems of this kind
can be solved by gradient descent algorithms such as the in-
feasible start Newton method (Ghosh and Boyd 2003). How-
ever, the efficiency of gradient descent algorithms is not ap-
pealing (Nesterov 2013). In the following, we show that Eq.

2https://www.mosek.com/resources/downloads
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(7) can be transformed into a small-scale convex linearly
constrained quadratic programming.

Note that the objective function in Eq. (7) is differentiable,
and there is no other constraints on A. Thus, the partial
derivative of the optimal solution Â is zero and a closed-
form solution can be obtained. That is,

Â =

m∑
i=1

αiAi. (14)

Substituting Eq.(14) into Eq.(7), the resulting formulation is
only related to α:

min
α∈M

∥∥∥∥∥
m∑
i=1

αiAi −A0

∥∥∥∥∥
2

F

. (15)

Further, expanding the quadratic form in Eq.(15), it can be
rewritten as

min
α∈M

αTFα− vTα, (16)

where F ∈ R
m×m is a matrix with Fij = Tr(AiA

T
j ),

∀1 ≤ i, j ≤ m and v = [2Tr(A1A
T
0 ); · · · ; 2Tr(AmAT

0 )].
It is easy to verify that F is positive semi-definite, and
the constraint set of α (M = {α|1Tα = 1;α ≥ 0})
is a simplex, therefore, Eq.(16) is a convex linearly con-
strained quadratic programming. In this step, constructing
F and v consumes O(n2m2), and solving Eq. (16) spends
O(m3). Since the number of candidate multi-view cluster-
ings m is usually small, Eq.(16) can be efficiently solved by
employing state-of-the-art optimization solvers, such as the
MOSEK package. After obtaining the optimal solution α̂,

then the optimal Â =
m∑
i=1

α̂iAi.

Solving Eq. (8) Note that we have constrained Y to be a
normalized cluster indicator matrix. It is hard to decompose
Â into the product of Y and its transpose and make Y in
the exact form of normalized cluster indicator matrix simul-
taneously. Thus, we relax the constraint of Y in Eq. (8) to
be YTY = I,Y ≥ 0, where I denotes the identity matrix.
That is to say, we aim to solve the following problem

Ŷ = argmin
Y≥0,YTY=I

∥∥∥YYT − Â
∥∥∥2

F
. (17)

With simple mathematical operations, problem (17) is
equivalent to

max
Y≥0,YTY=I

Tr(YT ÂY). (18)

This optimization problem can be solved by utilizing an it-
erative algorithm (Cai et al. 2011):

Yij ← Yij

√
(ÂY)ij
(Yβ)ij

, β = YT ÂY. (19)

The algorithmic complexity of this iterative algorithm is
O(Tn2K), where T is the number of iterations.

Once Ŷ is obtained, it is projected back to normalized
clustering indicator matrix by setting Ŷik = n

−1/2
k if k =

argmax
1≤j≤K

Ŷij(i = 1, · · · , n), and 0 otherwise. Algorithm 1

summarizes the pseudocode of the proposed method.

Algorithm 1 Reliable Multi-View Clustering

Input: Single-view clustering results {Y(v)
0 }Vv=1 and can-

didate multi-view clustering results {Yi}mi=1.
Output: The learned clustering result Ŷ.
Procedure:
1: Construct P and q, and solve the bounded linear least
squares problem in Eq. (13) to obtain A0.
2: Construct F with Fij = Tr(AiA

T
j ), ∀1 ≤ i, j ≤ m,

and v = [2Tr(A1A
T
0 ); · · · ; 2Tr(AmAT

0 )].
3: Solve the convex quadratic optimization Eq. (16) and
obtain the optimal solution α̂.
4: Perform the iterative algorithm Eq. (19) to get the final
cluster indicator matrix Ŷ.

Theoretical Analysis

In this section, we provide some analysis of the proposed
proposal. Denote Ŷ abusively as the optimal solution of

Eq. (5) and denote
m∑
i=1

αi

(
d2χ2(Y0,Yi) − d2χ2(Y,Yi)

)
as

g(Y,Y0,α). Assume that the ground-truth clustering can
be realized by one of the multi-view clustering algorithms,
i.e., Y∗ ∈ {Yi}mi=1, we can prove that the performance of
Ŷ is not worse than that of {Y(v)

0 }Vv=1.
Theorem 1. If the ground-truth clustering Y∗ ∈ {Yi}mi=1,
then d2χ2(Ŷ,Y∗) ≤ min

1≤v≤V
d2χ2(Y

(v)
0 ,Y∗).

Proofs of theorems in this paper are in the supplemen-
tal material. Theorem 1 shows that the proposed RMVC
method is provably reliable when the ground-truth cluster-
ing can be realized by one of the candidate multi-view clus-
tering algorithms. Note that this is a sufficient rather than
necessary condition for RMVC. In other words, RMVC may
still work when the ground truth is not among the candidate
multi-view clusterings.

Since the condition given in Theorem 1 is difficult to at-
tain in reality, in the following, we will study how the per-
formance of RMVC will be affected when the condition is
not satisfied. Specifically, let Ȳ ∈ {Yi}mi=1 satisfy

Ȳ = argmin
1≤i≤m

∥∥YiY
T
i −Y∗(Y∗)T

∥∥2

F
. (20)

Denote ε = Y∗(Y∗)T − ȲȲT as the residual to reflect the
degree of violation. The following theorem provides some
insight into the robustness of RMVC when the condition in
Theorem 1 is violated.
Theorem 2. If Tr

(
(Y0Y

T
0 − Y

(v)
0 (Y

(v)
0 )T )ε

) ≥ 0,
∀1 ≤ v ≤ V , where Y0 is defined as d2χ2(Y0,Yi) =

min
1≤v≤V

d2χ2(Y
(v)
0 ,Yi)(i = 1, · · · ,m), then the increased

loss of the proposed method against {Y(v)
0 }Vv=1, i.e.,

1
n2

(
d2χ2(Ŷ,Y∗) − min

1≤v≤V
d2χ2(Y

(v)
0 ,Y∗)

)
, is at most

min{‖ε‖1n2 ,
‖ε‖F
n }.

When the required reliability condition is violated, as
illustrated in Theorem 2, if the calculated Y0 satisfies
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the above condition, then the worst-case increased loss of
RMVC is only related to the norm of the residual. In other
words, the robustness of RMVC is largely related to the
quality of candidate multi-view clusterings. To improve the
quality of candidate clusterings, one may choose clusterings
with large between-group scatter and small within-group
scatter.

Experiment

In this section, we conduct experiments to validate the effec-
tiveness of the proposed method. The multi-view data sets
used in the experiments cover diverse domains, including
six text data sets, seven image data sets, and one image-text
data set.

Data Set Description

The six text data sets are 3sources3 (3sou), BBC3/4views
(BBC3/4) and BBCSport2/3/4views4 (BSpt2/3/4). 3sou data
set was collected from three well-known online news
sources: BBC, Reuters, and The Guardian, corresponding
to 3 views. Each view is a term-document matrix. We use
the 169 stories reported in all three sources for our experi-
ment. The stories were manually categorized into 6 classes
according to the primary section headings. By splitting the
single-view BBC and BBCSport news articles from 5 topi-
cal areas into related segments of text, 5 multi-view data sets
were constructed, i.e., BBC3/4 and BSpt2/3/4. The same
with 3sources, each view is a term-document matrix.

Image data sets employed in the experiments contain
Caltech1015, Corel6, UIUC Sport Event data set7 (Event),
the multi-feature digits dataset8 (Digits), the indoor scene
database9 (Indoor), Microsoft Research Cambridge Volume
110 (MSRC), and Scene UNderstanding database11 (SUN).

Following (Li et al. 2015), 7 widely used classes with 441
images were selected from the Caltech101 object recogni-
tion database. The resulting dataset is referred to as Cal7.
Six visual features are extracted for each image: LBP (256)
(Ojala, Pietikäinen, and Mäenpää 2002), pyramid HOG
(680) (Dalal and Triggs 2005), GIST (512) (Oliva and Tor-
ralba 2001), SURF (200) (Bay, Tuytelaars, and Van Gool
2006), SIFT (200) (Lowe 2004), and wavelet texture (WT,
32) (Manjunath and Ma 1996), where numerals in the paren-
theses denote the dimensions of different views.

Corel consists of 5000 images from 50 different cate-
gories. Each category has 100 images. The features are color
histogram (9), edge direction histogram (18) and WT (9).

Event contains 1579 images belonging to 8 sports event
categories. Except that the dimensions of SURF and SIFT

3http://mlg.ucd.ie/datasets/3sources.html
4http://mlg.ucd.ie/datasets/segment.html
5http://www.vision.caltech.edu/Image Datasets/Caltech101/
6http://www.cais.ntu.edu.sg/˜chhoi/SVMBMAL/
7vision.stanford.edu/lijiali/event dataset/
8https://archive.ics.uci.edu/ml/datasets/Multiple+Features
9http://web.mit.edu/torralba/www/indoor.html

10https://www.microsoft.com/en-us/research/project/image-
understanding/

11http://vision.princeton.edu/projects/2010/SUN/

features are increased to 500, the same six kinds of features
with Caltech7 are extracted for Event data set.

Digits data set is comprised of 2,000 data points from 0
to 9 digit classes, with 200 data points for each class. There
are six public features available: 76 Fourier coefficients of
the character shapes, 216 profile correlations, 64 Karhunen-
love coefficients, 240 pixel averages in 2×3 windows, 47
Zernike moments and 6 morphological features.

The original Indoor database contains 67 indoor cate-
gories. We choose 5 categories (auditorium, buffet, class-
room, cloister and elevator) with total 621 images for our
experiments and extract the same features with Caltech7.

For MSRC data set, we follow (Cai et al. 2011) to select 7
classes (tree, building, airplane, cow, face, car, bicycle), and
each class has 30 images. Color moment (48), LBP (256),
HOG (100), SIFT (200), GIST (512) and CENTRIST (1302)
(Wu and Rehg 2011) features are extracted.

We randomly choose 10 classes from the 397 well-
sampled subset of the SUN database (Xiao et al. 2016) and
each class has 100 images. We refer to the sampled subset
as SUN1k. Three pre-extracted features: SIFT (6300), HOG
(6300) and texton histogram (10752), are adopted.

The NBA-NASCAR Sport (NNSpt) image-text dataset
is collected by (Sun 2011), including 420 NBA images and
420 NASCAR images. Each image is normalized to be a
32×32-sized gray image, thus the image view has dimen-
sion of 1024. The attached short text is preprocessed and
each text has a 296-dimensional TFIDF (Salton and Buck-
ley 1988) feature.

Experimental Setting

Our proposed method is compared with the following meth-
ods.

Best single-view normalized cut (BestNcut) (Shi and Ma-
lik 2000). On each view, single-view Ncut is performed and
the best results are reported.

Co-regularized multi-view spectral clustering (CoRegSC)
(Kumar, Rai, and Daume 2011). The approach employs co-
regularization to make the clusterings in different views
agree with each other. We implement the centroid-based co-
regularization approach.

Co-trained multi-view spectral clustering (CoTrainSC)
(Kumar and Daumé 2011). CoTrainSC utilizes the spectral
embedding from one view to modify the graph structures in
other views. By iteratively applying this procedure, the clus-
terings of multiple views tend towards consensus.

Multi-modal spectral clustering (MMSC) (Cai et al.
2011). MMSC learns a commonly shared graph Laplacian
matrix by minimizing both spectral clustering error of each
view and the distances between the common clustering indi-
cator matrix and each single-view one.

Multi-view spectral clustering (MVSC) (Li et al. 2015).
MVSC aims to accelerate the multi-view spectral clustering
process by approximating the similarity graphs using bipar-
tite graphs.

Robust multi-view K-means clustering (RMKMC) (Cai,
Nie, and Huang 2013). RMKMC integrates data’s multi-
ple representations via structured sparsity-inducing norm to
make it more robust to data outliers.
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Table 1: Clustering results in terms of clustering accuracy (mean ± std.). Symbols ‘�/♦/�’ denote respectively that the corre-
sponding multi-view method is better/tied/worse than the best single-view normalized cut by the paired t-test with confidence
level 0.05. The win/tie/loss counts are summarized in the last row, and the method with the smallest number of losses is bolded.

Data sets BestNcut CoRegSC CoTrainSC MMSC MVSC RMKMC RMVC
3sou .461(.017) .453(.032)♦ .473(.031)� .391(.024)� .462(.034)♦ .467(.067)♦ .503(.000)�

BBC3 .356(.015) .466(.035)� .491(.027)� .402(.040)� .472(.021)� .579(.051)� .427(.000)�
BBC4 .389(.001) .425(.017)� .390(.025)♦ .336(.023)� .597(.021)� .565(.061)� .419(.000)�
BSpt2 .495(.001) .700(.018)� .660(.026)� .727(.003)� .476(.025)� .559(.072)� .746(.000)�
BSpt3 .528(.003) .593(.029)� .581(.026)� .628(.020)� .547(.054)� .597(.091)� .603(.000)�
BSpt4 .533(.043) .718(.044)� .607(.047)� .723(.011)� .669(.040)� .339(.074)� .724(.000)�
Cal7 .717(.001) .735(.034)� .752(.049)� .724(.027)♦ .765(.045)� .683(.076)� .800(.000)�
Corel .203(.004) .365(.009)� .281(.010)� .294(.005)� .176(.003)� .256(.007)� .258(.001)�
Event .447(.002) .420(.021)� .491(.027)� .557(.001)� .359(.014)� .360(.025)� .516(.014)�
Digits .930(.000) .850(.064)� .853(.070)� .982(.000)� .883(.060)� .777(.082)� .937(.017)�
Indoor .538(.026) .438(.009)� .556(.038)� .645(.014)� .498(.020)� .412(.029)� .647(.000)�
MSRC .777(.003) .875(.055)� .878(.059)� .876(.028)� .681(.048)� .825(.075)� .873(.018)�
SUN1k .334(.016) .422(.024)� .442(.018)� .411(.009)� .390(.015)� .363(.020)� .423(.000)�
NNSpt .656(.000) .749(.000)� .613(.000)� .858(.158)� .989(.000)� .987(.000)� .761(.000)�
Ave. .526 .586 .576 .611 .569 .555 .617

win/tie/loss against BestNcut 10/1/3 11/1/2 11/1/2 7/1/6 8/1/5 14/0/0

The implementations of Ncut12, CoRegSC13, Co-
TrainSC14, MMSC15 and RMKMC16 are downloaded from
their authors’ homepages. All algorithms are tested with
MATLAB R2013b, and our method also use MOSEK 7.1.
The experiments are conducted on a work station with 12
cores (2.10 GHz for each) and 96.0 GB RAM memory.

Except for RMKMC, all the other above mentioned meth-
ods need to construct affinity graphs. Two points are con-
nected if at least one of them is among the k nearest neigh-
bors of the other in the Euclidean distance and k is set to
be 9 empirically. The edge weight is calculated using Gaus-
sian Kernel, where the bandwidth parameter is set as the
mean squared Euclidean distance between sample pairs. For
CoRegSC, CoTrainSC and MMSC, their trade-off param-
eters are selected from {0.01, 0.1, 1, 10, 100}, and the best
results are reported. For MVSC, the number of salient points
is set as 10% of the total number of examples. For the pro-
posed RMVC, we use 3 multi-view clustering results, which
are produced by CoRegSC, CoTrainSC and MMSC respec-
tively. We use the same method with MMSC to initialize the
iterative algorithm in Eq. (19). k-means is employed to get
the final discrete clustering for approaches based on spectral
clustering. As the results of all algorithms depend on the ini-
tial conditions, we repeat 50 times for all methods and report
the average results and the standard deviation. The cluster-
ing performance is evaluated in terms of clustering accuracy
(ACC) and NMI.

12https://www.cis.upenn.edu/ jshi/software/
13http://www.umiacs.umd.edu/˜abhishek/code coregspectral.zip
14http://www.umiacs.umd.edu/˜abhishek/code cospectral.zip
15http://www.escience.cn/system/file?fileId=67628
16http://www.escience.cn/system/file?fileId=67658

Clustering Results

Table 1 shows the results of ACC and Fig. 1 presents the
results of NMI. We have following observations.

In terms of average performance, all multi-view methods
achieve higher ACC than best single-view Ncut. In addition,
our proposed RMVC obtains the highest average ACC.

CoRegSC, CoTrainSC and MMSC achieve good perfor-
mance for all three performance measures. They all obtains
at least 10 wins against BestNcut. However, the performance
of CoRegSC is dramatically degenerated on Event, Digits,
and Indoor; CoTrainSC loses on Digits, Indoor and NNSpt;
and MMSC is defeated by BestNcut on 3sou, BBC3, BBC4
and Cal7 with respect to ACC or NMI.

Though the average ACC of both MVSC and RMKMC
are higher than that of BestNcut, their performance is not
satisfying. MVSC causes serious performance degeneration
on one text data sets and five image data sets, and the clus-
tering results of RMKMC are significantly worse than Best-
Ncut on five data sets.

Our proposed RMVC significantly outperforms the best
single-view Ncut on all data sets for ACC and wins 13 cases
in terms of NMI. What is more important is that RMVC does
not seriously decrease the performance.

Note that the reliability condition presented in Theorem
1 is a sufficient rather than necessary condition for RMVC,
thus RMVC may still work when the condition is not ful-
filled. This has been verified by the experimental results. As
shown in Table 1, none of the candidate multi-view cluster-
ing algorithms (CoRegSC, CoTrainSC and MMSC) reaches
100% accuracy, i.e., none of them realizes the ground-truth
clustering on all data sets. Yet, RMVC still achieves better or
comparable clustering results comparing with the BestNcut.

Since RMVC is formulated with the χ2 distance that re-
lates to ACC, it is natural that it obtains expected results in
terms of ACC. Surprisingly, as shown in Fig. 1, when eval-
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win/tie/loss vs Ncut |    10/1/3       |         11/0/3        |     10/0/4      |      6/2/6       |      8/1/5        |     13/1/0

Figure 1: Comparison of clustering results with respect to NMI. The bars show the average values and the standard deviation is
presented by the error bar. The results of multi-view methods are compared with the best single-view Ncut by the paired t-test
with confidence level 0.05. The win/tie/loss counts are summarized in the top of the figure.

Table 2: Average CPU time (in seconds) for all the methods
on four representative data sets. The running time of RMVC
is the sum of RMVC(c) and RMVC(p), where RMVC(c) and
RMVC(p) denote the time of computing candidate cluster-
ings and solving Eq. (5) respectively.

Data sets BBC3 Corel Digits SUN1k
Ncut 1.93 24.52 5.23 1.32

CoRegSC 20.25 913.64 58.53 32.37
CoTrainSC 23.12 631.26 104.07 12.25

MMSC 3.17 85.10 10.59 1.96
MVSC 553.31 48.67 28.56 420.83

RMKMC 75.95 121.92 35.27 123.47
RMVC(c) 46.54 1620.00 173.19 46.58
RMVC(p) 7.15 48.83 26.35 4.31

uating with NMI, our method not only ensures reliable per-
formance on all data sets, but also achieves competitive per-
formance for most data sets. This reflects that RMVC has a
certain degree of robustness to the change of performance
measures.

In summary, the proposed method RMVC effectively im-
proves the reliability of multi-view clustering and obtains
highly competitive performance with state-of-the-art ap-
proaches. Moreover, its performance is robust to the vio-
lation of reliability condition and the change of evaluation
metrics to some extent.

Running Time

Table 2 displays the running time of all methods on four rep-
resentative data sets. The running time of RMVC is the sum
of the time of computing candidate clusterings by CoRegSC,
CoTrainSC and MMSC (RMVC(c)), and the time of post-

processing by solving Eq. (5) (RMVC(p)). As shown from
the results, Ncut is the fastest, because it does not need itera-
tion, whereas all the compared multi-view algorithms need.
It is shown that the optimization procedure of solving Eq.
(5) in RMVC is efficient. Thus, by performing RMVC, we
can obtain a more reliable clustering in a few extra time.

Conclusion

Although multi-view learning has flourished, little work has
done to make the performance not worse than that of single
views explicitly. In this paper, we try to address the reliabil-
ity of multi-view clustering and propose the RMVC method.
RMVC exploits several candidate multi-view clusterings to
maximize the worst-case performance gain against the best
single view clustering. Measured in the χ2 distance, the fi-
nal formulation is solved efficiently with a small-scale con-
vex linearly constrained quadratic programming and a non-
negative orthogonal matrix factorization. The reliability of
RMVC is provable when one of the candidate multi-view
cluster learners realizes the ground truth. Comprehensive ex-
periments validate the ability of RMVC in obtaining reliable
clustering. In the future, we will work on finding a reliability
condition which can be judged more easily.
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