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Abstract

In recent years Deep Neural Networks (DNNs) have been
rapidly developed in various applications, together with in-
creasingly complex architectures. The performance gain of
these DNNs generally comes with high computational costs
and large memory consumption, which may not be affordable
for mobile platforms. Deep model quantization can be used
for reducing the computation and memory costs of DNNs,
and deploying complex DNNs on mobile equipment. In this
work, we propose an optimization framework for deep model
quantization. First, we propose a measurement to estimate the
effect of parameter quantization errors in individual layers on
the overall model prediction accuracy. Then, we propose an
optimization process based on this measurement for finding
optimal quantization bit-width for each layer. This is the first
work that theoretically analyse the relationship between pa-
rameter quantization errors of individual layers and model
accuracy. Our new quantization algorithm outperforms previ-
ous quantization optimization methods, and achieves 20-40%
higher compression rate compared to equal bit-width quanti-
zation at the same model prediction accuracy.

Introduction

Deep neural networks (DNNs) have achieved significant
success in various machine learning applications, includ-
ing image classification (Krizhevsky, Sutskever, and Hinton
2012; Simonyan and Zisserman 2014; Szegedy et al. 2015),
image retrieval (Hoang et al. 2017; Do, Doan, and Cheung
2016), and natural language processing (Deng, Hinton, and
Kingsbury 2013). These achievements come with increasing
computational and memory cost, as the neural networks are
becoming deeper (He et al. 2016), and contain more filters
per single layer (Zeiler and Fergus 2014).

While the DNNs are powerful for various tasks, the in-
creasing computational and memory costs make it difficult
to apply on mobile platforms, considering the limited stor-
age space, computation power, energy supply of mobile de-
vices (Han, Mao, and Dally 2015), and the real-time pro-
cessing requirements of mobile applications. There is clearly
a need to reduce the computational resource requirements of
DNN models so that they can be deployed on mobile de-
vices (Zhou et al. 2016).
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In order to reduce the resource requirement of DNN mod-
els, one approach relies on model pruning. By pruning some
parameters in the model (Han, Mao, and Dally 2015), or
skipping some operations during the evaluation (Figurnov
et al. 2016), the storage space and/or the computational cost
of DNN models can be reduced. Another approach consists
in parameter quantization (Han, Mao, and Dally 2015). By
applying quantization on model parameters, these parame-
ters can be stored and computed under lower bit-width. The
model size can be reduced, and the computation becomes
more efficient under hardware support (Han et al. 2016). It
is worth noting that model pruning and parameter quantiza-
tion can be applied at the same time, without interfering with
each other (Han, Mao, and Dally 2015); we can apply both
approaches to achieve higher compression rates.

Many deep model compression works have also con-
sidered using parameter quantization (Gupta et al. 2015;
Han, Mao, and Dally 2015; Wu et al. 2016) together with
other compression techniques, and achieve good results.
However, these works usually assign the same bit-width for
quantization in the different layers of the deep network. In
DNN models, the layers have different structures, which
lead to the different properties related to quantization. By
applying the same quantization bit-width for all layers, the
results could be sub-optimal. It is however possible to as-
sign different bit-width for different layers to achieve opti-
mal quantization result (Hwang and Sung 2014).

In this work, we propose an accurate and efficient
method to find the optimal bit-width for coefficient quan-
tization on each DNN layer. Inspired by the analysis
in (Fawzi, Moosavi-Dezfooli, and Frossard 2016), we pro-
pose a method to measure the effect of parameter quantiza-
tion errors in individual layers on the overall model predic-
tion accuracy. Then, by combining the effect caused by all
layers, the optimal bit-width is decided for each layer. By
this method we avoid the exhaustive search for optimal bit-
width on each layer, and make the quantization process more
efficient. We apply this method to quantize different models
that have been pre-trained on ImageNet dataset and achieve
good quantization results on all models. Our method con-
stantly outperforms recent state-of-the-art, i.e., the SQNR-
based method (Lin, Talathi, and Annapureddy 2016) on dif-
ferent models, and achieves 20-40% higher compression rate
compared to equal bit-width quantization. Furthermore, we
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give a theoretical analysis on how the quantization on layers
affects DNN accuracy. To the best of our knowledge, this is
the first work that theoretically analyses the relationship be-
tween coefficient quantization effect of individual layers and
DNN accuracy.

Related works
Parameter quantization has been widely used for DNN
model compression (Gupta et al. 2015; Han, Mao, and Dally
2015; Wu et al. 2016). The work in (Gupta et al. 2015) limits
the bit-width of DNN models for both training and testing,
and stochastic rounding scheme is proposed for quantiza-
tion to improve the model training performance under low
bit-width. The authors in (Han, Mao, and Dally 2015) use k-
means to train the quantization centroids, and use these cen-
troids to quantize the parameters. The authors in (Wu et al.
2016) separate the parameter vectors into sub-vectors, and
find sub-codebook of each sub-vectors for quantization. In
these works, all (or a majority of) layers are quantized with
the same bit-width. However, as the layers in DNN have var-
ious structures, these layers may have different properties
with respect to quantization. It is possible to achieve better
compression result by optimizing quantization bit-width for
each layer.

Previous works have been done for optimizing quanti-
zation bit-width for DNN models (Hwang and Sung 2014;
Anwar, Hwang, and Sung 2015; Lin, Talathi, and Anna-
pureddy 2016; Sun, Lin, and Wang 2016). The authors
in (Hwang and Sung 2014) propose an exhaustive search
approach to find optimal bit-width for a fully-connected net-
work. In (Sun, Lin, and Wang 2016), the authors first use
exhaustive search to find optimal bit-width for uniform or
non-uniform quantization; then two schemes are proposed to
reduce the memory consumption during model testing. The
exhaustive search approach only works for a relatively small
network with few layers, while it is not practical for deep
networks. As the number of layers increases, the complex-
ity of exhaustive search increases exponentially. The authors
in (Anwar, Hwang, and Sung 2015) use mean square quan-
tization error (MSQE) (L2 error) on layer weights to mea-
sure the sensitivity of DNN layers to quantization, and man-
ually set the quantization bit-width for each layer. The work
in (Lin, Talathi, and Annapureddy 2016) use the signal-to-
quantization-noise ratio (SQNR) on layer weights to mea-
sure the effect of quantization error in each layer. These
MSQE and SQNR are good metrics for measuring the quan-
tization loss on model weights. However, there is no theo-
retical analysis to show how these measurements relate to
the accuracy of the DNN model, but only empirical results
are shown. The MSQE-based approach in (Anwar, Hwang,
and Sung 2015) minimizes the L2 error on quantized weight,
indicating that the L2 error in different layer has the equal
effect on the model accuracy. Similarly, in (Lin, Talathi,
and Annapureddy 2016), the authors maximize the overall
SQNR, and suggest that quantization on different layers has
equal contribution to the overall SQNR, thus has equal ef-
fect on model accuracy. Both works ignore that the various
structure and position of different layers may lead to dif-
ferent robustness on quantization, and thus render the two

approaches suboptimal.
In this work, we follow the analysis in (Fawzi, Moosavi-

Dezfooli, and Frossard 2016), and propose a method to mea-
sure the effect of quantization error in each DNN layers.
Different from (Anwar, Hwang, and Sung 2015; Lin, Ta-
lathi, and Annapureddy 2016), which use empirical results
to show the relationship between the measurement and DNN
accuracy, we conduct a theoretical analysis to show how
our proposed method relates to the model accuracy. Further-
more, we show that our bit-width optimization method is
more general than the method in (Lin, Talathi, and Anna-
pureddy 2016), which makes our optimization more accu-
rate.

There are also works (Hinton, Vinyals, and Dean 2015;
Romero et al. 2014) that use knowledge distillation to train
a smaller network using original complex models. It is
also possible to combine our quantization framework with
knowledge distillation to achieve yet better compression re-
sults.

Measuring the effect of quantization noise

In this section, we analyse the effect of quantization on the
accuracy of a DNN model. Parameter quantization can result
in quantization noise that would affect the performance of
the model. Previous works have been done for analyzing the
effect of input noise on the DNN model (Fawzi, Moosavi-
Dezfooli, and Frossard 2016); here we use this idea to anal-
yse the effect of noise in intermediate feature maps in the
DNN model.

Quantization optimization

The goal of our paper is to find a way to achieve optimal
quantization result to compress a DNN model. After the
quantization, under controlled accuracy penalty, we would
like the model size to be as small as possible. Suppose that
we have a DNN F with N layers. Each layer i has si param-
eters, and we apply bi bit-width quantization in the parame-
ters of layer i to obtain a quantized model F ′. Our optimiza-
tion objective is:

min
N∑
i=1

si · bi

s.t. accF − accF ′ ≤ Δacc,

(1)

where accF is the accuracy of the model F , and Δacc

is the maximum accuracy degradation. Note that it re-
quires enormous computation to calculate the accuracy of
the model for all quantization cases. To solve the problem
more efficiently, we propose a method to estimate the value
of the performance penalty given by accF − accF ′ .

Quantization noise

Value quantization is a simple yet effective way to compress
a model (Han, Mao, and Dally 2015). Here we evaluate the
effect of using value quantization on model parameters.

Assume that conducting quantization on a value is equiv-
alent to adding noise to the value:
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wq = w + rw (2)

Here w is the original value, w ∈ W , with W the set of
weights in a layer. Then, wq is the quantized value, and rw is
the quantization noise. Assume that we use a uniform quan-
tizer, and that the stepsize of the quantized interval is fixed.
Following the uniform quantization analysis in (You 2010),
if we consider rw = (rw,1, · · · , rw,NW

) as the quantization
noise on all weights in W , we have the expectation of ||rw||22
as

E(||rw||22) = p′w · e−α·b, (3)

where p′w = NW
(wmin−wmax)

2

12 , NW is the number of
weights in W , and α = ln(4) (You 2010). Detailed analysis
can be found in Supplementary Material. Eq. (3) indicates
that every time we reduce the bit-width by 1 bit, E(||rw||22)
will increase by 4 times. This is equivalent to the quantiza-
tion efficiency of 6dB/bit in (Gray and Neuhoff 2006).

Measurement for quantization noise

Figure 1: Simple DNN model architecture.

From weight domain to feature domain Eq. (3) shows
the quantization noise in the weight domain; here we show
how the noise on weight domain can link to the noise in the
feature domain.

A simplified DNN classifier architecture is shown in
Fig. 1.

Here we define Wi as the weights of layer i in the DNN
model F . And Z is the last feature map (vector) of the DNN
model F . As we quantize Wi, the quantization noise is rWi

,
and there would be a resulting noise rZi

on the last feature
map Z. Here we define rZi

as the noise on last feature map
Z that is caused by the quantization only on a single layer i.

As the value of ||rZi
||22 is proportional to the value of

||rWi
||22, similar to Eq. (3), the expectation of resulting noise

on rZi
is:

E(||rZi
||22) = pi · e−α·bi (4)

This is proved in later sections, empirical results are
shown in Fig. 4.

The effect of quantization noise Similarly to the analysis
in (Pang, Du, and Zhu 2017), we can see that the softmax
classifier has a linear decision boundary in the last feature
vectors Z (Pang, Du, and Zhu 2017) in Fig. 1. The analy-
sis can be found in the Supplementary Material. Then we
apply the result of (Fawzi, Moosavi-Dezfooli, and Frossard
2016) to bound the robustness of the classifier with respect
to manipulation of weights in different layers.

We define r∗ to be the adversarial noise, which represents
the minimum noise to cause misclassification. For a certain

input vector z = (z1, · · · , zL), where L is the number of
element in z, the ||r∗||2 is the distance from the datapoint to
the decision boundary, which is a fixed value. We define a
sorted vector of z as zsorted = (z(1), · · · , z(L)), where the
max value is z(1), and second max value is z(2). The result
for softmax classifier (or max classifier) can be expressed as:
max(z) = z(1), which is picking up the maximum value in
the vectorz.

As adversarial noise is the minimum noise that can
change the result of a classifier, we can get the adver-
sarial noise for softmax classifier max(z) as r∗zsorted =

(
z(2)−z(1)

2 ,
z(1)−z(2)

2 , 0, · · · , 0), then the norm square of ad-
versarial noise ||r∗||22 = (z(1) − z(2))

2/2.
Here we define rZ as the noise that we directly add on

last feature map Z. We can consider rZ as the collective
effect of all rZi

that caused by the quantization on all layers
i ∈ {1, · · · , N}, where N is the number of layers.

As mentioned in (Fawzi, Moosavi-Dezfooli, and Frossard
2016), if we apply random noise ‖rZ‖22 rather than adversar-
ial noise ‖r∗‖2 on the input vector z for a softmax classifier
max(z), it requires higher norm for random noise ‖rZ‖22 to
causes prediction error with same probability, compared to
adversarial noise ‖r∗‖2.

The following result shows the relationship between the
random noise ‖rZ‖22 and adversarial noise ‖r∗‖2, under soft-
max classifier with a number of classes equal to d:
Lemma 1. Let γ(δ) = 5+4 ln(1/δ). The following inequal-
ities hold between the norm square of random noise ‖rZ‖22
and adversarial noise (z(1)−z(2))

2

2 .

ln d

d
γ(δ)‖rZ‖22 ≥ (z(1) − z(2))

2

2
(5)

with probability exceeding 1− 2δ.
The proof of Lemma 1 can be found in the Supplemen-

tary Material. The lemma states that if the norm of random
noise is o

(
(z(1) − z(2))

√
d/ ln d

)
, it does not change the

classifier decision with high probability.
Based on Lemma 1, we can rewrite our optimization prob-

lem. Assume that we have a model F with accuracy accF .
After adding random noise rZ on the last feature map Z, the
model accuracy drops by Δacc. If we have

θ(Δacc) =
d

γ( Δacc

2accF
) ln d

, (6)

we have the relation between accuracy degradation and
noise rZ as:

accF − accF ′ ≤ Δacc ⇒

‖rZ‖22 < θ(Δacc)
(z(1) − z(2))

2

2

(7)

The detailed analysis can be found in the Supplementary
Material. Eq. (7) shows the bound of noise on last feature
map Z. However, adding quantization noise to different lay-
ers may have different effect on model accuracy. Suppose
we have model F for quantization. By adding noise rWi
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on weights of layer i, we induce the noise rZi on last fea-
ture map Z. By quantizing earlier layers, the noise needs
to pass through more layers to get rZi

, which results in
a low rank noise rZi

. For example, when quantizing the
first layer, is results in rZ1

= (e1, · · · , ed′ , 0, · · · , 0), and
rank(rZ1

) = d′ < d. When quantizing the last layer, it re-
sults in rZN

= (e1, · · · , ed), and rank(rZN
) = d. In order

to let rZN
have equivalent effect on model accuracy as rZ1

,
‖rZN

‖2 should be larger than ‖rZ1‖2.
By considering the different effects of rZi caused by

quantization in different layers, we rewrite Eq. (7) in a more
precise form:

accF − accF ′ = Δacc ⇒

‖rZi
‖22 = ti(Δacc)

(z(1) − z(2))
2

2
.

(8)

Here ti(Δacc) is the robustness parameter of layer i under
accuracy degradation Δacc.

Eq. (8) shows a precise relationship between rZi and
Δacc. If we add quantization noise to layer i of model F ,
and get noise rZi on last feature map Z, then the model ac-
curacy decreases by Δacc.

We consider the layer i in model F as yi = Fi(yi−1),
where yi is the feature map after layer i. Here we consider
that the noise ryi

would transfer through layers under almost
linear transformation (to be discussed in later sections). If
we add random noise in the weights of layer i, we have the
rank of the resulting noise rZi

on last feature map Z given
as:

rank(rZi
) = rank(

N∏
i

Fi) ≤ min{rank(Fi)} (9)

Based on Eq. (9), we have:

rank(rZ1
) ≤ · · · ≤ rank(rZi

) ≤ · · · ≤ rank(rZN
) (10)

Eq. (10) suggests that the noise on earlier layers of DNN
needs to pass through more layers to affect the last feature
map Z, the noise rZi

on Z would have lower rank, resulting
in a lower value of ti(Δacc).

From Eq. (8), we can see in particular that when

‖rZi
‖22

ti(Δacc)
=

‖rZj
‖22

tj(Δacc)
, (11)

the quantization on layer i and j have same effect on

model accuracy. Based on Eq. (11), ‖rZi
‖2
2

ti(Δacc)
can be a

good measurement for estimating the accuracy degradation
caused by quantization noise, regardless of which layer to
quantize. Consider x ∈ D as the input in dataset D, we have
the corresponding feature vector z = G(x,W ) in the last fea-
ture map Z. By quantizing layer i in model F , we get noise
rzi on z. We define the accuracy measurement on layer i as:

mi =

1
|D|

∑
x∈D(||rzi ||22)

ti(Δacc)
=

||rZi
||22

ti(Δacc)
(12)

The way to calculate ti(Δacc) is given by:

ti(Δacc) =
meanrzi

meanr∗
=

1
|D|

∑
x∈D ||rzi ||22

1
|D|

∑
x∈D

(z(1)−z(2))2

2

s.t. accF − accF ′ = Δacc

(13)

The detailed method to calculate ti(Δacc) will be dis-
cussed in the experiment section. Note that, based on the
optimization result in Eq. (22), the selected value of Δacc

does not matter for the optimization result, as long as the the
value of ti(Δacc)

tj(Δacc)
is almost independent w.r.t. Δacc, which is

true according to Fig. 3. So choosing different value of Δacc

does not change the optimization result. In later sections, we
use ti instead of ti(Δacc) for simplicity.

From Eq. (12), based on the linearity and additivity of
the proposed estimation method (shown in later sections),
the measurement of the effect of quantization error in all the
layers of the DNN model is shown in Eq. (20).

After we define the accuracy measurement for each layer
of model, based on Eq. (8), we can then rewrite the opti-
mization in Eq. (1) as

min
N∑
i=1

si · bi

s.t. mall =
N∑
i=1

mi ≤ C,

(14)

where mall is the accuracy measurement for all layers,
and C is a constant related to model accuracy degradation
Δacc, with higher C indicating higher Δacc.

Linearity of the measurements

In this section we will show that the DNN model are locally
linear to the quantization noise measurement ||rW ||2, under
the assumption that the quantization noise is much smaller
than the original value: ||rw||2 � ||w||2. That is, if a quan-
tization noise ||rWi

||2 on layer i leads to ||rZi
||2 on last fea-

ture vector Z, then we have a quantization noise α · ||rWi
||2

on layer i leads to α · ||rZi
||2 on last feature vector Z.

For linear layers like convolutional layers and fully con-
nected layers in the DNN model, the linearity for noise is
obvious. Here we mainly focus on the non-linear layers in
the DNN model, such as ReLU and Max-pooling layers.

ReLU layers The ReLU layers is widely used to provide
nonlinear activation for DNN. Given the input a ∈ A to a
ReLU layer, the output value z ∈ Z is calculated as:

z = ReLU(a) =

{
a, if a > 0
0, if a <= 0

(15)

From Eq. (15) we can see that the ReLU layer is linear
to noise in most cases. The non-linearity happens only when
the noise rw crossing the zero point, which has small proba-
bility when the noise is sufficiently small.
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Max-pooling layers Max-pooling is a nonlinear down-
sampling layer that reduces the input dimension and controls
overfitting. We can consider that max-pooling acts as a max
filter to the feature maps.

Similarly to the ReLU layer, which can be described as
z = ReLU(a) = max(0, a), the max-pooling layer can
be describes as z = maxpool({ai}) = max({ai}), where
i = 1, · · · , P , with P the kernel size for max-pooling. The
linearity for noise holds when the noises are sufficiently
small and do not alter the order for {ai}.

Other layers For other non-linear layers like Sigmoid and
PReLU, the linearity for small noises still holds under the
assumptions that the function is smooth along most input
ranges, and the noise has very low probability to cross the
non-linear region.

Based on the linearity assumption, as we model the quan-
tization noise on weight as Eq. (3), the resulting noise on last
feature vector Z can be modeled as:

||rZi ||22 = pi · e−α·bi (16)

Additivity of the measurements

Noise on single multiplication Pairwise multiplication is
a basic operation in the convolutional layers and fully con-
nected layers of DNN. Given one value in the input a ∈ A,
one value in the weight matrix w ∈ W , we have the pair-
wise multiplication as a · w. If we consider noise in both
input a ∈ A and w ∈ W , we have noised value aq ∈ Aq and
wq ∈ Wq , and finally aq · wq = (a+ ra) · (w + rw).

Noise on one layer Given a convolutional layer input A
with size M ×N ×C, conv kernel K with size Mk ×Nk ×
C ×D, and stride size s, we have the output feature map Z
with size (M/s)×(N/s)×D. Here M and N are the height
and width of input, C is the number of channels of input. Mk

and Nk are the height and width of the conv kernel, D is the
depth of output feature map.

The analysis on fully connected layers will be similar to
the analysis on convolutional layers. It can be considered as
a special case of convolutional layers when M , N , Mk, and
Nk are equal to 1. For a single value zp,q,d ∈ Z, the noise
term of zp,q,d can be expressed as:

rzp,q,d =

Mk·Nk·C∑

i=1

(ai · rwi,d + rai · wi,d + rai · rwi,d) + rbd

≈
Mk·Nk·C∑

i=1

(ai · rwi,d + rai · wi,d)

(17)

The calculation details can be found in Supplementary
Material. Note that the term rbd can be ignored under the
assumption that w and b have same bit-width quantization.
The term rai

·rwi,d
can be ignored under the assumption that

||ra||2 � ||a||2 and ||rw||2 � ||w||2.
From Eq. (17) we can see that: 1) adding noise to input

feature maps and weights separately and independently, is
equivalent to adding noise to both input feature maps and

weights; 2) regarding the output feature map z ∈ Z, adding
noise to the input feature maps and weights and doing layer
operation (pairwise product), is equivalent to adding the
noise directly to the output feature map. We will use these
two properties in later sections.

(a)

(b)

(c)

Figure 2: Effect of adding noise to multiple layers.

Adding noise to multiple layers Fig. 2 shows a 2-layer
module inside a DNN model. Given input feature map A,
after the first conv layer, an intermediate feature map X is
generated, then after the second conv layer, output feature
map Z is generated. Fig. 2(a) and 2(b) show the effect of
noise on layer 1 and 2, respectively. And Fig. 2(c) shows
the effect of noise on both layer 1 and 2. By analysing the
additivity of ‖rZ‖22, we have:

||rz3 ||22 .
= ||rz1 ||22 + ||rz2 ||22 (18)

Detailed analysis can be found in Supplementary Mate-
rial. Eq. (18) holds under the assumption that rz1 and rz2

are independent. This is reasonable in our case, as rz1 and
rz2 are caused by rW1

and rW2
which are two independent

quantization noises. This independence between rz1 and rz2

is also important for our proposed estimation method.
We can extend Eq. (18) to the situation of N layers:

||rz||22 =
N∑
i=1

||rzi ||22 (19)

If we consider the linearity and additivity of the proposed
measurement, from Eq. (12) and Eq. (19), as well as the in-
dependence of the measurement among different layers, we
have the measurement of the effect of quantization errors in
all layers in DNN model:

mall =
N∑
i=1

mi =
N∑
i=1

||rZi
||22

ti
(20)

Eq. (20) suggests that the noise effect of adding noise to
each layer separately and independently, is equivalent to the
effect of adding noise to all layers simultaneously. We use
Eq. (12) as the measurement for noise effect on layer i, and
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the effect of adding noise to all layers can be predicted using
Eq. (20).

Layer-wise bit-width optimization

In this section we show the approach for optimizing the
layer-wise bit-width quantization to achieve an optimal com-
pression ratio under certain accuracy loss.

Following the discussion from the optimization problem
in Eq. (14), our goal is to constraint Eq. (20) to be a small
value while minimizing the model size.

Adaptive quantization on multiple layers

Based on Eq. (16) and (20), the optimization Eq. (14) can be
expressed as:

min

N∑
i=1

si · bi

s.t.

N∑
i=1

pi
ti

· e−α·bi ≤ C

(21)

The optimal value of Eq. (21) can be reached when:

p1 · e−α·b1

t1 · s1 =
p2 · e−α·b2

t2 · s2 = · · · = pN · e−α·bN

tN · sN (22)

The detailed analysis can be found in Supplementary Ma-
terial.

Optimal bit-width for each layer

From Eq. (22) we can directly find the optimal bit-width for
each layer using the following procedure:

• Calculate ti (Eq. (13)):
– First, calculate the mean value of adversarial noise for

the dataset: meanr∗ = 1
|D|

∑
x∈D

(z(1)−z(2))
2

2 .

– Then, fix Δacc value. For example, Δacc = 10%. Note
that the selection of Δacc value does not affect the op-
timization result.

– For each layer i, change the amount of noise rWi added
in weight Wi, until the accuracy degradation equals to
Δacc. Then, record the mean value of noise rzi on the
last feature map Z: meanrzi

= 1
|D|

∑
x∈D ||rzi ||22.

– The value ti can be calculated as: ti(Δacc) =
meanrzi

meanr∗
.

– The details for the calculation of ti can be found in
Fig. 3.

• Calculate pi:
– First, for each layer i, fix bi value. For example, use
bi = 10.

– Then, record the mean value of noise rzi on the last
feature map Z: meanrzi

= 1
|D|

∑
x∈D ||rzi ||22.

– The value pi can be calculated using Eq. (16):
meanrzi

= ||rZi
||22 = pi · e−α·bi .

• Calculate bi:

– Fix the bitwidth for first layer b1, for example, b1 = 10.
Then bitwidth for layer i can be calculated using the
Eq. (22): p1·e−α·b1

t1·s1 = pi·e−α·bi
ti·si

The detailed algorithm about the above procedure can
be found in Supplementary Material. Note that, by select-
ing different b1, we achieve different quantization result. A
lower value of b1 results in higher compression rate, as well
as higher accuracy degradation.

Comparison with SQNR-based approach

Based on the SQNR-based approach (Lin, Talathi, and An-
napureddy 2016), the optimal bit-width is reached when:

e−α·b1

s1
=

e−α·b2

s2
= · · · = e−α·bN

sN
(23)

The proof can be found in Supplementary Material. Note
that compared with our result in Eq. (22), the parameters pi
and ti are missing. This is consistent with the assumption
of the SQNR-based approach, where two layers having the
same bit-width for quantization would have the same SQNR
value; hence the effects on accuracy are equal. This makes
the SQNR-based approach a special case of our approach,
when all layers in the DNN model have the equal effect on
model accuracy under the same bit-width.

Experimental results

In this section we show empirical results that validate our
assumptions in previous sections, and evaluate the proposed
bit-width optimization approach.

All codes are implemented using MatConvNet (Vedaldi
and Lenc 2015). All experiments are conducted using a Dell
workstation with E5-2630 CPU and Titan X Pascal GPU.

Empirical results about measurements

To validate the effectiveness of the proposed accuracy esti-
mation method, we conduct several experiments. These ex-
periments validate the relationship between the estimated
accuracy, the linearity of the measurement, and the additiv-
ity of the measurement.

Here we use Alexnet (Krizhevsky, Sutskever, and Hin-
ton 2012), VGG-16 (Simonyan and Zisserman 2014),
GoogleNet (Szegedy et al. 2015), and Resnet (He et al.
2016) as the model for quantization. Each layer of the
model is quantized separately using uniform quantization,
but possibly with different bit-width. The quantized model
is then tested on the validation set of Imagenet (Krizhevsky,
Sutskever, and Hinton 2012), which contains 50000 images
in 1000 classes.

Calculate ti As Eq. (12) is proposed to measure the ro-
bustness of each layer, we conduct an experiment to find ti
value. We use Alexnet as an example.

First, we calculate the adversarial noise for Alexnet on the
last feature vector Z. The calculation is based on Eq. (13).
The mean value of ||r∗||22 for Alexnet is meanr∗ = 5.33.
The distribution of ||r∗||22 for Alexnet on Imagenet valida-
tion set can be found in Supplementary Material.
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(a)

(b)

Figure 3: The relationship between different ||rZi
||22 and

model accuracy.

After finding ||r∗||22 value, the value of ti is calculated
based on Fig. 3(a) and Eq. (13). We set the accuracy degra-
dation to be roughly half of original accuracy (57%), which
is 28%. Based on the values in Fig. 3(a), t1 to t6 are equal to
5.2× 102, t7 = 1.3× 103, and t8 = 2.0× 103.

Here we show the example for Alexnet of how to calcu-
late the ti value. Note that for other networks like VGG-
16, GoogleNet, and Resnet, we also observe that only the
ti value for the last 1 or 2 layers are obviously different
than the other ti values. During our calculation, we can thus
focus on the ti values for the last several layers. Further-
more, in Fig. 3(a), we find the ||rZ ||22 − accuracy relation-
ship for different amounts of noise, which requires a lot of
calculations. In real cases, we use binary search to find ap-
propriate points under the same accuracy degradation. This
makes the process to calculate ti fast and efficient. Typically,
for a deep model with N layers, and dataset with |D| size,
we require O(τN |D|) forward passes to calculate accuracy.
Here τ is the trial times over one layer. We can reduce it to
O(τN ′|D|)(with N ′ << N ) by only calculating ti values
for the last N ′ layers.

In our experiments, the calculation of ti is the most time-
consuming part of our algorithm. We use around 15 mins to
calculate the ti value for Alexnet (30 sec for forward pass
on the whole dataset), and around 6 hours to calculate the
ti value for Resnet-50 (2 min for forward pass on the whole
dataset). This time can be reduced if we only calculate ti
values for the last few layers.

Linearity of measurements Fig. 4 shows the relation-
ship between the norm square of noise on quantized weight
||rWi

||22 and ||rZi
||22 on different layers. When the quantiza-

(a)

(b)

Figure 4: The relationship between ||rWi
||22 and ||rZi

||22.

tion noise on weight is small, we can observe linear relation-
ships. While it is interesting to see that, when the quantiza-
tion noise is large, the curve does not follow exact linearity,
and curves for earlier layers are not as linear as later lay-
ers. One possible explanation is that earlier layers in a DNN
model are affected by more non-linear layers, such as ReLU
and Max-pooling layers. When the noise is large enough to
reach the non-linear part of the layer functions (i.e. the zero
point of the ReLU function), the curves become non-linear.
It is worth noting that, when the non-linearity in most lay-
ers happens, the accuracy of the model is already heavily
affected (become near zero). So this non-linearity would not
affect our quantization optimization process.

Additivity of measurements Fig. 5 shows the relation-
ship between

∑N
i ||rZi||22 when we quantize each layer sep-

arately, and the value ||rZ ||22 when we quantize all layers to-
gether. We can see that when the quantization noise is small,
the result closely follows our analysis that ||rZ ||22 = ||rZi ||22;
it validates the additivity of ||rZ ||22. When the quantization
noise is large, the additivity of ||rZ ||22 is not accurate. This
result fits our assumption in Eq. (17), where the additivity
holds under the condition ||rWi

||2 � ||Wi||2 for all layer i
in the DNN model. When the noise is too high and we ob-
serve the inaccuracy of additivity, the model accuracy is al-
ready heavily degraded (near zero). Hence it does not affect
the quantization optimization process which rather works in
low noise regime.

Optimal bit-width for models

After the validation of the proposed measurement, we con-
duct experiments to show the results on adaptive quanti-
zation. Here we use Alexnet (Krizhevsky, Sutskever, and
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(a)

(b)

Figure 5: The value of
∑N

i ||rZi
||22 when quantize each layer

separately, compare to ||rZ ||22 when quantize all layers si-
multaneously.

Hinton 2012), VGG-16 (Simonyan and Zisserman 2014),
GoogleNet (Szegedy et al. 2015), and Resnet-50 (He et al.
2016) to test our bit-width optimization approach. Similarly
to the last experiments, the validation set of Imagenet is
used. As the SQNR-based method (Lin, Talathi, and Anna-
pureddy 2016) only works for convolutional layers, here we
keep the fully connected layers with 16 bits .

Fig. 6 shows the quantization results using our method,
SQNR-based method (Lin, Talathi, and Annapureddy 2016),
and equal bit-width quantization. The equal bit-width quan-
tization means that the number of quantization intervals in
all layers are the same. For all three methods, we use uni-
form quantization for each layer. We can see that for all
networks, our proposed method outperforms SQNR-based
method, and achieves smaller model size for the same accu-
racy degradation. It is interesting to see that the SQNR-based
method does not obviously outperform equal quantization
on the Resnet-50 model. One possible reason is that Resnet-
50 contains 1 × 1 convolutional layers in its ”bottleneck”
structure, which is similar to fully connected layers. As the
authors claim in (Lin, Talathi, and Annapureddy 2016), the
SQNR-based method does not work for fully connected lay-
ers. Note that our method generates more datapoints on the
figure, because the optimal bit-width for different layers may
contain different decimals. And by rounding the optimal bit-
width in different ways, we can generate more bit-width
combinations than the SQNR-based methods.

The results for quantization on all layers are shown in
Supplementary Material. For Alexnet and VGG-16 model,
our method achieves 30 − 40% smaller model size with

(a)

(b)

(c)

(d)

Figure 6: Model size after quantization, v.s. accuracy. To
compare with SQNR-based method (Lin, Talathi, and An-
napureddy 2016), only convolutional layers are quantized.

the same accuracy degradation, while for GoogleNet and
Resnet-50, our method achieves 15 − 20% smaller model
size with the same accuracy degradation. These results in-
dicate that our proposed quantization method works better
for models with more diverse layer size and structures, like
Alexnet and VGG.
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Conclusions

Parameter quantization is an important process to reduce
the computation and memory costs of DNNs, and to deploy
complex DNNs on mobile equipments. In this work, we pro-
pose an efficient approach to optimize layer-wise bit-width
for parameter quantization. We propose a method that relates
quantization to model accuracy, and theoretically analyses
this method. We show that the proposed approach is more
general and accurate than previous quantization optimiza-
tion approaches. Experimental results show that our method
outperforms previous works, and achieves 20− 40% higher
compression rate than SQNR-based methods and equal bit-
width quantization. For future works, we will consider com-
bining our method with fine-tuning and other model com-
pression methods to achieve better model compression re-
sults.
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