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Abstract

Several methods of normalizing convolution kernels have
been proposed in the literature to train convolutional neural
networks (CNNs), and have shown some success. However,
our understanding of these methods has lagged behind their
success in application; there are a lot of open questions, such
as why a certain type of kernel normalization is effective and
what type of normalization should be employed for each (e.g.,
higher or lower) layer of a CNN. As the first step towards
answering these questions, we propose a framework that en-
ables us to use a variety of kernel normalization methods at
any layer of a CNN. A naive integration of kernel normaliza-
tion with a general optimization method, such as SGD, of-
ten entails instability while updating parameters. Thus, exist-
ing methods employ ad-hoc procedures to empirically assure
convergence. In this study, we pose estimation of convolution
kernels under normalization constraints as constraint-free op-
timization on kernel submanifolds that are identified by the
employed constraints. Note that naive application of the es-
tablished optimization methods for matrix manifolds to the
aforementioned problems is not feasible because of the hier-
archical nature of CNNs. To this end, we propose an algo-
rithm for optimization on kernel manifolds in CNNs by ap-
propriate scaling of the space of kernels based on structure
of CNNs and statistics of data. We theoretically prove that
the proposed algorithm has assurance of almost sure conver-
gence to a solution at single minimum. Our experimental re-
sults show that the proposed method can successfully train
popular CNN models using several different types of kernel
normalization methods. Moreover, they show that the pro-
posed method improves classification performance of base-
line CNNs, and provides state-of-the-art performance for ma-
jor image classification benchmarks.

Introduction
Over the last decade, convolutional neural networks (CNNs)
have been utilized to perform various tasks such as image
classification (Wei et al. 2015). While performing optimiza-
tion using stochastic gradient descent (SGD) algorithms
with backpropagation (BP) in CNNs, we observe that norm
of gradients may exponentially increase or decrease (Glorot
and Bengio 2010; Pascanu, Mikolov, and Bengio 2013). Ex-
ploding and vanishing gradients trigger several open prob-
lems such as convergence of SGD and its robustness to
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reparametrization of convolution kernels, and internal co-
variate shift. In order to cope with these problems, various
methods have been proposed for normalization of kernels1

using different orthogonality constraints (Arpit et al. 2016;
Salimans and Kingma 2016).

However, different kernel normalization methods may af-
fect geometry of search spaces, dissimilarly. More precisely,
kernel normalization methods may provide kernel spaces
with different geometric properties according to the con-
straints used in the normalization operations. In order to
assure convergence of SGD algorithms to solutions at sin-
gle minimum, we need to identify search spaces and com-
pute steps according to the geometry of kernel spaces in
CNNs. Consequently, convergence properties of SGD may
vary among different kernel normalization methods. Since
various orthogonality constraints are nonconvex and nonlin-
ear, embedding constraints into cost functions may lead to
many local minimizers (Wen and Yin 2013). These theoret-
ical challenges imply more crucial problems in implemen-
tation of optimization methods for training CNNs with nor-
malized kernels. SGD methods will not work as intended if
they are implemented without proper consideration of ge-
ometry of normalized kernels. For example, if projections
defined for unit norm kernels are employed to perform SGD
steps using column-wise normalized or orthonormal kernels
in CNNs, then gradients explode and vanish in the first few
epochs of the SGD.

We address the aforementioned problems by identify-
ing kernel spaces as Riemannian manifolds under a geo-
metric optimization framework for training of CNNs. We
pose the kernel estimation problem in CNNs (LeCun et al.
1998) as optimization on Riemannian submanifolds which
are described according to different geometric properties of
the kernels, such as orthonormal rectangular or orthogonal
square kernels. Thereby, we can define constraints of opti-
mization problems of CNNs in search spaces of SGD algo-
rithms, instead of embedding the constraints into cost func-
tions of the problems (Mishra and Sepulchre 2016).

However, when we employ well-known Riemannian op-
timization methods developed for shallow SGD (Absil, Ma-
hony, and Sepulchre 2007) to train CNNs, we encounter an-
other challenge. In our experiments, we observe that appli-

1We refer to convolution kernels used in CNNs by kernels.
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cation of these methods directly to train CNNs result in van-
ishing and exploding gradient problems as well. Thus, SGD
diverges in early epochs of training. One of the main reasons
of occurrence of this problem is the multi-scale hierarchi-
cal architecture of CNNs. Although kernels with the same
size are applied at different layers, size of receptive fields
of the corresponding units (neurons) of CNNs increases as
the depth of the CNNs increases. For instance, at the lower
layers, small kernels (e.g. matrices of size 3× 3 or 7× 7) are
applied to small image patches, each of which covers small
parts of objects. However, at higher layers, kernels are ap-
plied to features which can represent larger patterns such as
groups of objects. In addition, at the fully connected layers,
kernels are used to train classifiers. Therefore, geometric and
statistical properties of features input to kernels vary among
different layers of CNNs. Moreover, additional feature nor-
malization methods, such as batch normalization (BN), can
be used in CNNs to remove statistical variance of features.
In (Salimans and Kingma 2016), it was reported that keeping
statistical variance of features using mean only BN improves
the performance. Similarly, in our experimental analyses, we
observe that employing mean only BN and using statistical
properties of features while constructing kernel spaces (e.g.
the sphere) by scaling the kernels (e.g. changing the radius
of the sphere) improves the performance. Therefore, vary-
ing geometric and statistical properties of features and ker-
nels need to be considered while employing the Riemannian
optimization methods in CNNs.

For this purpose, we propose a modular SGD algorithm
which can be used to perform optimization on various ker-
nel submanifolds at different layers of CNNs. We also pro-
vide assurance of its convergence to a single minimum of
classification loss. In our framework, we first construct ker-
nel submanifolds at each layer of a CNN such that a kernel
resides as a point on a kernel submanifold. Then, we em-
ploy our proposed SGD algorithm for optimization on kernel
submanifolds using BP in CNNs. The proposed algorithm
is used to train various different types of CNNs on differ-
ent image classification datasets. Experimental results show
that normalized kernels can be used boost performance of
base-line CNNs.

Related Work and Our Contributions

Kernel (weight) normalization methods have been imple-
mented using reparametrizations (Salimans and Kingma
2016), and additional constraints, such as orthogonality
(Neyshabur, Salakhutdinov, and Srebro 2016), in order to
preserve unit norm property of the kernels for forward prop-
agation (Arpit et al. 2016) or at initialization (Mishkin and
Matas 2016). Removal of scale and translation from ker-
nels by normalization can be interpreted as imposition of
a geometric structure such that the kernels lie on the sphere
(Stoyan, Kendall, and Mecke 2013). Compact Stiefel man-
ifolds were employed to learn features represented by sym-
metric positive definite (SPD) matrices and semi-orthogonal
weights in (Huang and Gool 2017). Since they designed a
particular network to learn SPD features, generalization of
their method to train a wider class of CNNs with conver-
gence properties is not trivial.

In our approach, CNNs can be trained using different
kernel submanifolds such as the sphere, the oblique and/or
the Stiefel manifold. Additional constraints can also be im-
posed using immersed submanifolds such as rotation groups.
Thus, our approach can be considered as generalization of
the aforementioned approaches such that we can employ our
methods to model different submanifolds according to var-
ious constraints, such as orthonormal kernels. Thereby, we
employ geometry of kernels to identify the constraints on
the optimization problem of CNNs. Our contributions can
be summarized as follows:
• Using the proposed approach, we provide a geometric

view of normalization methods by describing the geome-
try of convolution kernels normalized using different nor-
malization methods.

• In order to perform optimization in CNNs using kernels
that are normalized by different methods, we propose
an algorithm which enables stable training of CNNs by
proper scaling of kernel spaces to avoid gradient vanish-
ing/explosion. The algorithm has a modular design such
that different scaling operations can be employed for dif-
ferent layers.

• In the experimental analyses, we examine the proposed
methods and theoretical results for different manifolds us-
ing several benchmark image classification datasets. The
results show that the proposed method can be used to
boost performance of various baseline CNN models.

Geometric Properties of Normalized

Convolution Kernels in CNNs
We contemplate subspaces of convolution kernels en-
dowed with differentiable structures, i.e. Riemannian ker-
nel submanifolds. Suppose that we are given a set of
training samples S = {si = (Ii, yi)}N

i=1 of a random vari-
able s drawn from a distribution P on a measurable
space S, where yi is a class label of the ith im-
age Ii. An L-layer CNN consists of a set of tensors
W = {Wl}L

l=1, where Wl = {Wd,l ∈ RAl×Bl×Cl}Dl

d=1, and
Wd,l = [Wc,d,l ∈ RAl×Bl]Cl

c=1 is a tensor2 composed of ker-
nels (weight matrices) Wc,d,l constructed at each layer
l = 1,2, . . . , L, for each cth channel c = 1,2, . . . , Cl and each
dth kernel d = 1,2, . . . ,Dl.

At each lth convolution layer, a feature representation
fl(Xl;Wl) is computed by compositionally employing non-
linear functions, and convolving an image I with kernels as
fl(Xl;Wl) = fl(⋅;Wl) ○ fl−1(⋅;Wl−1) ○ ⋯ ○ f1(X1;W1),

(1)
where Xl = [Xc,l]Cl

c=1, and X1 ∶= I is an image at the first
layer (l = 1). The cth channel of the data matrix Xc,l is con-
volved with the kernel Wc,d,l to obtain the dth feature map
Xc,l+1 ∶= X̂d,l by X̂d,l = Wc,d,l ∗ Xc,l,∀c, d, l 3.

2We use shorthand notation for matrix concatenation such that
[Wc,d,l]

Cl
c=1 ≜ [W1,d,l,⋯,WCl,d,l], where ≜ means equal to by

definition.
3We ignore the bias terms in the notation for the sake of sim-

plicity. We consider each kernel as a weight matrix.
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Given a batch of samples s ⊆ S, we denote a value of
a classification loss function for a kernel ω ≜ Wc,d,l by
L(ω, s). We denote the loss function of kernels W utilized
in the CNN by L(W , s). If we assume that s consists of a
single sample si, then, an expected loss or cost function of
the CNN is computed by

L(W) ≜ EP{L(W , s)} = ∫ L(W , s)dP . (2)

The expected loss for ω is denoted by L(ω). Then, feature
representations are learned by solving

min
W

L(W). (3)

In other words, feature representations are learned in CNNs
by solving (3) in a search space. Restriction on the search
space can be imposed into (3) by defining constraints ex-
pressed as a function of the search variables W , e.g. using
normalization constraints.

Kernel (weight) normalization methods have been em-
ployed to learn deep feature representations (Salimans and
Kingma 2016; Neyshabur, Salakhutdinov, and Srebro 2016).
Analysis and understanding of effect of normalization meth-
ods on geometry of kernel spaces is crucial for training of
CNNs using SGD since gradient steps should be determined
according to their geometric properties. The next theorem
characterizes the geometry of spaces of kernels normalized
by different normalization methods.
Proposition 1 (Geometry of spaces of normalized ker-
nels). Suppose that we are given a set of kernels
ω ≜ Wd,c,l ∈ RAl×Bl ,∀c, d computed at the lth layer of a
CNN. Moreover, suppose that an ambient kernel manifold
M is identified by a Euclidean space of A × B matrices
R

A×B .
(i) If the kernels ω are normalized to the unit Frobenius

norm, then each kernel resides on the AlBl − 1 dimensional
sphere S(Al,Bl) = {ω ∈ RAl×Bl ∶ ∥ω∥2F = 1}, where ∥⋅∥F is
the squared Frobenius norm.

(ii) If the columns ωb,∀b = 1,2, . . . ,Bl of
the kernels ω are normalized with the unit
norm, then each ωb resides on the unit sphere
S(Al) = {ωb ∈ RAl ∶ ∥ωb∥2F = 1}. In addition, the space
of the kernels ω is isometric to the oblique manifold
OB(Al,Bl) = {ω ∈ RAl×Bl ∶ ddiag(ωTω) = IBl

}, where
ddiag(ω) denotes the diagonal matrix whose diagonal
elements are those of ω, and IBl

is a Bl ×Bl identity matrix
(Absil and Gallivan 2006).

(iii) If the kernels are orthonormal, then they reside on the
compact Stiefel manifold

St(Al,Bl) = {ω ∈ RAl×Bl ∶ ωTω = IBl
}.

Furthermore, if they are square kernels such that
Al = Bl = n, then they reside on the orthogonal group
O(n) = {ω ∈ Rn×n ∶ ωTω = In}.

This theorem shows that different normalization meth-
ods, even if they are implemented in an intuitively simi-
lar manner, imply different geometric properties. Thus, if a
normalization method is used with optimization for train-
ing CNNs without paying attention to the geometry of the

kernel spaces, it usually does not work. In order to cope
with this problem, some studies use ad-hoc transformations,
as utilized in weight normalization methods (Salimans and
Kingma 2016; Arandjelovic et al. 2017). Instead, we pro-
pose to perform optimization on Riemannian submanifolds
of normalized convolution kernels.

Training CNNs by Optimization on

Normalized Kernel Submanifolds

We found through our preliminary experiments that naive
application of well-established optimization methods for
matrix manifolds (Absil, Mahony, and Sepulchre 2007) to
our problem does not work, as mentioned in the first section.
We need to develop a method which enables proper training
of CNNs by considering geometric and statistical properties
of feature and kernel spaces. In addition, we need to assure
convergence of the developed algorithm.

In order to address these problems, we propose an SGD
algorithm considering optimization of kernels at each lth

convolution layer of an L-layer CNN. Let Rl be the size
of the receptive field of the unit that employs ωl, Fl be the
dimension of output feature maps, and cl and ĉl be the num-
ber of input and output channels used at the lth layer, re-
spectively. We determine geometric scaling γl of the kernel
space of ωl by

γl =
√

Rlcl
Flĉl

. (4)

In addition, we compute standard deviation λt
l of features

input to a kernel ωl at each tth iteration of the algorithm.
Then, the kernel space is scaled by

Γt
l = γl

λt
l

. (5)

Note that, scaling of the kernel space affects geometry of
the corresponding tangent space at ωl as well. Therefore, a
step of an SGD, which includes back-propagation and pro-
jection of gradients, movement of kernels on the tangent
space, and their back-projection to the kernel space, is also
affected.

In order to perform SGD according to the dynamic change
of structural properties of kernel spaces during training of
CNNs, we employ the following steps:

• In the gradient transformation step, we apply a scaled pro-
jection operation to map the Euclidean gradients of ker-
nels obtained by BP to tangent spaces at kernels according
to the scaled submanifolds.

• In the kernel movement step, we move the kernels on the
scaled tangent spaces.

• In the retraction step, we apply a scaled projection oper-
ator (a retraction or an exponential map) to map kernels
moved on tangent spaces to the scaled submanifolds.

An algorithmic description of the proposed SGD is given
in Algorithm 1:
● Initialization: We first compute the initial scaling func-
tion Γ0

l and construct a Riemannian kernel submanifold
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Algorithm 1: Training CNNs using SGD on Rie-
mannian submanifolds of normalized kernels.

Input: T (number of iterations), S (training set), Θ
(set of hyperparameters used for computation
of momentum, Euclidean gradient decay and
learning rate) and L (a loss function).

1 Initialization: Construct Riemannian kernel
submanifolds {M̂l}L

l=1. Compute the initial scale
function Γ0

l , and initialize ωt
l ∈ M̂l, where

ωt
l ≜ W t

d,c,l, ∀c = 1,2, . . . , Cl, ∀d = 1,2, . . . ,Dl,
∀l = 1,2, . . . , L. Initialize momentum variables μ1.

2 for each iteration t = 1,2, . . . , T do
3 for each layer l = 1,2, . . . , L do
4 Compute the Euclidean gradient

gradEL(ωt
l ), and the scale function Γt

l .

5 μt ∶= q(gradE L(ωt
l ), μt,Θ).

6 gradL(ωt
l ) ∶= Πωt

l
(μt,Γ

t
l).

7 αt ∶= g(t,Θ).
8 vt ∶= h(gradL(ωt

l ), αt).
9 ωt+1

l ∶= φωt
l
(vt,Γt

l),∀ωt
l ∈ M̂l.

10 t ∶= t + 1.
11 end

12 end

Output: The set of estimated kernels {ωT
l }L

l=1.

M̂l, for each convolution layer l = 1,2, . . . ,L whose mem-
bers are ωt

l ∈ M̂l, where ωt
l ≜ W t

d,c,l, ∀c = 1,2, . . . , Cl,
∀d = 1,2, . . . ,Dl, ∀l.
● For each epoch t = 1,2, . . . , T , and for each l = 1,2, . . . , L,
following steps are performed (see Fig. 1);

- Line 4: The Euclidean gradient gradEL(ωt
l ) is com-

puted and obtained using BP (see Fig. 1). In addition, the
scaling function Γt

l is updated using (5).
- Line 5: Momentum and Euclidean gradient decay meth-

ods are employed on the Euclidean gradient gradEL(ωt
l ) as

follows:
μt ∶= q(gradE L(ωt

l ), μt,Θ). (6)

We can employ state-of-the-art acceleration methods
(Sutskever et al. 2013) in this step. For example, momentum
can be employed with the Euclidean gradient decay using

q(gradE L(ωt
l ), μt,Θ) = θμμt − θEgradE L(ωt

l ), (7)

where θμ ∈ Θ is the parameter employed on the momentum
variable μt. We consider θE ∈ Θ as the decay parameter for
the Euclidean gradient. The reason is that θμ and θE affect
the step performed in the ambient Euclidean space while the
learning rate (LR) is employed on the submanifold gradient
(see Figure 1).

- Line 6: The moved vector μt is projected to the tan-
gent space Tωt

l
M̂l, to compute the submanifold gradient

gradL(ωt
l ) by gradL(ωt

l ) ∶= Πωt
l
(μt,Γ

t
l), where Πωt

l
is a

projection operator defined according to the geometry of M̂l

as explained in Proposition 1 (see Figure 1).

Figure 1: Updating kernels on a kernel submanifold M̂l, ∀l
(Lines 4-9 in the Algorithm 1) at the tth epoch.

- Line 7: The learning rate αt is updated by αt ∶= g(t,Θ),
where g(t,Θ) is a function that controls the convergence
rate (Bonnabel 2013). We choose g(t,Θ) which satisfies
the following as suggested in (Bonnabel 2013; LeCun 1998;
Kiefer and Wolfowitz 1952);

∞

∑
t=0

αt = +∞ and
∞

∑
t=0

α2
t < ∞. (8)

- Line 8: A tangent vector vt ∈ Tωt
l
M̂l is computed using

vt = h(gradL(ωt
l ), αt), where h(⋅) is a function that defines

the next step on Tωt
l
M̂l (see Figure 1). In this work, we

employed h(gradL(ωt
l ), αt) = −αtgradL(ωt

l ) to move the
solution in a gradient descent direction with step size αt.

- Line 9: Compute the next iterate using

ωt+1
l = φωt

l
(vt,Γt

l),∀ωt
l ∈ M̂l, (9)

where φ is a mapping from Tωt
l
M̂l onto M̂l (see Fig. 1).

We employ retractions for implementation of φ. Therefore,
this step enables us also to keep ωt+1

l on M̂l, ∀l.

Convergence Properties of Algorithm 1

In (Bonnabel 2013), convergence properties of SGD meth-
ods were analyzed for a particular class of manifolds fol-
lowing the proof methods suggested in (Saad 1998). In this
work, we extend and employ their results to train CNNs us-
ing different kernel submanifolds. We first consider a collec-
tion of kernels {ωt

l}t≥1 computed at the lth layer of a CNN
as a stochastic process. Then, the expected value of a sub-
manifold gradient of a classification loss can be computed
by ∇L(ωt

l ) = EP{gradL(ωt
l , s)}4. In the following theo-

rems, we provide convergence properties of Algorithm 1 for
two cases where we use i) exponential maps, and ii) retrac-
tions for φ at the 9th step of the algorithm.

4In practice, we receive a batch of samples st ⊆ S at each tth

epoch. Assuming that each batch contains a single sample,∇L(ωt
l )

denotes an average gradient computed by 1
∣S∣ ∑

∣S∣
i=1 gradL(ω

t
l , si).
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i) Exponential maps for φ : An exponential map is used
to map a vector vt ∈ Tωt

l
M̂l to a kernel along a geodesic

curve on Ml which goes through ωt
l in the direction of vt.

Theorem 2 (Convergence of Algorithm 1 using exponential
maps for φ). Suppose that the following conditions are sat-
isfied;
(1) Condition for maps onto kernel submanifolds: M̂l is a
connected compact Riemannian kernel submanifold.
(2) Condition for kernels: There exists a compact set K
such that ωt

l ∈ K, ∀t ≥ 1. The minimal distance between
conjugate kernels ωt

l and ωt+1
l denoted by ρ(ωt

l , ω
t+1
l ) is a

geodesic that satisfies ρ(ωt
l , ω

t+1
l ) > 0,∀t, l.

(3) Condition for gradients: The gradient is bounded on K,
such that ∃K > 0, ∥gradL(ωt

l , s)∥ ≤ K, ∀s and ∀ωt
l ∈ K.

(4) Condition for the classification loss function: We use a
three times continuously differentiable function L(ωl) ≥ 0.

Then, the loss function and the gradient converges almost
surely (a.s.) by L(ωt

l ) a.s.��→
t→∞

L(ω̂l), where ω̂l is a minimum,

and ∇L(ωt
l ) a.s.��→

t→∞
0.

ii) Retractions for φ : In the experimental analysis, we
used retractions to compute numerical approximations to
exponential maps onto kernel submanifolds. Thus, we next
provide the convergence properties for the case where φ is
implemented using retractions.

Theorem 3 (Convergence of Algorithm 1 using retraction
for φ). Suppose that the conditions (1)-(4) of Theorem 2
are satisfied, and that φ is a twice continuously differen-
tiable retraction. Then, we have L(ωt

l ) a.s.��→
t→∞

L(ω̂l) and

∇L(ωt
l ) a.s.��→

t→∞
0.

Experimental Analyses and Results

The proposed framework and the algorithm can be employed
to train CNNs using different Riemannian manifolds. We
train state-of-the-art CNNs using our algorithm on bench-
mark datasets and three manifolds, namely the sphere, the
oblique and the Stiefel manifold. For a fair comparison with
state-of-the-art methods, we used the same code and hyper-
parameters provided by the authors.

We can explore the relationship between learned fea-
tures by expounding geometry of submanifolds of kernels
{Wd,l ∈ RAl×Bl×Cl}Dl

d=1,∀l = 1,2, . . . , L, computed at con-
volution layers and fully connected (FC) layers of a CNN
consisting of L layers. We note that we identify kernel sub-
manifolds by kernels Wfc

l ∈ R
Cl×Dl at FC layers, since

Al = Bl = 1 for FC layers. Then, we delineate the structure
of patterns learned at different layers according to the con-
straints imposed on kernels by the submanifolds (see Propo-
sition 1):
● At the classification layer (l = L), constraints imposed
on FC kernels by manifold structures enable us to perform
regularization (Lahlou and Oppenheim 2016). Thereby, our
proposed framework and methods enable us to explore and
utilize the relationship between two properties of regular-
ization methods, namely i) regularization of models using

data augmentation (Allen 1974), and ii) learning of mod-
els endowed with geometric invariants (Ng 2004). For in-
stance, the Stiefel manifold implies an 	2 norm regulariza-
tion for classification (Bakır et al. 2004). Moreover, com-
pact class conditional probability density functions can be
learned over the Stiefel manifold (Turaga et al. 2011). If the
sphere is used, then we perform trace norm regularization
(Grave, Obozinski, and Bach 2011) since kernels residing on
the sphere are normalized using the Frobenius norm (Golub
and Van Loan 2013). Since generalized trace norms can be
considered as the analog for matrices of what the weighted
	1 norm is for vectors (Angst, Zach, and Pollefeys 2011), we
perform regularization using kernels of the sphere as per-
formed by Lasso type algorithms (Hastie, Tibshirani, and
Wainwright 2015). Moreover, off-diagonal elements of ker-
nels of the oblique manifold are regularized by assuming
independence between covariates (Bickel and Levina 2008).
● At the lower layers (l < L), if we use kernels with Al > 1
and Bl > 1, then we perform additional regularization on
spatially distributed patterns (Richter and Roth 2015) within
a neighborhood determined by Al and Bl. For instance,
square shape kernels of the Stiefel manifold construct the
orthogonal group by Proposition 1. Then, the orthogonal-
ity constraints imposed by these kernels were used to learn
representations of shape variation caused by both shape de-
formation and viewpoint changes (Bhattacharya and Bhat-
tacharya 2012). Moreover, translation and scaling variabil-
ity is removed from kernels of the sphere. This property
has been used for statistical shape analysis to learn repre-
sentations of unit length curves, shape primitives, and de-
formable shapes using the sphere (Srivastava et al. 2011).
The constraints determined by the oblique manifold induce
oblique rotation. Thus, oblique manifold was used to extract
features which are mutually independent (Absil and Galli-
van 2006). Since a detailed analysis of these properties is
beyond the scope of this work, we explore them experimen-
tally by training CNNs with the aforementioned manifolds
for image classification, and analyzing their performance.

Comparison with Normalization Methods

In a recent work (Salimans and Kingma 2016), kernels are
reparameterized by a fixed norm r that is initialized by the
inverse of standard deviation of pre-activations. Their pro-
posed method constructs a space of kernels identified by
the sphere with a fixed radius. In this aspect, their proposed
method can be considered as an instance of our proposed
algorithm for the sphere. In other words, we can perform
optimization on other manifolds such as the oblique and the
Stiefel manifold in addition to the sphere. In our method,
each kernel can also reside in a different manifold endowed
with a different geometry. For instance, we can perform opti-
mization on different kernels that reside on the spheres with
different radii. Therefore, our proposed methods enable us
to have a better control on the geometry of kernel spaces to
train CNNs compared to their method.

We examine this property by training their proposed CNN
(Salimans and Kingma 2016) (denoted by SK) using our
proposed methods for the sphere (Sp), the oblique manifold
(Ob) and the Stiefel manifold (St). The results given in Ta-
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Table 1: Results for Cifar-10 without DA. The results
marked by † indicate the results reproduced by our imple-
mentation of the associated algorithm using the code pro-
vided by the authors of the related work. Classification error
obtained using the baseline CNN is marked by red, and our
best error is marked by blue.

Model Class. Error (%)

NiN/NiN † 10.41/10.68
NiN + MOBN(Sp/Ob/St)† 9.03/8.95/8.57

NormProp (Arpit et al. 2016) /
All-CNN-C(Springenberg et al.

2015)
9.11/9.08

SK/SK†/SK + MOBN 8.43/ 8.45/8.52
SK(WN)/SK(WN)† 8.46/8.51

SK(Sp/Ob/St) † 8.24/8.11/7.94

SK(BN) 8.05
SK+MOBN(WN) /† 7.31/7.33

SK+MOBN(Sp/Ob/St) † 6.88/6.75/6.02

ble 1 are obtained by training CNNs on the Cifar-10 dataset
without using data augmentation (DA). In Table 1, we ob-
serve that our methods that use the sphere (SK†(Sphere))
outperform the methods proposed in (Salimans and Kingma
2016) (SK†(WN)). This observation supports our claim for
the benefit of employment of kernels belonging to spaces
with varying manifold structures, e.g. the sphere with vary-
ing radii (which are determined by statistical properties of
the data and the gradients of the loss). We also observe
that we further boost the performance using the oblique and
the Stiefel manifolds. This result also propounds conjec-
tures and results provided in the previous works (Minh and
Murino 2016) regarding regularization and invariance prop-
erties of models learned using different manifolds.

We aim to learn representations robust to statistical vari-
ance and mean of pre-activations by normalizing them us-
ing batch normalization (BN). If features input to a layer
are i.i.d. with zero mean and unit variance, then we can
equivalently obtain these robust representations using nor-
malized kernels at that layer (Salimans and Kingma 2016).
This property is explored in (Arpit et al. 2016) by proving
that approximation error to covariance of pre-activations is
upper bounded by a function of kernel norms. Therefore,
normalized kernels that reside in the sphere are used to train
CNNs in (Arpit et al. 2016). Following this property, BN is
employed by removing just mean for the features obtained
using normalized kernels, and this method is called mean-
only BN (MOBN) (Salimans and Kingma 2016). The results
given in Table 1 show that we can further boost the perfor-
mance using MOBN. We also notice that, MOBN boosts the
performance only if normalized kernels are used for train-
ing, such that the error of SK (MOBN) is 8.52% while that
of SK (BN) is 8.05%.

In addition, we compare our methods with the normal-
ized propagation (NormProp) method suggested in (Arpit et
al. 2016). Briefly, NormProp implements a kernel normal-

ization method using the 	2 norm of kernels at FC layers,
and the Frobenius norm at the other convolution layers. In
this aspect, they identify kernels as elements of the sphere.
However, they do not perform gradient projections and re-
tractions used in SGD steps during BP, but they perform
spherical projections during forward propagation. For com-
parison, we train the same Network in Network (NiN) (Lin,
Chen, and Yan 2014) architecture utilized in (Arpit et al.
2016) using our methods.

The results show that we obtain similar error for the
sphere (9.03%) compared to their reported error (9.11%),
and we can further boost the performance using the oblique
(8.95%) and the Stiefel manifolds (8.57%). In addition, pro-
posed methods boost the performance of NiN and SK by
2.29% and 2.43%, respectively. Note that, nine convolution
layers are used in both NiN and SK, using kernels with dif-
ferent sizes. In order to analyze the effect of number of lay-
ers to the performance boost, we perform experiments using
larger networks in the next section.

Results for Training Large-scale CNNs

We first employ our methods for training of residual net-
works (Res) with constant depth (RCD) and stochastic depth
(RSD) consisting of 110 layers (Huang, Liu, and Weinberger
2016; Huang et al. 2016). In order to explore how the pro-
posed methods enable us to learn invariance properties as
discussed above, we analyze the results for Cifar and Ima-
genet datasets that are augmented using standard DA meth-
ods. The results given in Table 2, show that the performance
boost is larger for datasets prepared w/o DA compared to
the augmented datasets. In addition, we can further boost
the performance even for augmented datasets, since data
augmentation is conducted using transformations on images
(Mahendran and Vedaldi 2015), while the kernels computed
at different layers can learn the invariants at different reso-
lutions.

Since Res with less number of layers do not perform as
well as SK and NiN on the Cifar dataset, we also provide the
results for the Cifar-10 with DA in Table 3. The results show
that our methods can boost the performance of the baseline
Res. However, for a smaller Res (Res-20), the kernels of the
sphere may outperform the kernels of the oblique as also ob-
served in Table 2. Moreover, we observe that the amount of
performance boost (for St) decreases from 0.78% to 0.35%
as the number of layers increases to 44 in Table 3. On the
other hand, for St, we obtain 0.65% and 2.11% boost for
Cifar 10 and 100 with DA, and 0.72% and 4.98% boost for
Cifar 10 and 100 without DA, using Res consisting of 110
layers equipped with pre-activations (RCD) (see Table 2).
Therefore, the amount of boost also depends on the number
of classes and use of the augmentation methods.

We observe that performance boosts more for Cifar-100
compared to the results obtained for Cifar-10. This result
suggests that we can learn feature representations of diverse
patterns observed in large number of classes using kernels
belonging to the manifolds. In order to scrutinize this ob-
servation, we provide the results for training of residual net-
works (Res) (He et al. 2016) using the Imagenet dataset in
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Table 2: Classification error (%) for larger networks trained on Cifar-10 and Cifar-100 datasets with and without using DA.

Model Cifar-10 w.DA Cifar-100 w.DA Cifar-10w/o DA Cifar-100w/o DA
NormProp (Arpit et al. 2016) 7.47 29.24 9.11 32.19

PRONG (Desjardins et al. 2015) 7.32 - - -
RCD(Huang, Liu, and Weinberger

2016)/RCD(Huang et al. 2016)/RCD† 6.41/∼/6.58 27.22/27.76/27.52 13.63/∼/13.60 44.74/∼/45.09

RCD+MOBN(Sp/Ob/St)† 6.22/6.07/5.93 26.44/25.99/25.41 13.11/12.94/12.88 42.51/42.30/40.11

RSD(Huang, Liu, and Weinberger
2016)/RSD(Huang et al. 2016)/RSD† 5.23/5.25/5.63 24.58/24.98/25.03 11.66/∼/11.68 37.80/∼/38.15

RSD+MOBN(Sp/Ob/St)† 5.20/5.14/4.79 23.77/23.81/23.16 10.91/10.93/10.46 36.90/36.47/35.92

Table 3: Results for residual networks (Res) on Cifar-10 with
DA.

Model Class. Error (%)

Res-20 (He et al. 2016)/† 8.75/8.81
Res-20+MOBN(Sp/Ob/St)† 8.25/8.43/8.03

Res-44 (He et al. 2016)/† 7.17/7.16
Res-44+MOBN(Sp/Ob/St)† 6.99/6.89/ 6.81

Table 4: Results for Imagenet for single crop.

Model Top-1 Error (%)

Res-18† / Res-34† / Res-50† 30.59/26.88/24.52
PRONG (Inception) (Desjardins

et al. 2015) 28.90

Res-18+MOBN (Sp/Ob/St)† 29.13/28.97/28.14

Res-34+MOBN (Sp/Ob/St)† 26.04/25.73/25.16

Res-50+MOBN (Sp/Ob/St)† 23.79/23.70/23.02

Table 4. The results5 given in Table 4 complement the previ-
ous observations such that we have 2.45%, 1.72% and 1.50%
performance boost (for St) using Res-18, Res-34 and Res-
50, respectively. We also provide the performance of a recent
method proposed for optimization on a probabilistic mani-
fold of network parameters, called PRONG (Desjardins et al.
2015). In other words, PRONG implements an approxima-
tion for natural gradient descent. An interesting result is that
Res-18 with 18 convolution layers, which was trained us-
ing our methods with manifolds, outperforms Inception (22
conv. layers) which was trained using PRONG (see Table 4).

Conclusion

We proposed a mathematical framework to explore and use
geometric properties of spaces of convolution kernels in
CNNs. In our theoretical results, we showed that spaces of
normalized kernels that are computed by various normaliza-
tion methods can be characterized by Riemannian subman-
ifolds of convolution kernels. Following our theoretical re-

5We compute Top-1 classification error for single crop using
ILSVRC 2012 validation data.

sults, we proposed a SGD algorithm for optimization on Rie-
mannian kernel submanifolds to train CNNs with assurance
of convergence to a solution at single minimum of loss.

We employed our algorithm to train state-of-the-art CNNs
using benchmark datasets. We observed that our methods
boost the performance of CNNs for various datasets pre-
pared with and without using data augmentation methods.
We believe that our results will guide researchers to de-
velop geometry-aware training algorithms that employ pow-
erful regularization methods and take advantage of invari-
ance properties of kernels. In the feature work, we plan to
apply our framework for other tasks such as segmentation,
detection, action recognition and video analysis. Moreover,
we will use our algorithm to train other deep networks such
as auto-encoders and recurrent neural networks.
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