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Abstract

Considering the diversity of the views, assigning the multi-
views with different weights is important to multi-view clus-
tering. Several multi-view clustering algorithms have been
proposed to assign different weights to the views. How-
ever, the existing weighting schemes do not simultaneously
consider the characteristic of multi-view clustering and the
characteristic of related single-view clustering. In this paper,
based on the spectral perturbation theory of spectral cluster-
ing, we propose a weighted multi-view spectral clustering al-
gorithm which employs the spectral perturbation to model the
weights of the views. The proposed weighting scheme fol-
lows the two basic principles: 1) the clustering results on each
view should be close to the consensus clustering result, and 2)
views with similar clustering results should be assigned sim-
ilar weights. According to spectral perturbation theory, the
largest canonical angle is used to measure the difference be-
tween spectral clustering results. In this way, the weighting
scheme can be formulated into a standard quadratic program-
ming problem. Experimental results demonstrate the superi-
ority of the proposed algorithm.

Introduction

Multi-view clustering (Zhou and Burges 2007) (Kumar, Rai,
and Daume 2011) (Lee and Liu 2016), which exploits com-
plementary information among multiple views, has been a
hot topic since the past decade. Considering the diversity of
the views, the ability of different views characterizing the
data is different. It is challenging to find a suitable way of
simultaneously exploiting the complementary information
of all the views in order to derive a satisfactory partition
(Tzortzis and Likas 2012).

Recently, several clustering algorithms combined the
multiple views through weighted combination and used the
weights to characterize the importance of the views. The
work in (Tzortzis and Likas 2012) (Cai, Nie, and Huang
2013) (Guo et al. 2014) (Zhao, Ding, and Fu 2017) used
algebraic method to minimize the objective function of all
the views, however, the minimum objective function value
does not indicate the optimal clustering result. The work
in (Huang, Chuang, and Chen 2012a) (Li et al. 2016) (Liu
et al. 2016) (Zong et al. 2016) aggregated multiple affinity
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matrices into a single one. These algorithms are under the
framework of multi-kernel learning which is different from
(though related with) multi-view clustering. Anyway, the ex-
isting weighting schemes do not simultaneously consider the
characteristic of multi-view clustering and the characteristic
of related single-view clustering.

In this paper, we focus on one specific clustering task,
i.e., multi-view spectral clustering which has a consensus
Laplacian matrix among all the views. For spectral cluster-
ing, small perturbations in the entries of the Laplacian ma-
trix may lead to large perturbations in the eigenvectors. The
Euclidean distance between two sets of eigenvectors can be
large while the subspaces spanned by the eigenvectors is pre-
served (Hunter and Strohmer 2010). In this case, the differ-
ence in clustering results is not captured by the Euclidean
distance between the eigenvectors but by the closeness of
the subspaces spanned by the eigenvectors. According to the
spectral perturbation theory, the closeness of the subspaces
spanned by the eigenvectors is defined by the largest canon-
ical angle between these subspaces.

Considering the spectral perturbation of spectral cluster-
ing, we propose a Weighted Multi-view Spectral Clustering
algorithm (WMSC) based on spectral perturbation theory.
We model the differences among multiple views following
two basic principles: 1) the clustering results on each view
should be close to the consensus clustering result, and 2)
views with similar clustering results should be assigned sim-
ilar weights. When realizing the two principles, the Lapla-
cian matrix of each view is regarded as a perturbation of
the consensus Laplacian matrix and the consensus Laplacian
matrix is approximated by the weighted combination of mul-
tiple Laplacian matrices, then we use the largest canonical
angle to measure the difference between spectral clustering
results. Thus, the first principle is realized by minimizing
the largest canonical angle between the subspace spanned
by each view’s eigenvectors and the one spanned by con-
sensus eigenvectors; the second principle is realized by us-
ing a smoothness function to make the difference in weight
proportional to the largest canonical angle. In this way, the
weighting scheme is formulated into a standard quadratic
programming problem. Experimental results show that the
proposed algorithm outperforms typical unweighted multi-
view spectral clustering algorithms and weighted multi-view
spectral clustering algorithms.
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Insights on Spectral Clustering

Spectral Clustering

Spectral clustering partitions data points into groups accord-
ing to their similarities. Different from traditional clustering
methods such as k-means, spectral clustering does not re-
quire the data space to be linearly separable and can detect
non-convex patterns.

Given a set of data points {x1, x2, ..., xn} belonging to k
clusters, Ng et al. (Ng, Jordan, and Weiss 2002) proposed
a normalized multi-class spectral clustering algorithm. The
brief flow of the algorithm is summarized as follows.

1. Construct the similarity matrix S;
2. Compute the normalized Laplacian matrix L =

D−1/2SD−1/2, where D is a diagonal matrix and Dii =∑n
j=1 Sij ;

3. Compute the first k eigenvectors of L and construct a ma-
trix with the eigenvectors as column;

4. Normalize the rows of the matrix to norm 1;
5. Cluster the normalized matrix with k-means.

For binary classification, the clusters are separated ac-
cording to the sign of the second eigenvector’s elements.
Specifically, let l(xi) be the label of xi, e be the second
eigenvector, l(xi) = sign(ei), where sign(ei) = 1 if ei > 0
and sign(ei) = −1 if ei ≤ 0.

The key issue of spectral clustering is the construction
of similarity matrix. For a comprehensive discussion of
theoretical and practical aspects of spectral clustering, see
(Luxburg 2007).

Spectral Perturbation

Small perturbations in the entries of the Laplacian matrix
may result in large perturbations in the eigenvectors. Taking
binary-class for example, we show the influence of matrix
perturbation on the eigenvectors. Given 30 points belong-
ing to two clusters, Figure 1 (Hunter and Strohmer 2010)
presents the ground truth Laplacian matrix, the perturbed
Laplacian matrix and their eigen-structures. Both the Lapla-
cian matrices are effective for clustering, however, it can be
seen that the second eigenvectors vary greatly (the sign is
completely opposite).

The result of spectral clustering is determined by the first
k eigenvectors of Laplacian matrix. If two sets of eigenvec-
tors have a small difference in cluster ability, their clustering
results are similar. It is easy to find a case (e.g., the example
in Figure 1) that the Euclidean distance between the eigen-
vectors is large, whereas the clustering results are nearly the
same. Thus it is not appropriate to define the difference in
clustering results using the Euclidean distance between the
eigenvectors, i.e., the Euclidean distance cannot reflect the
difference in cluster ability between two set of eigenvectors.
Fortunately, the subspaces spanned by the eigenvectors is
nearly the same if the clustering results are similar. The dif-
ference in clustering results can be captured by the closeness
of the subspaces spanned by the eigenvectors. In (Hunter and
Strohmer 2010), the closeness of the subspaces spanned by
the eigenvectors is measured by the canonical angle between

Figure 1: Example in (Hunter and Strohmer 2010). 30 data
points with two underlying clusters. Top (from left to right):
the ground truth Laplacian matrix L, the first ten eigenval-
ues, the first eigenvector v1 and the second eigenvector v2.
Bottom (from left to right): the perturbed Laplacian matrix
L̃, the first ten eigenvalues, the first eigenvector ṽ1 and the
second eigenvector ṽ2.

these subspaces. Then, we could use the canonical angle to
capture the difference in cluster ability between two set of
eigenvectors.

Definition 1 (Hunter and Strohmer 2010) Let Vk and
Ṽk be subspaces spanned by the orthogonal eigenvectors
vi, ..., vi+k and ṽi, ..., ṽi+k. And let γ1 ≤ ... ≤ γk be the
singular values of [vi, ..., vi+k]

T [ṽi, ..., ṽi+k]. Then the val-
ues,

θj = arccosγj (1)

are called the canonical angles between Vk and Ṽk.

Define Vk and Ṽk to be close if the largest canonical angle
is small (Hunter and Strohmer 2010). That is, a smaller value
of the largest canonical angle is, the more similar the cluster
ability is. In Figure 1, the largest canonical angle between
{v2} and {ṽ2} is as small as 0.0199 which indicates similar
cluster ability of {v2} and {ṽ2}.

For a detailed introduction of canonical angle, one can see
(Davis 1970) (Stewart and Sun 1990).

Weighted Multi-view Spectral Clustering

This paper aims to quantify the importance of each view
based on the characteristic of multi-view spectral clustering.
In the following, we firstly introduce a multi-view spectral
clustering method. Then, we propose a weighting scheme
based on spectral perturbation theory.

Multi-view Spectral Clustering

In multi-view clustering, the same object represented in dif-
ferent views is expected to be in the same cluster. Thus,
for the set of completely mapped multi-view data points,
the ground truth similarity matrix in each view should be
the same. In other words, there is a consensus ground truth
Laplacian matrix among all the views. Usually, the consen-
sus Laplacian matrix is unknown but can be approximated
by the weighted combination of each view’s Laplacian ma-
trix.
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Given the dataset X = {X(1), X(2), · · · , X(nv)} with
nv views, where X(a) = {x(a)

1 , x
(a)
2 , · · · , x(a)

n }, a ∈
{1, 2, · · · , nv}, n is the number of data points, L(a) ∈ Rn×n

is the Laplacian matrix of the a-th view, L∗ ∈ Rn×n is the
consensus Laplacian matrix. The objective function of cal-
culating L∗ is shown as follows:

L∗ =
nv∑
a=1

μaL
(a) s.t.

nv∑
a=1

μa = 1, μa ≥ 0 (2)

where μa is the weight of the a-th view. Then, L∗ can be
applied to spectral clustering.

In previous work such as (Zhou and Burges 2007), all
the views are equally treated, i.e., μa = 1/nv, a =
{1, 2, · · · , nv}. However, the multiple views may have dif-
ferent effects on the final clustering result since they are
complementary and diverse. It is rational to discriminate dif-
ferent views, and the weighting scheme is of great impor-
tance.

Weighting Scheme

In an ideal multi-view clustering, the clustering result on
each view is the same with the consensus clustering result. In
practical settings, views are distinguished but the views with
similar clustering results are of similar importance. Thus,
the weighting scheme should satisfy the following two prin-
ciples: 1) the clustering results on each view should be close
to the consensus clustering result, and 2) views with similar
clustering results should be assigned similar weights. The
first principle presents the basic assumption of multi-view
clustering and the second principle presents the basic rule
of weighting. The two principles describe the basic rules of
weighted multi-view clustering.

Difference Minimization In spectral clustering, the clus-
tering result is determined by the first k eigenvectors of the
Laplacian matrix. Let {v(a)1 , ..., v

(a)
k } and {v∗1 , ..., v∗k} be the

first k eigenvectors of L(a) and L∗ respectively, to make
the clustering result on the a-th view close to the consen-
sus clustering result, the difference in cluster ability between
{v(a)1 , ..., v

(a)
k } and {v∗1 , ..., v∗k} should be minimized.

Now the key issue is how to measure the difference in
cluster ability between two set of eigenvectors. For all the
views, the practical Laplacian matrices may be different but
indicate the closeness of each pair of points, thus, the Lapla-
cian matrix of each view is a perturbation of the consensus
Laplacian matrix. According to spectral perturbation theory,
the largest canonical angle indicates the similarity of clus-
ter ability. To make the clustering results on each view close
to the consensus clustering result, the largest canonical an-
gle between the subspaces spanned by {v(a)1 , ..., v

(a)
k } and

{v∗1 , ..., v∗k} should be minimized.
Here, we use a theorem of canonical angle.

Theorem 1 (Hunter and Strohmer 2010) Let λ(a)
i , v(a)i , λ∗i ,

v∗i be the i-th eigenvalue and eigenvector of L(a) and L∗ re-
spectively, λ(a)

1 ≥ λ
(a)
2 ≥ · · · ≥ λ

(a)
n , λ∗1 ≥ λ∗2 ≥ · · · ≥ λ∗n,

and let Θ = diag(θ1, ..., θk) be the canonical angles be-
tween the column space of V (a)

k = [v
(a)
1 , ..., v

(a)
k ] and V ∗k =

[v∗1 , ..., v
∗
k]. If there is a gap δ > 0, such that

|λ(a)
k − λ∗k+1| ≥ δ; λ

(a)
k ≥ δ

Then
‖sin Θ‖F � 1/δ‖L∗V (a)

k − V
(a)
k Σ

(a)
k ‖F

Where Σ
(a)
k = diag(λ

(a)
1 , ..., λ

(a)
k ) and sin Θ is taken en-

trywise.
Inspired by Theorem 1, to minimize the largest canoni-

cal angle between two subspaces, the upper bound of sin Θ
should be minimized. Considering the fact that the rank of
the semi-definite ground truth Laplacian matrix is equal to
the number of clusters k, the ground truth Laplacian ma-
trix has k positive eigenvalues and n − k zero eigenval-
ues. Since L∗ approximates the ground truth Laplacian ma-
trix and the rank of L∗ is expected to be k, λ∗k+1 ≈ 0,

|λ(a)
k − λ∗k+1| ≈ λ

(a)
k . Given the Laplacian matrix of each

view, δ can be seen as a constant. Therefore, the formulation
to make the clustering result on the a-th view close to the
consensus clustering result can be reduced to Eq.(3), where
μa is the weight of the a-th view.

min
μ

nv∑
a=1

‖L∗V (a)
k − V

(a)
k Σ

(a)
k ‖2F

s.t.L∗ =
nv∑
a=1

μaL
(a),

nv∑
a=1

μa = 1, μa ≥ 0

(3)

Cluster Ability Smoothness If the spectral clustering re-
sults on two views are almost the same, i.e., the cluster abil-
ity of corresponding eigenvectors are almost the same, the
weights of the two views should have little difference. As
shown in the previous section, the largest canonical angle
between subspaces spanned by the eigenvectors indicates the
similarity of the cluster ability, i.e., the smaller the largest
canonical angle is, the more similar the cluster ability is.
Thus, the difference in weight between the views should be
small if the largest canonical angle between corresponding
subspaces is small.

Mathematically, let Cab ∈ [0, π] be the largest canonical
angle between subspaces of the a-th view and the b-th view,
Rab = π − Cab, we try to optimize Eq.(4),

min
μ

1

2

∑
ab

Rab(μa − μb)
2 = min

μ
μTQμ (4)

where μ = [μ1, μ2, · · · , μnv
]T , μa is the weight of the a-th

view, Q = P −R, P = diag(p1, ..., pnv
), pa =

∑nv

b=1 Rab.

Overall Objective Combining the above two aspects, the
overall objective function of the proposed weighting scheme
is formulated as Eq.(5),

min
μ

nv∑
a=1

‖L∗V (a)
k − V

(a)
k Σ

(a)
k ‖2F + ημTQμ+ βμ2

s.t.L∗ =
nv∑
a=1

μaL
(a),

nv∑
a=1

μa = 1, μa ≥ 0

(5)
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The last part of Eq.(5) regularizes the weight of each view,
which ensures that each view contributes to the consensus
Laplacian matrix. η and β respectively show the importance
of the last two parts. Given η and β, in Eq.(5), the only
variable is the weight of each view. Furthermore, Eq.(5) is
turned to Eq.(6) by dropping the terms irrelevant to μ,

μT (

nv∑
a=1

T (a) + βI + ηQ)μ− 2μT (

nv∑
a=1

Y (a))

s.t.T
(a)
ij = tr(L(i)V

(a)
k V

(a)T
k L(j)T ), i, j ∈ {1, ..., nv}

Y
(a)
i = tr(L(i)V

(a)
k Σ

(a)T
k V

(a)T
k ), i ∈ {1, ..., nv}

nv∑
a=1

μa = 1, μa ≥ 0

(6)

where Y (a) is nv dimensional and T (a) ∈ Rnv×nv .
It is easy to see that Eq.(6) is a standard quadratic pro-

gramming problem with respect to μ and can be solved by
classical techniques, e.g. the tool quadprog in Matlab.

The Algorithm

Summarizing the former analysis, we give the algorithm
framework in Algorithm 1. Compared with single view spec-
tral clustering which clusters each view separately, WMSC
adds the step of calculating nv-dimensional μ using Eq.(6).
The computational complexity of constructing Eq.(6) (in-
cluding construct T (a), Y (a) and Q) is O(n3

vn
2k). The com-

putational complexity of solving Eq.(6) is O(n3
v). Gener-

ally, since nv � n and k � n, calculating μ does not in-
crease the computational complexity of spectral clustering
(O(n3)). For large-scale data, the large-scale spectral clus-
tering methods, e.g. sampling based methods (Zhang et al.
2016) (Li et al. 2015), can be applied to speed up WMSC.

Algorithm 1 WMSC algorithm

Require: X = {X(1), X(2), · · · , X(nv)}: the multi-view
dataset

Ensure: label: the labels of each data
1: Calculate the normalized Laplacian matrix L(a) of the

a-th view, a ∈ {1, 2, · · · , nv};
2: Calculate the eigendecomposition of L(a) to obtain V (a)

and Σ
(a)
k , a ∈ {1, 2, · · · , nv};

3: Calculate μ according to Eq.(6);
4: Calculate L∗ according to Eq.(2);
5: Run spectral clustering on L∗ and get label of X .

Experiment

Datasets

We experiment on four benchmark datasets: ThreeSources1,
UCI Handwritten digits data2, Flickr (Liu et al. 2015) and

1http://mlg.ucd.ie/datasets/3sources.html
2https://archive.ics.uci.edu/ml/datasets/Multiple+Features

Cornell3. ThreeSources contains 169 news in six topics.
The news are collected from three well-known online news
sources. Each source is treated as one view. UCI Hand-
written digits data consists of 2000 examples represented
in three views: 76 Fourier coefficients of the character
shapes, 240 pixel averages in 2 x 3 windows and 47 Zernike
moments. Flickr contains 1028 images represented in two
views: image-tag view and image-user view. The images are
divided into eight categories. Cornell is composed of 226
web pages collected from Cornell University. A web page is
made of two views: the text on it and the anchor text on the
hyperlinks pointing to it.

The statistics of the datasets are summarized in Table 1.

Table 1: Statistics of the datasets.
Dataset # instance # view # cluster

ThreeSources 169 3 6
Handwritten 2000 3 10

Flickr 1028 2 8
Cornell 226 2 4

Baselines

We compare the performance of the following methods.

• Single view spectral clustering: SC (Ng, Jordan, and
Weiss 2002). We run spectral clustering and report the
clustering result on each view. The clustering result on
the i-th view is referred to as SC(i).

• Spectral clustering on data with concatenated features of
all the views: ConcatSC.

• Unweighted multi-view spectral clustering: Coregspectral
(Kumar, Rai, and Daume 2011), RMSC (Xia et al. 2014)
and MVSC (Zhou and Burges 2007).

• Weighted multi-view spectral clustering (or kernel k-
means): MVSpec (Tzortzis and Likas 2012), MKSC (Guo
et al. 2014), AASC (Huang, Chuang, and Chen 2012a),
LMKC (Li et al. 2016) and the proposed method WMSC.

Settings

Two common evaluation metrics, accuracy (ACC) and nor-
malized mutual information (NMI) (Xu, Liu, and Gong
2003), are used to evaluate the performance of the proposed
algorithm and the baselines. To avoid the randomness, we
run all the algorithms 30 times and report their average val-
ues.

All methods use Gaussian kernel to calculate the similar-
ity matrix where the scale parameter is set as the median
of the pairwise Euclidean distances between the data points
(Kumar, Rai, and Daume 2011).

For the baselines, we set the parameters by the grids sug-
gested in the original papers. In our weighting scheme, two
parameters β and η need to be set. To balance every part, we

3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/
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Table 2: ACC on all the datasets.
Algorithm\Dataset ThreeSources Handwritten Flickr Cornell

SC(1) 0.562±0.000 0.711±0.000 0.404±0.020 0.575±0.000
SC(2) 0.576±0.005 0.668±0.009 0.375±0.010 0.677±0.000
SC(3) 0.514±0.020 0.566±0.000 – –
SC-cat 0.562±0.000 0.558±0.003 0.424±0.040 0.575±0.000

Coregspectral 0.596±0.031 0.822±0.000 0.451±0.009 0.734±0.073
RMSC 0.485±0.000 0.798±0.002 0.447±0.005 0.597±0.049
MVSC 0.525±0.042 0.776±0.015 0.415±0.014 0.586±0.035

MVSpec 0.592±0.000 0.768±0.000 0.398±0.000 0.743±0.000
MKSC 0.601±0.008 0.696±0.000 0.426±0.009 0.747±0.002
AASC 0.580±0.010 0.720±0.050 0.408±0.013 0.649±0.066
LMKC 0.568±0.000 0.868±0.000 0.456±0.000 0.615±0.000
WMSC 0.630±0.014 0.871±0.000 0.462±0.012 0.779±0.000

initially set the parameters by Eq.(7). Then, β̃ and η̃ are set
by the grid {0.02, 0.04, ..., 0.18, 0.2}.

β = β̃∗ ||
∑

v T
(v) +Q||F

||I||F ; η = η̃∗ ||
∑

v T
(v) + I||F

||Q||F (7)

Clustering Results

The clustering results in terms of ACC and NMI are reported
in Table 2 ∼ Table 3. In each column of the two tables, the
best result is highlighted in boldface. From the results, the
following points can be observed.

Firstly, on each multi-view dataset, the results of single
view spectral clustering vary with the views. For example,
on the ThreeSources dataset, the difference in ACC between
the best view and the worst view is 6.2%, and the differ-
ence in NMI between the best view and the worst view is
6.9%. In particular, on the Cornell dataset, the difference in
ACC between the best view and the worst view is 10.2%, but
the difference in NMI between the best view and the worst
view is 37.6%. The possible reason why ACC and NMI have
such a big difference is that the cluster structure of Cornell
is unbalanced. According to the definition of ACC and NMI,
ACC is big as long as most points in the same cluster are as-
signed to the large cluster, however, NMI will be low if the
other points are assigned arbitrarily. The above phenomenon
conforms our observation that the views are diverse. More-
over, WMSC performs better than the single view results,
which indicates that the multiple views are complementary.
It is reasonable to ensemble multiple views.

Secondly, WMSC outperforms the unweighted multi-
view spectral clustering algorithms. WMSC outperforms the
unweighted methods in terms of both ACC and NMI on
each dataset. Taking ACC for example, the ACC of WMSC
raises 3% on the ThreeSources dataset, 5% on the Hand-
written dataset, 1% on the Flickr dataset, 4% on the Cornell
dataset. It can be concluded that it is rational to discriminate
the views using spectral perturbation theory.

Finally, the other weighted methods do not show appar-
ent superiorities over the unweighted ones. For instance,
on average, the NMI of Coregspectral is greater than that
of LMKC. It is because that these weighting schemes do

not consider the spectral perturbation of spectral cluster-
ing. This indicates that the other weighting schemes are not
very effective. WMSC not only performs better than the
unweighted methods, but also performs better than other
weighted methods in terms of both ACC and NMI on all
the datasets.

In summary, it can be concluded that WMSC generally
performs the best among the competitive methods for clus-
tering multi-view data.

Weight Analysis

For each weighted multi-view clustering algorithm, we re-
port the weight of each view in Table 4.

For the algorithms MVSpec, MKSC and AASC, we find
that the weight of each view is nearly the same on most
datasets and the weights are inconsistent with the cluster-
ing results on the other datasets. For example, for the Flickr
dataset, the first view performs better than the second view,
but the weight of the first view is smaller than that of the sec-
ond view. What is more, the weights of MKSC and AASC
are negative on the Cornell dataset, which does not accord
with the common sense of weighting. For the algorithm
LMKC, the weight of each view is consistent with the clus-
tering result on each dataset, i.e., the better the clustering
result is, the greater the weight is. However, the weight dif-
ferences of LMKC are not as apparent as those of WMSC.

For the algorithm WMSC, on the Handwritten, Flickr and
Cornell datasets, the better the clustering result is, the greater
the weight is. On the ThreeSources dataset, the second view
performs the best among the three views and has the great-
est weight. The first view performs better than the third view,
however the weight of the first view is less than that of the
third view by 0.0213. Generally, the weight of each view is
almost proportional to its clustering result, which conforms
the fact that a view is more important if it has better cluster-
ing performance.

In summary, the proposed weighting scheme is the best
one. WMSC simultaneously exploits the complementary in-
formation of all the views and derives a satisfactory cluster-
ing result.
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Table 3: NMI on all the datasets.
Algorithm\Dataset ThreeSources Handwritten Flickr Cornell

SC(1) 0.468±0.000 0.647±0.001 0.414±0.010 0.093±0.000
SC(2) 0.500±0.009 0.625±0.001 0.362±0.015 0.469±0.000
SC(3) 0.431±0.008 0.497±0.000 – –
SC-cat 0.514±0.000 0.487±0.001 0.414±0.019 0.093±0.000

Coregspectral 0.525±0.007 0.750±0.000 0.436±0.012 0.520±0.058
RMSC 0.441±0.000 0.735±0.002 0.471±0.004 0.418±0.013
MVSC 0.476±0.036 0.717±0.011 0.436±0.027 0.256±0.171

MVSpec 0.501±0.000 0.715±0.000 0.376±0.000 0.501±0.000
MKSC 0.530±0.006 0.649±0.000 0.456±0.012 0.505±0.008
AASC 0.505±0.020 0.663±0.057 0.410±0.029 0.247±0.170
LMKC 0.505±0.000 0.786±0.000 0.420±0.000 0.434±0.000
WMSC 0.553±0.007 0.800±0.001 0.481±0.005 0.564±0.000

Table 4: Weight of each view.

ThreeSources Handwritten Flickr Cornell
SC(1) SC(2) SC(3) SC(1) SC(2) SC(3) SC(1) SC(2) SC(1) SC(2)

MVSpec 0.3382 0.3227 0.3391 0.3333 0.3333 0.3333 0.3676 0.6324 0.5000 0.5000
MKSC 0.3286 0.3458 0.3256 0.2552 0.2611 0.4837 0.4246 0.5754 -1.5946 2.5946
AASC 0.3333 0.3340 0.3327 0.3316 0.3345 0.3339 0.5116 0.4884 1.0639 -0.0639
LMKC 0.2978 0.3906 0.3116 0.4097 0.4806 0.1097 1.0000 0.0000 0.4433 0.5567
WMSC 0.2047 0.5666 0.2260 0.4806 0.3905 0.1289 0.6534 0.3466 0.2766 0.7234

Parameter Study

WMSC introduces two parameters β̃ and η̃. In Figure 2, we
experimentally show the effect of each parameter on the per-
formance of WMSC. Figure 2(a) shows the NMI of WMSC
on each dataset by varying β̃ in {0.02, 0.04, ..., 0.18, 0.2}
with η̃ = 0.02. Figure 2(b) shows the NMI of WMSC on
each dataset by varying η̃ in {0.02, 0.04, ..., 0.18, 0.2} with
β̃ = 0.02.

From this figure, we find that WMSC has better per-
formance on all the datasets when β̃ ∈ [0.08, 0.14] and
η̃ ∈ [0.08, 0.16]. These results indicate that the performance
of WMSC is stable across a wide range of parameters.

Running Time Study

The computational complexity of WMSC has been analyzed
in previous section (please refer to the original papers for the
computational complexities of the baselines). In Figure 3,
we compare the runing time of the proposed algorithm and
the baselines. WMSC consumes less time than RMSC and
LMKC on all the datasets, and consumes more time than
MVSC and MVSpec on all the datasets. Compared with
other algorithms, sometimes WMSC consumes more time
and sometimes WMSC consumes less time, e.g., WMSC
consumes more time than Coregspectral on the Handwritten
dataset but consumes less time than Coregspectral on the
ThreeSources dataset. Therefore, we can conclude that the
time needed by WMSC is medium among all the methods.

Related Work

Multi-view clustering algorithms integrate multiple compat-
ible and complementary features to improve the clustering

performance. It is challenging to find a suitable way of si-
multaneously exploiting the complementary information of
all the views in order to derive a satisfactory partition. Spec-
tral clustering (Luxburg 2007) based multi-view methods
have attracted much attention in the past decades.

From a weighted perspective, existing multi-view spectral
clustering algorithms can roughly be grouped into two cat-
egories. The first one equally treats each view. The work in
(de Sa 2005) created a bipartite graph based on the nodes
co-occurring in both views and found a cut that crosses the
fewest lines by using spectral clustering. The work in (Zhou
and Burges 2007) generalized the normalized cut from a sin-
gle view to multiple views via a random walk. Kumar et
al. (Kumar, Rai, and Daume 2011) integrated multiple in-
formation by co-regularizing the clustering hypotheses. The
work in (Kumar and Daumé 2011) reconstructed the simi-
larity matrix of one view by using the eigenvectors of the
Laplacian in other views. Xia et al. (Xia et al. 2014) con-
ducted Markov chain based spectral clustering and learned
the consensus transition probability matrix via low-rank and
sparse decomposition. Li et al. (Li et al. 2015) approximated
the similarity graphs using bipartite graphs. (Lu, Yan, and
Lin 2016) boosted the clustering performance by using the
multi-view information and sparse regularization. The work
in (Lee and Liu 2016) learned an augmented view and con-
structed the corresponding affinity matrix from a spectral de-
composition of an information-rich matrix. Feng et al. (Feng
et al. 2017) proposed a novel multi-view clustering algo-
rithm via robust local representation. The second one assigns
the views different weights. The work in (Guo et al. 2014)
learned a linear combination of multiple kernels and deter-
mined the coefficient by minimizing the kernel alignment
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Figure 3: Running Time Study

between the learned kernel and the kernel of each view. The
work in (Tzortzis and Likas 2012) learned a weighted com-
bination of the kernels in parallel to clustering. Huang et al.
(Huang, Chuang, and Chen 2012a) sought for an optimal
combination of affinity matrices so that it is more immune
to ineffective affinities and irrelevant features. Zong et al.
(Zong et al. 2016) learned a unified similarity matrix from
multiple locally linear neighborhood.

Multi-view spectral clustering is related to multiple ker-
nel k-means in terms of kernel combination. Multiple kernel
k-means integrates a group of pre-specified kernels to im-
prove performance of k-means. Yu et al. (Yu et al. 2011) pre-
sented a novel optimized kernel k-means algorithm to com-
bine multiple data sources for clustering analysis. The work
in (Huang, Chuang, and Chen 2012b) incorporated multi-
ple kernels and automatically adjusted the kernel weights.
The work in (Gönen and Margolin 2014) combined kernels
calculated on the views in a localized way to better capture
sample-specific characteristics of the data. The work in (Lu
et al. 2014) employed an effective kernel evaluation mea-
sure to unify two tasks of clustering and MKL into a single
optimization framework. Du et al. (Du et al. 2015) simulta-
neously found the best clustering label, the cluster member-
ship and the optimal combination of multiple kernels. The
work in (Li et al. 2016) learned a weighted combination of
the kernels with a local kernel alignment. The work in (Liu
et al. 2016) proposed to learn a unified kernel by reducing

the redundancy and enhanced the diversity of the selected
kernels.

To the best of our knowledge, the proposed algorithm
is the first one to use spectral perturbation theory for view
weighting.

Conclusion

Most multi-view clustering algorithms treat the views
equally, however, it is rational to weight the views according
to their contributions to the consensus result. In this paper,
we have proposed a principled weighted multi-view spec-
tral clustering algorithm which weights the views based on
spectral perturbation theory. The weighting scheme tries to
make the clustering result on each view close to the con-
sensus clustering result, and smooth the weights with simi-
lar cluster ability. It is formulated into a standard quadratic
programming problem. Experimental results show that the
proposed algorithm outperforms typical single-view spectral
clustering algorithms, unweighted multi-view spectral clus-
tering algorithms and existing weighted multi-view spectral
clustering algorithms, thus is effective for clustering multi-
view data.
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