
Predictive Coding Machine
for Compressed Sensing and Image Denoising

Jun Li,1 Hongfu Liu,1 Yun Fu1,2

1Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.
2College of Computer and Information Science, Northeastern University, Boston, MA, 02115, USA.

junl.mldl@gmail.com, liu.hongf@husky.neu.edu, yunfu@ece.neu.edu

Abstract

Sparse and low rank coding has widely received much atten-
tion in machine learning, multimedia and computer vision.
Unfortunately, expensive inference restricts the power of cod-
ing models in real-world applications, e.g., compressed sens-
ing and image deblurring. In order to avoid the expensive
inference, we propose a predictive coding machine (PCM)
which aims to train a deep neural network (DNN) encoder to
approximate the codes. By this means, a test sample can be
fast approximated by the well-trained DNN. However, DNN
leads PCM to be a non-convex and non-smooth optimiza-
tion problem, which is extremely hard to solve. To address
this challenge, we extend accelerated proximal gradient for
PCM by steering gradient descent of DNN. To the best of
our knowledge, we are the first to propose a gradient descent
algorithm guided by accelerated proximal gradient for solving
the PCM problem. Besides, a sufficient condition is provided
to ensure the convergence to a critical point. Moreover, when
the coding models are convex in PCM, the convergence rate
O(1/(m2

√
t)) can be held in which m is the iteration number

of accelerated proximal gradient, and t is the epoch of training
DNN. Numerical results verify the promising advantages of
PCM in terms of effectiveness, efficiency and robustness.

Introduction

Many sparse and low rank coding models have attracted
much attention over the last decade with numerous ap-
plications in different domains, such as multimedia (Tian
et al. 2016), statistics (Cai, Zhang, and Xu 2014), ma-
chine learning (Bruckstein, Donoho, and Elad 2009) and
computer vision (Li, Li, and Fu 2014; Luo et al. 2017;
Liu et al. 2013). In the coding methods, l0-norm and rank are
usually relaxed by l1-norm and nuclear norm, respectively, as
they lead to the convex optimization problem in many com-
mon practices (Yun 2014). Some coding algorithms approach
the sparse and low rank solutions by successively alternat-
ing one or more components, such as iterative shrinkage and
thresholding algorithm (ISTA) (Daubechies, Defrise, and Mol
2004), gradient projection for sparse reconstruction (GPSR)
(Figueiredo, Nowak, and Wright 2007), �1 �s (Kim et al.
2007), and adaptively iterative thresholding (AIT) (Wang et
al. 2015a). Moreover, some faster version algorithms, such

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as accelerated proximal gradient method (APG) (Beck and
Teboulle 2009), and fast low rank representation (Xiao et al.
2015) are presented to accelerate the performance of these
algorithms. However, the iterations lead to the expensive in-
ference because the inference requires some sort of iterative
minimization algorithms. Thus, these sparse and low rank
coding models are difficult to fast compute the codes.

In order to overcome this shortcoming, some predictive
models, such as, predictive sparse decomposition (PSD)
(Kavukcuoglu, Ranzato, and LeCun 2008; Wang, Ling, and
Huang 2016; Li, Kong, and Fu 2017) and predictive non-
negative matrix factorization (PNMF) (Sprechmann, Bron-
stein, and Sapiro 2015), are presented by learning a deep
neural network (DNN) encoder from the observed data to
their representations. Unfortunately, these models have the
following limitations in both theory and application.

First, PSD and PNMF are two special cases in the pre-
dictive models as they learn DNN encoders to approximate
to the �1 codes and the non-negative matrix factorization,
respectively. In fact, many other sparse or low rank codes,
which are implemented by �0, �1 �s (Kim et al. 2007), or
nuclear norms (Liu et al. 2013), still need to learn DNN en-
coders for fast inference. Thus, the new predictive models
are in want of a normal model to unify them.

Second, there is no strict theoretical foundation to guaran-
tee the convergence of the predictive models. They are empir-
ically implemented by alternately using ISTA (Daubechies,
Defrise, and Mol 2004) to optimize the sparse or low-rank
codes, and employing the gradient descent (GD) algorithm
(Haykin 2009) to learn a DNN encoder to approximate the
codes. However, these works do not provide the theoretical
guarantee. Therefore, we will develop theoretical conditions
to ensure that the models are convergence to a critical point.

Third, the existing predictive models are usually ap-
plied in the classification tasks, including object recogni-
tion (Kavukcuoglu et al. 2009), medical image classification
(Chang et al. 2013) and video classification (Farabet et al.
2011). Recently, the predictive sparse model, named sparse
coding based network (SCN), also has been applied into
image resolution (Wang et al. 2015b). The network param-
eters of these models are trained by using the learned ISTA
(LISTA) (Gregor and LeCun 2010). Unfortunately, LISTA
is a slower algorithm since APG has faster convergence rate
than ISTA (Beck and Teboulle 2009). Therefore, these appli-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3506

cations drive us to extend APG to accelerate the convergence
of the predictive models.

In this paper, we focus on accelerating the convergence of
the predictive models, and providing their theoretical conver-
gence guarantee. To achieve this, we propose a general model
named predictive coding machine (PCM), which learns a
DNN encoder to approximate the representations (such as �1
norm and nuclear norm). A representation of a test sample
can be fast approximated by the well-trained DNN. To obtain
high convergence rate of PCM, we extend APG for the PCM
optimization problem to guide a gradient descent algorithm
of DNN. Moreover, a sufficient condition is provided to en-
sure the convergence to a critical point. In addition, PCM is
more efficiently applied into compressed sensing and image
denoising. Numerical results verify the promising advantages
of PCM in terms of effectiveness, efficiency and robustness.
We highlight our contributions as follows.

• We develop a predictive coding machine to quickly calcu-
late the sparse and low-rank codes because it only com-
putes an efficient DNN encoder instead of many optimiza-
tion iterations. We also propose a gradient descent algo-
rithm guided by accelerated proximal gradient (GDgAPG)
for the non-convex and non-smooth PCM model.

• A sufficient condition is provided to ensure the conver-
gence to a critical point. When the coding models are con-
vex, GDgAPG maintains the convergence rate O(1/T 2) ≤
O(1/(m2

√
t)) ≤ O(1/

√
T), in which T = mt is the num-

ber of iterations, m is the number of updating APG, and t
is the epoch of training DNN.

• We empirically confirm that PCM is more robust than
other coding methods in compressed sensing and image
denoising. A plausible reason is that the “good” weights
(nonlinear filters) of DNN can filter out the heavy noises
of the input images.

Notation. For a vector x ∈ R
p, the �1-norm, �2-norm, and

square of �2-norm are denoted by ‖x‖1, ‖x‖2, and ‖x‖22. For
a matrix X ∈ R

p×n, nuclear norm, F-norm, and square of
F-norm are denoted by ‖X‖∗, ‖X‖F, ‖X‖2F.

Predictive Coding Machine (PCM)

In this section, a general formulation of PCM is firstly built.
Secondly, we propose a GD guided by APG (GDgAPG) al-
gorithm for the nonconvex and nonsmooth PCM, Thirdly, we
establish the convergence guarantee and the O(1/(m2

√
t))

convergence rate. Finally, a matrix form of sparse PCM is
introduced for compressed sensing and image denoising.

Problem formulation

The sparse coding models (Beck and Teboulle 2009) is popu-
larly written as the following convex optimization problem:

min
x∈Rp

‖Ax − y‖22 + λ‖x‖1, (1)

where A ∈ R
d×p is the dictionary, y ∈ R

d (Y ∈ R
d×n) is the

input data (data matrix), and λ is the regularization parameter.
The problem (1) is classically trained by ISTA (Daubechies,
Defrise, and Mol 2004) and APG (Beck and Teboulle 2009)

Figure 1: Framework of PCM.

in both theory and practice. To avoid the expensive inference,
PSD (Kavukcuoglu, Ranzato, and LeCun 2008; Wang, Ling,
and Huang 2016) is presented by learning a deep neural
network to approximate the sparse representations. Similar to
PSD, predictive non-negative matrix factorization (PNMF) is
also proposed for classification tasks (Sprechmann, Bronstein,
and Sapiro 2015). Although some alternating minimization
algorithms work well in practice, the convergence guarantee
of PCM is not provided in the related literature (Gregor and
LeCun 2010; Sprechmann, Bronstein, and Sapiro 2015).

In order to build a general form, the problem (1) is naturally
generalized to the following problem (Li and Lin 2015):

min
x∈Rp

f(x) + g(x), (2)

where f is smooth convex function, and g can be nonsmooth
convex function. For example, f(x) = ‖Ax−y‖22 and g(x) =
λ‖x‖1 for sparse coding. When considering data matrix Y,
f(X) = ‖AX−Y‖22 and g(X) = λ‖X‖∗ for low-rank coding.
Unfortunately, the problem (2) shown in the green arrow of
Fig. 1 is usually solved by ISTA and APG, which lead to the
expensive inference.

We aim to extend the problem (2) to PCM by learning a
DNN encoder shown in the purple arrow of Fig. 1 to approx-
imate the sparse (or low-rank) codes x. The DNN encoder
de(θ) is formalized as:

x = de(θ) = s(WL · · · s(W2y)), (3)

where θ = {W2, · · · ,WL} ∈ R̂ = {Rh2×h1 , · · · ,
R

hL×hL−1} collectively designates all the trainable param-
eters in the DNN encoder, hi is the number of units in the
ith layer (h1 = d and hL = p), L is the number of lay-
ers, and s is the activation function (such as sigmoid, tanh
and ReLU). For example, a four-layer neural network is
de(θ) = s(W4s(W3s(W2y))). By using de(θ) to replace
x in the problem (2), PCM is considered as the following
general problem:

min
θ∈̂R

{F(θ) =: f (de(θ)) + g (de(θ))} . (4)

Moreover, the whole framework of PCM is shown in Fig. 1.

GD guided by APG (GDgAPG)

The problem (4) is a big challenge because the DNN en-
coder leads to be a non-convex and non-smooth problem.
An effective strategy is to alternate the optimizing codes
and the training DNN. Fortunately, the accelerated prox-
imal gradient (APG) method (Beck and Teboulle 2009;
Li and Lin 2015) and the gradient descent (GD) method
(Gregor and LeCun 2010; Li, Chang, and Yang 2015;

3507

Li et al. 2016) are the excellent algorithms for optimizing
codes and training the DNN encoder, respectively. To extend
APG to steer GD, we propose a GDgAPG algorithm to solve
the problem (4). The alternative update procedure is shown
in Fig. 2. More specially, our algorithm at m-th iteration
consists of the following steps:
• Step 1: Given θm, xm is easily calculated by

xm = de(θm). (5)

• Step 2: The objective function F(θm) can be written as a
classical problem:

F(θm) = F (x; xm) =: f(x) + g(x). (6)

F (x; xm) is easily solved by the APG method. The key
steps are as follow:

zm+1 = proxαmg (x − αm∇f(x)) , (7)

βm+1 =

√
4β2

m + 1 + 1

2
, (8)

x̃m+1 = zm+1 +
βm − 1

βm+1
(zm+1 − zm), (9)

where αm can be fixed constants satisfying αm < 1
Lf

, Lf

is the Lipschitz constant of f , and proximal mapping is
defined as proxαg(z) = argminu g(u) +

1
2α‖x − u‖22.

• Step 3: θm+1 can be obtained by using the least squares
error ‖xm − x̃m+1‖22 to train the DNN encoder (5). By
employing a gradient descent (GD) algorithm to minimize
this error, θ1m = θm, and θ1m is updated as:
repeat i = 1, 2, 3, · · · , tm = 1

(ω‖zm+1−x̃m‖2
2)

2

θi+1
m = θim − η

∂‖xm − x̃m+1‖22
∂θim

, (10)

θm+1 = θi+1
m ,

until ‖xm+1 − x̃m+1‖22 < ω‖zm+1 − x̃m‖22, where the

step-size ηm =
√

2|xm−x̃m+1|
Ldρ2tm

, a ρ-bounded gradient is

‖∇xm‖22 = ‖∇de(θ)‖22 < ρ2, ω <

√
1−αmLf√

αmLF+
√

1−αmLf

,

Ld and LF are the Lipschitz constants of de and F .
The whole procedure iterates three steps until a stopping

criteria criterion is met. The complete optimization procedure
of GDgAPG is summarized in Algorithm 1. We can get
the weights θ̂ after Algorithm 1. A code x̂ can be quickly
calculated by the DNN encoder x̂ = de(θ̂) given a test sample
yt. Compared to the traditional coding models, the inference
time is still very fast due to just one calculation of DNN.

Here we focus on sparse PCM problem (1) since sparse
coding has been successfully applied in compressed sensing
and image denoising. In the DNN encoder (3), we consider
the liner activation function in the top layer because it leads
to a closed-form solution for the weights WL given other
weights {W2, · · · ,WL−1} (Li, Chang, and Yang 2015; Li
et al. 2016). Thus, sparse PCM can be formulated as the
following problem:

min
θ∈̂R

{F(θ) =: ‖Ade(θ)− Y‖2F + λ‖de(θ)‖1
}
, (11)

Algorithm 1 PCM via GD guided by APG.
1: Initialize: θ1 is initialized with small random val-

ues, x1 = x0 = de(θ1), αm < 1
Lf

, λ = 0.1,

ω <

√
1−αmLf√

αmLF+
√

1−αmLf

, ηm =
√

2|xm−x̃m+1|
Ldρ2Tm

,

‖∇de(θ)‖22 < ρ2, and tm = 1
(ω‖zm+1−x̃m‖2

2)
2 ,

2: for m = 1, 2, 3, · · · do
3: update xm by xm = de(θm),
4: update zm+1, βm+1, x̃m+1 by Eqs. (7), (8) and (9),
5: repeat i = 1, 2, 3, · · · , tm
6: update θi+1

m by Eq. (10),
7: update θm+1 = θi+1

m ,
8: until ‖x̃m+1 − xm+1‖22 < ω‖zm+1 − x̃m‖22.
9: end for

10: Return solutions θ̂ = θm+1.

Figure 2: Procedure of updating xm, x̃m and θm.

where A is the dictionary, λ is the regularization parame-
ter. The problem (11) can be easily solved by Algorithm 1.
In practice, the weights θ are trained by implementing the
gradient descent algorithm, and �1 norm is solved by the
shrinkage-thresholding operator, where Sε[·] is defined as:

Sε[x] =

{
x− ε, if x > ε
x+ ε, if x < ε
0, otherwise

. (12)

Remark 1. When considering low-rank coding (Zhang et
al. 2015; Liu et al. 2013), low-rank PCM also combines it
with a DNN encoder. Solution of low-rank PCM is similar
to sparse PCM. The shrinkage-thresholding operator (12)
is only changed as a Singular Value Thresholding (SVT)
operator (Cai, Candés, and Shen 2010).

Convergence Guarantee

We study the convergence guarantee of Algorithm 1. We
provide a sufficient condition to ensure the convergence to
a critical point, and prove that PCM has a convergence rate
O(1/(m2

√
t)), where m is the iteration number of APG, and

t = max{tm} is the epoch of training DNN.
After Step 3 in Algorithm 1, there is an error em+1 between

the true x̃m+1 and the approximation xm+1 = de(θm+1). For
convenience, the error are denoted as em+1 = xm+1− x̃m+1.
Keeping the next iteration, m = m + 1, we have xm =
x̃m + em after Step 1. So, even if there exists an error, the
key point is to make sure sufficient descent, which means

F (xm+1) ≤ F (xm)− κ‖zm+1 − xm‖22, (13)

where κ > 0 is a small constant. For ensuring the conver-
gence to a critical point, we present our theorem as follow.

3508

Theorem 11. Let f and de be proper functions with Lips-
chitz continuous gradients, and g be proper and lower semi-
continuous function. For convex f and g, and nonconvex de,
assume that F(θ) is coercive. Then {θm} and {xm} gener-
ated by Algorithm 1 are bounded. Let θ̂ be any accumulation
point of {θm}, we have 0 ∈ ∂F(θ̂), i.e., θ̂ is a critical point.

Actually, Theorem 1 can still be held even if f and g
are noncovex. Next, we study the convergence rate of our
GDgAPG algorithm. It is well-known that APG (Beck and
Teboulle 2009) and GD (Reddi et al. 2016) have respec-
tively the convergence rate O(1/m2) and O(1/

√
t). Because

GDgAPG employs APG to guide GD to train DNN, by com-
bining APG with GD, the proposition is shown as follow:

Proposition 1. For convex functions f and g, and non-
convex function de, we assume that ∇f and de are Lips-
chitz continuous. Let {xm}, {zm}, {x̃m}, and {θtm} be gen-
erated by Algorithm 1. Let θ̂ be any local optimum, and
t = max{tm} be the maximum epoch of the training DNN,
where tm = 1

(ω‖zm+1−x̃m‖2
2)

2 . Then for any m ≥ 1,

F (θtm+1)−F (θ̂) ≤ (1− ω)ρLd‖y‖22
αm(m+ 1)2

√
t
‖θ11 − θ̂‖22, (14)

where ω is defined in Eq. (10), a ρ-bounded gradient is
‖∇de(θ)‖22 < ρ2, αm can be fixed constants satisfying
αm < 1

Lf
, Lf and Ld are Lipschitz constants of f and de.

Remark 2. Based on Proposition 1, GDgAPG has a con-
vergence rate O(1/(m2

√
t)). Moreover, it is improved as

O(1/(
√
2m2)) since we only trained the DNN encoder 1 or

2 times in every APG iteration. Clearly, GDgAPG is better
than the convergence rate O(1/(m

√
t)) of LISTA (Gregor

and LeCun 2010) as LISTA is a non-accelerating case. In
addition, there is no convergence guarantee for LISTA.

Remark 3. In essence, our GDgAPG is a whole gradient
descent of F(θ) to solve the problem (4) since both GD and
APG are the gradient methods. Similarly, LISTA (Gregor
and LeCun 2010) is also a whole gradient descent method
of F(θ). However, LISTA uses ISTA (Daubechies, Defrise,
and Mol 2004) to train the DNN encoder, which has a lower
convergence rate O(1/(m

√
t)) in Remark 2. Our GDgAPG

employs APG to guide GD for learn the DNN encoder and
has a fast convergence as APG has a faster convergence rate
O(1/m2) than ISTA O(1/m).

Remark 4. Although de with ReLU does not satisfy the
Lipschitz continuous gradients assumption, it is very popular
activation function in practice (Glorot, Bordes, and Bengio
2011; Li et al. 2017). In fact, ReLU has some advantages for
the deep networks. For example, 1) it can easily obtain sparse
representations; 2) ReLU does not hurt the optimization of
the deep networks; 3) the objection function with ReLU is
empirically convergent (Glorot, Bordes, and Bengio 2011;
Li et al. 2017).

Remark 5. In addition, some deep models are also used
to improve the performance of the coding models. There are
some works to integrate the sparse or low-rank coding models

1The proofs of Theorem 1 and Proposition 1 are provided in
supplementary materials.

with the deep feathers or deep models (Ding, Nasrabadi, and
Fu 2016). However, these integrated models still lack theories
to guarantee the convergence. Fortunately, our convergence
theory also fits for the integrated models.

Numerical Experiments

In this section, we apply sparse PCM (11) on compressed
sensing and image denoising by using our GDgAPG algo-
rithm. The experiments verify that PCM is faster and more
robust than the traditional sparse coding methods. All algo-
rithms were run on Matlab 2015b and Windows 7 with an
Intel Core i5 2.40 GHz CPU and 24GB memory.

Note that the predictive models are difficult to recover
the sparse signals of the any observed measurements (data
points) in compressed sensing and image deblurring since
they train a DNN encoder to approximate to the sparse signals
of the training data points, not any data points. Fortunately,
the predictive models can quickly recover the sparse signals
of the training data points by using the DNN encoder. In
fact, we have two insights. First, we assume the the training
data are enough to sample from the observed data so that
the neural networks learned by the training data can capture
the distribution of all the observed data. Second, we train on
the observed data with low noises, and test on the data with
high noises. This leads to better performance of our proposed
method when facing the data with high noises. A plausible
reason is that the “good” weights (filters) of the DNN encoder
can filter out the heavy noises of the inputs.

Compressed Sensing (CS)

Similar to (Candes and Romberg 2005), we evaluate the
performance of Algorithm 1 through some numerical simu-
lations. We consider the target k-sparse time-domain sig-
nal x ∈ R

p (i.e., p = 256), where k varies in the set
{2, 3, · · · , 10}. We construct 20 signals x with k peaks cho-
sen k locations at random, and created a d× p = 64× 256
measurement matrix A drawn independently from N (0, 1).
The noise vector z is also Gaussian with independent N (0, σ).
The 20 signals x are used to construct 500 training examples,
which are created by y = Ax + z with σ = 0.001. We also
use the 20 signals to create 11 test datasets with σ varying
in the set {0.001, 0.1, 0.2, · · · , 1}, and each dataset contains
500 examples. ReLU is voted as the activation functions. We
measure the relative reconstruction error (RRE) ‖Ax̂−y‖2

‖y‖2
, and

the relative estimation error (REE) ‖x̂−x‖2

‖x‖2
, where x is the

true sparse signal, x̂ is the estimation sparse signal recovered
by (3) with the convergence point θ̂ by using GDgAPG.

In compressed sensing our GDgAPG compares with the
baseline methods, including ISTA (Daubechies, Defrise, and
Mol 2004), APG (Beck and Teboulle 2009), and LISTA (Gre-
gor and LeCun 2010; Sprechmann, Bronstein, and Sapiro
2015). Also, we compare with the traditional sparse coding
algorithm, such as �1-magic2, �1 �s3 and gradient projection
for sparse reconstruction (GPSR)4.

2http://users.ece.gatech.edu/justin/l1magic/
3https://stanford.edu/∼boyd/l1 ls/
4http://www.lx.it.pt/∼mtf/GPSR/

3509

Table 1: Computing time in compressed sensing by second.
test time training time

�1-magic �1 �s GPSR ISTA APG LISTA GDgAPG LISTA GDgAPG
1.5212 7.1873 1.1388 0.4658 0.1164 0.00603 0.00599 5.8782 5.7698

Figure 3: (A) Relative reconstruction error (RRE) with different numbers of hidden units h and regularization parameters λ; (B)
Relative estimation error (REE) with h and λ; (C) REE with different methods and Gaussian noise σ; (D) RRE with iteration m;
(E) REE with iteration m; (F) REE with different layers L and Gaussian noise σ.

In the first experiment we study the parameter analy-
sis. Actually, �1 regularization parameter λ, learning rate
η and the number of hidden units h are the typical pa-
rameters in PCM. η is definitely set as 0.1. We consider
λ ∈ {1, 0.5, 0.1, 0.05, 0.01} and the three layers DNN en-
coder: 64-h-256 (h ∈ {400, 300, 200, 100, 50}) for the pa-
rameter analysis. Fig. 3 (A) and (B) show RRE and REE
with different λ and h, respectively. We observe that λ is
sensitive to the results, while h is smaller than λ. The good
performance is achieved at λ = 0.1 and h = 300, which are
selected in the next experiments.

In the second experiment, we verify the convergence
and sparse recovery with the different layers by using our
GDgAPG algorithm. We consider L = {2, 3, 4, 5} layers
DNN encoder, and the number of hidden units is 300 in each
layer. Fig. 3 (D) and (E) illustrate RRE and REE with the
iterations m, respectively. Compared with APG, we observe
that the signal is recovered to fairly accuracy 0.0156 by using
GDgAPG. This reveals that our GDgAPG in Algorithm 1 suc-
cessfully converges to a critical point. Moreover, Fig. 3 (E)
shows the REE results on the 11 noise datasets. We observe
that good results are obtained with L = 3 (64-300-256).

In the third experiment we compare the robust performance
of Algorithm 1 to the six �1 optimization methods: ISTA,
APG, LISTA, �1-magic, �1 �s, and GPSR. The deep neural
network is robust to the measurement data with high noises
due to the nonlinear transformation. Fig. 3 (C) shows the
relative errors of different methods and σ. We observe that the
average REE of �1-magic, �1 �s, GPSR, ISTA, APG, LISTA,

and GDgAPG are 0.2390, 0.2369, 0.2209, 0.2282, 0.2335
0.1465, and 0.1004, respectively. Moreover, the recovered
signals by ISTA, APG, LISTA, and GDgAPG are plotted in
Fig. S1 in the supplementary materials, and this shows that
GDgAPG is more robust than the other algorithms.

More importantly, LISTA and GDgAPG are always faster
than �1 optimization methods in inference time because they
only compute an efficient DNN encoder once instead of many
optimization iterations. In the test time we compare with
�1-magic, �1 �s, GPSR, ISTA, LISTA, and APG in terms
of the computation time. As shown in Table 1, LISTA and
GDgAPG are many times faster than other algorithms. We
also observe that GDgAPG and LISTA have more training
time than APG and ISTA because they takes some time to
update the weights, and GDgAPG has the lower training time
than LISTA as it needs more iterations for convergence. In
fact, the training time of LISTA and GDgAPG depend on
the structure of DNN, that is, bigger structure, more training
time. Fortunately, although a bigger deep structure brings
more training time, it is still very fast for the test sample.

Image Denoising

We use the ten 256×256 images shown in the top line of Fig.
S2 in supplementary materials to do experiments for imag-
ing denoising. All pixels is normalized to [0, 1]. The training
images are blurred through a Gaussian blur of size 9 and
standard deviation 4 (applied by the MATLAB functions im-
filter) and noised by adding a white Gaussian noise N (0, σ),
where σ = e−4. We also use the blurred method to create 3

3510

Figure 4: (A) RRE with different numbers of hidden units h
and regularization parameters λ; (B) REE with h and λ; (C)
RRE with iteration m; (D) REE with iteration m; (E) REE
with different layers L and Gaussian noise σ; (F) Average
PNSR with L and σ.

test noise images with σ varying in the set {e−3, e−2, e−1}.
The 3 test noise images are shown in three low lines of of
Fig. S2. tanh is voted as the activation function. Similar to
compressed sensing, RRE and REE are used to evaluate our
PCM. We also measure PNSR for image denoising.

Based on the experiment settings (Beck and Teboulle
2009), we then test ISTA, LISTA, APG, and GDgAPG for
solving PCM problem (11), where y represents the 65536
observed image vector, and A = RK, where R is the ma-
trix representing the blur operator and K is the inverse of
a three stage Haar wavelet transform. Moreover, we also
compare with the state-of-the-art denoising methods (e.g.,
Weighted Nuclear Norm Minimization (WNNM)5 (Gu et al.
2017), Estimating Blur Kernel (EBK)6 (Pan et al. 2016), and
sparse coding based network (SCN) (Wang et al. 2015b)).
It is worth mentioning that for the sake of fairness, SCN
is approximatively represented by LISTA in this paper as
SCN is a predictive sparse model which learns the dictionary
and sparse codes by LISTA, while we only focus on the fast
computing sparse codes by DNN learned by GDgAPG.

First, we analyze the parameters λ, η h, and L in
sparse PCM by using our GDgAPG algorithm. η is eas-
ily set as e−5. We consider λ ∈ {e−5, e−6, e−7, e−8}
and the three layers DNN encoder: 65536-h-65536 (h ∈
{100, 300, 500, 800, 1000}) for the parameter analysis. After
600 iterations, RRE and REE with λ and h are shown in
Fig. 4 (A) and (B), respectively. We consider L = {3, 4, 5}
layers DNN encoder, and the number of hidden units is 500
in each layer. Fig. 4 (C) and (D) illustrates RRE and REE

5http://www4.comp.polyu.edu.hk/∼cslzhang/code/
WNNM code.zip

6http://vllab1.ucmerced.edu/∼jinshan/projects/dark-channel-
deblur/

Figure 5: Left: Original cameraman image; Middle: Training
image (Blurred and Gaussian noise with standard deviation
e−4); Right: Deblurring of the training image.

Table 2: Function values and computing time for the test
sample with different noises.

Straw Peppers P.gon Parrots Hat C.man Boats Bike Barbara Baboon Avg.

Blurred & Noisy (σ = e−3)

Noisy 19.04 22.79 21.30 23.32 25.12 21.31 23.41 18.74 22.91 19.39 21.73

GDgAPG 26.76 33.34 30.91 33.11 33.91 31.67 35.41 28.07 33.30 25.91 31.24

LISTA 22.35 28.73 26.57 27.97 29.60 26.64 30.65 22.93 27.76 21.90 26.51

APG 23.73 29.03 27.42 28.56 29.46 27.51 30.59 24.19 28.63 22.81 27.19

ISTA 22.35 28.56 26.50 27.82 29.39 26.53 30.39 22.88 27.63 21.88 26.39

EBK 19.81 23.09 20.96 24.23 26.42 21.73 25.02 19.76 23.28 19.30 22.36

WNNM 18.66 21.77 20.83 22.80 24.74 20.77 22.65 18.08 22.34 19.21 21.18

Blurred & Noisy (σ = e−2)

Noisy 19.07 22.87 21.36 23.41 25.26 21.37 23.51 18.77 22.99 19.43 21.80

GDgAPG 26.76 33.31 30.87 33.06 33.85 31.63 35.31 28.05 33.26 25.88 31.20

LISTA 22.35 28.72 26.56 27.97 29.58 26.63 30.62 22.93 27.76 21.91 26.50

APG 20.45 24.09 23.08 23.78 24.51 23.09 24.68 20.81 23.60 20.23 22.83

ISTA 20.66 25.51 23.86 25.12 26.49 23.84 26.34 21.01 24.60 20.50 23.79

EBK 19.50 20.87 19.67 19.47 19.65 20.07 22.76 18.98 20.23 16.28 19.75

WNNM 18.66 21.77 20.83 22.80 24.74 20.77 22.65 18.08 22.34 19.21 21.18

Blurred & Noisy (σ = e−1)

Noisy 16.50 18.20 17.61 18.39 18.89 17.63 18.44 16.32 18.25 16.70 17.69

GDgAPG 24.04 26.84 26.28 27.62 27.41 27.19 28.94 24.54 26.46 23.90 26.32

LISTA 21.42 25.65 24.52 26.37 27.03 25.23 27.39 22.09 25.72 21.12 24.65

APG 16.66 18.39 17.78 18.42 18.85 17.80 18.61 16.65 18.25 16.73 17.81

ISTA 16.66 18.41 17.78 18.44 18.88 17.80 18.62 16.64 18.28 16.74 17.83

EBK 15.12 15.56 15.92 15.94 16.55 15.18 15.79 13.88 16.30 15.33 15.56

WNNM 18.33 21.46 20.38 22.52 24.39 20.58 22.25 17.87 21.98 19.03 20.88

with the iterations m, respectively. We observe that GDgAPG
with different layers approximatively overlap APG. This re-
veals that our GDgAPG is successfully guided by APG, and
converges to a critical point. The denoising and deblurring
image is shown in the right of Fig. 5. Moreover, Fig. 4 (E)
and (F) plots REE and average PNSR with different layers
on the 4 noise images, respectively . We also observe that the
good performances are achieved at L = 4 except for σ = e−1

(Fortunately, it still has better results when σ = e−1). For
simpleness, we select λ = e−8, h = 500, and L = 4 (65536-
500-500-65536) in the next experiments.

Second, we compare our GDgAPG algorithm to LISTA,
APG, ISTA, EBK and WNNM. The PNSR and denoising
images are shown in Table 2 and Fig. 6 respectively. In Table
2 we observe that [1] GDgAPG has 4.73, 4.70, and 1.67
improvements on average PSNR when the noises changes

3511

Table 3: All times on ten images in image denoising by second.
test time training time

EBK WNNM ISTA APG LISTA GDgAPG LISTA GDgAPG
1718.6293 783.1552 151.8110 149.9066 0.2568 0.2534 1152.6231 1137.1975

Figure 6: Denoising results on image cameraman. From left to right, the methods are GDgAPG (Ours), APG, LISTA, ISTA,
EBK and WNNM. From top to down, the standard deviations of Gaussian noises are from e−3 to e−1.

from σ = e−3 to σ = e−2 and σ = e−1; [2] average PSNRs
of APG, ISTA and EBK are lower than the noised images
with σ = e−1; [3] WNNM cannot clean the blurring images
although it has relatively higher PSNR; [4] GDgAPG has
higher PSNR than LISTA. Moreover, Fig. 6 also shows that
APG, ISTA, EBK and WNNM fail in the high noise images
with σ = e−1, while GDgAPG and LISTA are effective
because the weights and nonlinear transformation in DNN
keep the useful information on the training images. This
demonstrates that the DNN encoders in GDgAPG and LISTA
are robust to high noises. In addition, we also observe that
GDgAPG is better denoising and deblurring than LISTA
since APG is faster convergent than ISTA.

Third, Table 3 shows LISTA and GDgAPG are always
faster than APG, ISTA, EBK and WNNM in test computing
time due to only once calculating an efficient DNN encoder
though they needs 1138 seconds to train the DNN encoder.
Ideally, GDgAPG and LISTA are 590 times faster than APG
and ISTA, and over 3000 times faster than EBK and WNNM.
Moreover, GDgAPG is higher than LISTA in term of average
PSNR although they have the similar computing time.

Overall, our GDgAPG is more robust and faster than the
related algorithms. In addition, due to the limited space the
RRE and REE results are shown in Table S1, and more im-
ages are plotted in Fig. S3-S5 in supplementary materials.

Conclusion

We built a predictive coding model (PCM) to approximate the
traditional (sparse) coding model by learning a deep neural
network (DNN) encoder. We proposed a gradient descent al-

gorithm guided by accelerated proximal gradient (GDgAPG)
for solving PCM. We established the convergence condition
and the convergence rate O(1/(m2

√
t)), in which m is the

number of updating APG, and t is the epoch of training DNN.
We have successfully applied PCM to compressed sensing
and image denoising. After training in low noise data, PCM
was confidently faster than �1 optimization methods in infer-
ence time because it only computed an efficient DNN encoder
instead of many optimization iterations, and PCM was more
robust than other coding methods since the high noises of the
inputs can be filtered out by the “good” weights (filters) in the
DNN encoder. Numerical results verified that our GDgAPG
algorithm was convergent, and demonstrated that it was fast
and robust than the related methods.

Acknowledgments

This research is supported in part by the NSF IIS award
1651902, ONR Young Investigator Award N00014-14-1-
0484, and U.S. Army Research Office Award W911NF-17-1-
0367.

References

Beck, A., and Teboulle, M. 2009. A fast iterative shrinkage
thresholding algorithm for linear inverse problems. SIAM J.
Imaging Sciences 2(1):183–202.
Bruckstein, A.; Donoho, D.; and Elad, M. 2009. From
sparse solutions of systems of equations to sparse modeling
of signals and images. SIAM Review 51:34–81.

3512

Cai, J.; Candés, E.; and Shen, Z. 2010. A singular value
thresholding algorithm for matrix completion. SIAM J. Optim.
20(4):1956–1982.
Cai, T.; Zhang, A.; and Xu, G. 2014. Sparse representation
of a polytope and recovery of sparse signals and low-rank
matrices. IEEE Trans. on Info. Theory 60(1):122–132.
Candes, E., and Romberg, J. 2005. L1-magic:
Recovery of sparse signals via convex programming.
http://www.acm.caltech.edu/l1magic/ 1–19.
Chang, H.; Zhou, Y.; Spellman, P.; and Parvin, B. 2013.
Stacked predictive sparse coding for classification of distinct
regions in tumor histopathology. In Proc. IEEE Int. Conf.
Comput. Vis., 169–176.
Daubechies, I.; Defrise, M.; and Mol, C. D. 2004. An iterative
thresholding algorithm for linear inverse problems with a
sparsity constraint. Comm. Pure Appl. Math. 57(11):1413–
1457.
Ding, Z.; Nasrabadi, N.; and Fu, Y. 2016. Task-driven deep
transfer learning for image classification. In Proc. of IEEE
Conf. on Acoust., Speech, Signal Process., 2414–2418.
Farabet, C.; LeCun, Y.; Kavukcuoglu, K.; and Culurciello, E.
2011. Largescale fpga-based convolutional networks. In In
R. Bekkerman, M. Bilenko, and J. Langford, editors, Scaling
up Machine Learning: Parallel and Distributed Approaches.
Cambridge University Press.
Figueiredo, M.; Nowak, R.; and Wright, S. 2007. Gra-
dient projection for sparse reconstruction: Application to
compressed sensing and other inverse problems. IEEE J. of
Selected Topics in Signal Process. 1(4):586–597.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse
rectifier neural networks. In Proc. of the Int. Conf. Artif.
Intell. Statist., 315–323.
Gregor, K., and LeCun, Y. 2010. Learning fast approxima-
tions of sparse coding. In Proc. 27th Int. Conf. Mach. Learn.,
807–814.
Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; and Zhang, L.
2017. Weighted nuclear norm minimization and its applica-
tions to low level vision. Int. J. Comput. Vis. 121(2):183–208.
Haykin, S. 2009. Neural Networks and Learning Machines.
Pearson Education Inc., 3 edition.
Kavukcuoglu, K.; Ranzato, M.; Fergus, R.; and LeCun, Y.
2009. Learning invariant features through topographic filter
maps. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
1605–1612.
Kavukcuoglu, K.; Ranzato, M.; and LeCun, Y. 2008. Fast
inference in sparse coding algorithms with applications to
object recognition. In CBLL-TR-2008-12-01, New York Uni-
versity.
Kim, S.; Koh, K.; Lustig, M.; Boyd, S.; and Gorinevsky, D.
2007. An interior-point method for large-scale l1-regularized
least squares. IEEE J. of Selected Topics in Signal Process.
1(4):606–617.
Li, H., and Lin, Z. 2015. Accelerated proximal gradient
methods for nonconvex programming. In Proc. Adv. Neural
Inf. Process. Syst., 379–387.

Li, J.; Kong, Y.; Zhao, H.; Yang, J.; and Fu, Y. 2016. Learning
fast low-rank projection for image classification. IEEE Trans.
Image Process. 25(10):4803–4814.
Li, J.; Zhang, T.; Luo, W.; Yang, J.; Yuan, X.; and Zhang, J.
2017. Sparseness analysis in the pertraining of deep neural
networks. IEEE Trans. Neural Netw. Learn. Syst. 28(6):1425–
1438.
Li, J.; Chang, H.; and Yang, J. 2015. Sparse deep stacking
network for image classification. In Proc. of the AAAI Conf.
on Artif. Intell., 3804–3810.
Li, J.; Kong, Y.; and Fu, Y. 2017. Sparse subspace clustering
by learning approximation �0 codes. In Proc. of the AAAI
Conf. on Artif. Intell., 2189–2195.
Li, L.; Li, S.; and Fu, Y. 2014. Learning balanced and
unbalanced graphs via low-rank coding. Image and Vision
Computing 32:814–823.
Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; and Ma, Y. 2013.
Robust recovery of subspace structures by low-rank represen-
tation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1):171–
184.
Luo, L.; Yang, J.; Qian, J.; Tai, Y.; and Lu, G. 2017. Robust
image regression based on the extended matrix variate power
exponential distribution of dependent noise. IEEE transac-
tions on neural networks and learning systems 28(9):2168–
2182.
Pan, J.; Sun, D.; Pfister, H.; and Yang, M. 2016. Blind image
deblurring using dark channel prior. In Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 1628–1636.
Reddi, S.; Hefny, A.; Sra, S.; Poczos, B.; and Smola, A. 2016.
Stochastic variance reduction for nonconvex optimization. In
Proc. 33th Int. Conf. Mach. Learn., 314–323.
Sprechmann, P.; Bronstein, A. M.; and Sapiro, G. 2015.
Learning efficient sparse and low rank models. IEEE Trans.
Pattern Anal. Mach. Intell. 37(9):1821–1833.
Tian, Y.; Ruan, Q.; An, G.; and Fu, Y. 2016. Action recogni-
tion using local consistent group sparse coding with spatio-
temporal structure. In ACM Multimedia, 317–321.
Wang, Y.; Zeng, J.; Peng, Z.; Chang, X.; and Xu, Z. 2015a.
Linear convergence of adaptively iterative thresholding al-
gorithms for compressed sensing. IEEE Trans. on Signal
Process. 63(11):2957–2971.
Wang, Z.; Liu, D.; Yang, J.; Han, W.; and Huang, T. 2015b.
Deep networks for image super-resolution with sparse prior.
In Proc. IEEE Int. Conf. Comput. Vis., 370–378.
Wang, Z.; Ling, Q.; and Huang, T. 2016. Learning deep
l0 encoders. In Proc. of the AAAI Conf. on Artif. Intell.,
2194–2200.
Xiao, S.; Li, W.; Xu, D.; and Tao, D. 2015. Falrr: A fast low
rank representation solver. In Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 4612–4620.
Yun, F. 2014. In Low-rank and sparse modeling for visual
analysis. Springer.
Zhang, C. Q.; Fu, H. Z.; Liu, S.; Liu, G. C.; and Cao, X. C.
2015. Low-rank tensor constrained multiview subspace clus-
tering. In Proc. IEEE Int. Conf. Comput. Vis., 1582–1590.

3513

