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Abstract

We consider PAC learning of probability distributions (a.k.a.
density estimation), where we are given an i.i.d. sample gen-
erated from an unknown target distribution, and want to out-
put a distribution that is close to the target in total variation
distance. Let F be an arbitrary class of probability distribu-
tions, and let Fk denote the class of k-mixtures of elements of
F . Assuming the existence of a method for learning F with
sample complexity mF (ε), we provide a method for learn-
ing Fk with sample complexity O(k log k ·mF (ε)/ε2). Our
mixture learning algorithm has the property that, if the F -
learner is proper and agnostic, then the Fk-learner would be
proper and agnostic as well.
This general result enables us to improve the best known sam-
ple complexity upper bounds for a variety of important mix-
ture classes. First, we show that the class of mixtures of k
axis-aligned Gaussians in R

d is PAC-learnable in the agnostic
setting with ˜O(kd/ε4) samples, which is tight in k and d up
to logarithmic factors. Second, we show that the class of mix-
tures of k Gaussians in R

d is PAC-learnable in the agnostic
setting with sample complexity ˜O(kd2/ε4), which improves
the previous known bounds of ˜O(k3d2/ε4) and ˜O(k4d4/ε2)
in its dependence on k and d. Finally, we show that the class
of mixtures of k log-concave distributions over Rd is PAC-
learnable using ˜O(d(d+5)/2ε−(d+9)/2k) samples.

1 Introduction

Learning distributions is a fundamental problem in statis-
tics and computer science, and has numerous applications in
machine learning and signal processing. The problem can be
stated as:

Given an i.i.d. sample generated from an unknown
probability distribution g, find a distribution ĝ that is
close to g in total variation distance.1

This strong notion of learning is not possible in general
using a finite number of samples. However, if we assume
that the target distribution belongs to or can be approximated
by a family of distributions, then there is hope to acquire
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1Total variation distance is a prominent distance measure be-
tween distributions. For a discussion on this and other choices
see (Devroye and Lugosi 2001, Chapter 5).

algorithms with finite-sample guarantees. In this paper, we
study the important family of mixture models within this
framework.

Notice that we consider PAC learning of distributions
(a.k.a. density estimation), which is different from param-
eter estimation. In the parameter estimation problem, it is
assumed that the target distribution belongs to some para-
metric class, and the goal is to learn/identify the param-
eters (see, e.g., (Dasgupta 1999; Belkin and Sinha 2010;
Moitra and Valiant 2010)).

As an example of our setting, assume that the target dis-
tribution is a Gaussian mixture with k components in R

d.
Then, how many examples do we need to find a distri-
bution that is ε-close to the target? This sample complex-
ity question, as well as the corresponding computational
complexity question, has received a lot of attention recently
(see, e.g. (Feldman, Servedio, and O’Donnell 2006; Chan
et al. 2014; Suresh et al. 2014; Diakonikolas et al. 2016;
Diakonikolas, Kane, and Stewart 2017b; Acharya et al.
2017)).

In this paper, we consider a scenario in which we are given
a method for learning a class of distributions (e.g., Gaus-
sians). Then, we ask whether we can use it, as a black box,
to come up with an algorithm for learning a mixture of such
distributions (e.g., mixture of Gaussians). We will show that
the answer to this question is affirmative.

We propose a generic method for learning mixture mod-
els. Roughly speaking, we show that by going from learning
a single distribution from a class to learning a mixture of k
distributions from the same class, the sample complexity is
multiplied by a factor of at most (k log2 k)/ε2. This result
is general, and yet it is surprisingly tight in many important
cases. In this paper, we assume that the algorithm knows the
number of components k.

As a demonstration, we show that our method provides a
better sample complexity for learning mixtures of Gaussians
than the state of the art. In particular, for learning mixtures
of k Gaussians in R

d, our method requires Õ(d2k/ε4) sam-
ples, improving by a factor of k2 over the Õ(d2k3/ε4) bound
of (Diakonikolas, Kane, and Stewart 2017b). Furthermore,
for the special case of mixtures of axis-aligned Gaussians,
we provide an upper bound of Õ(dk/ε4), which is the first
optimal bound with respect to k and d up to logarithmic fac-
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tors, and improves upon the Õ(dk9/ε4) bound of (Suresh et
al. 2014), which is only shown for the subclass of spherical
Gaussians.

One merit of our approach is that it can be applied in
the agnostic (a.k.a. robust) setting, where the target distri-
bution does not necessarily belong to the mixture model of
choice. To guarantee such a result, we need the black box to
work in the agnostic setting. For example, an agnostic learn-
ing method for learning Gaussians can be lifted to work for
Gaussian mixtures in the agnostic setting.

We would like to emphasize that our focus is on the
information-theoretic aspects of learning rather than the
computational ones; in particular, although our framework
is algorithmic, its running time is exponential in the number
of required samples. Proving sample complexity bounds is
important in understanding the statistical nature of various
classes of distributions (see, e.g., the recent work of (Di-
akonikolas, Kane, and Stewart 2017a)), and may pave the
way for developing efficient algorithms.

Our Results

Let F be a class of probability distributions, and let Fk

denote the class of k-mixtures of elements of F . In our
main result, Theorem 5, assuming the existence of a method
for learning F with sample complexity mF (ε), we pro-
vide a method for learning Fk with sample complexity
O(k log2 k ·mF (ε)/ε2). Our mixture learning algorithm
has the property that, if the F-learner is proper, then the Fk-
learner would be proper as well (i.e., the learner will always
output a member of Fk). Furthermore, the algorithm works
in the more general agnostic setting provided that the base
learners are agnostic learners.

We provide several applications of our main result. In
Theorem 11, we show that the class of mixtures of k axis-
aligned Gaussians in R

d is PAC-learnable in the agnostic
setting with sample complexity O(kd log2 k/ε4) (see Theo-
rem 12). This bound is tight in terms of k and d up to log-
arithmic factors. In Theorem 14, we show that the class of
mixtures of k Gaussians in R

d is PAC-learnable in the ag-
nostic setting with sample complexity O(kd2 log2 k/ε4). Fi-
nally, in Theorem 16, we prove that the class of mixtures of
k log-concave distributions over Rd is PAC-learnable using
Õ(d(d+5)/2ε−(d+9)/2k) samples. To the best of our knowl-
edge, this is the first upper bound on the sample complexity
of learning this class.

Related Work

PAC learning of distributions was introduced by (Kearns et
al. 1994), we refer the reader to (Diakonikolas 2016) for a
recent survey. A closely related line of research in statistics
(in which more emphasis is on sample complexity) is den-
sity estimation, for which the book by (Devroye and Lugosi
2001) is an excellent resource.

One approach for studying the sample complexity of
learning a class of distributions is bounding the VC-
dimension of its associated Yatracos class (see Defini-
tion 20), and applying results such as Theorem 22. (These
VC-dimensions have mainly been studied for the purpose of

proving generalization bounds for neural networks with sig-
moid activation functions.) In particular, the VC-dimension
bound of (Anthony and Bartlett 1999, Theorem 8.14) –
which is based on the work of (Karpinski and Macin-
tyre 1997) – implies a sample complexity upper bound of
O((k4d2 + k3d3)/ε2) for PAC learning mixtures of axis-
aligned Gaussians, and an upper bound of O(k4d4/ε2) for
PAC learning mixtures of general Gaussians (both results
hold in the more general agnostic setting).

A sample complexity upper bound of O(d2k3 log2 k/ε4)
for learning mixtures of Gaussians in the realizable set-
ting was proved in (Diakonikolas, Kane, and Stewart 2017b,
Theorem A.1) (the running time of their algorithm is not
polynomial). Our algorithm is motivated by theirs, but we
have introduced several new ideas in the algorithm and in the
analysis, which has resulted in improving the sample com-
plexity bound by a factor of k2 and an algorithm that works
in the more general agnostic setting.

For mixtures of spherical Gaussians, a polynomial time
algorithm for the realizable setting with sample complex-
ity O(dk9 log2(d)/ε4) was proposed in (Suresh et al. 2014,
Theorem 11). We improve their sample complexity by a fac-
tor of Õ(k8), and moreover our algorithm works in the ag-
nostic setting, too. In the special case of d = 1, a non-proper
agnostic polynomial time algorithm with the optimal sam-
ple complexity of Õ(k/ε2) was given in (Chan et al. 2014),
and a proper agnostic algorithm with the same sample com-
plexity and better running time was given in (Li and Schmidt
2017).

An important question, which we do not address in this
paper, is finding polynomial time algorithms for learning
distributions. To the best of our knowledge, no polynomial
time algorithm for learning mixtures of general Gaussians is
known. See (Diakonikolas, Kane, and Stewart 2017b) for the
state-of-the-art results. Another important setting is compu-
tational complexity in the agnostic learning, see, e.g., (Di-
akonikolas et al. 2016) for some positive results.

A related line of research is parameter estimation for mix-
tures of Gaussians, see, e.g., (Dasgupta 1999; Belkin and
Sinha 2010; Moitra and Valiant 2010), who gave polynomial
time algorithms for this problem assuming certain separa-
bility conditions (these algorithms are polynomial in the di-
mension and the error tolerance but exponential in the num-
ber of components). Recall that parameter estimation is a
more difficult problem and any algorithm for parameter esti-
mation requires some separability assumptions for the target
Gaussians, whereas for density estimation no such assump-
tion is needed. E.g., consider the case that k = 2 and the two
components are identical; then there is no way to learn their
mixing weights.

We finally remark that characterizing the sample com-
plexity of learning a class of distributions in general is an
open problem, even for the realizable (i.e., non-agnostic)
case (see (Diakonikolas 2016, Open Problem 15.1)).

2 The Formal Framework

Generally speaking, a distribution learning method is an al-
gorithm that takes a sample of i.i.d. points from distribution
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g as input, and outputs (a description) of a distribution ĝ as
an estimation for g. Furthermore, we assume that g belongs
to or can be approximated by class F of distributions, and
we may require that ĝ also belongs to this class (i.e., proper
learning).

Let f1 and f2 be two probability distributions defined over
the Borel σ-algebra B. The total variation distance between
f1 and f2 is defined as

‖f1 − f2‖TV = sup
B∈B

|f1(B)− f2(B)| = 1

2
‖f1 − f2‖1 ,

where

‖f‖1 :=

∫ +∞

−∞
|f(x)|dx

is the L1 norm of f . In the following definitions, F is a class
of probability distributions, and g is a distribution not nec-
essarily in F . Denote the set {1, 2, ...,m} by [m]. All loga-
rithms are in the natural base. For a function g and a class of
distributions F , we define

OPT(F , g) := inf
f∈F

‖f − g‖1
Definition 1 (ε-approximation, (ε, C)-approximation). A
distribution ĝ is an ε-approximation for g if ‖ĝ−g‖1 ≤ ε. A
distribution ĝ is an (ε, C)-approximation for g with respect
to F if

‖ĝ − g‖1 ≤ C ×OPT(F , g) + ε

Definition 2 (PAC-Learning Distributions, Realizable Set-
ting). A distribution learning method is called a (realizable)
PAC-learner for F with sample complexity mF (ε, δ), if for
all distribution g ∈ F and all ε, δ > 0, given ε, δ, and a
sample of size mF (ε, δ), with probability at least 1− δ out-
puts an ε-approximation of g.
Definition 3 (PAC-Learning Distributions, Agnostic Set-
ting). For C > 0, a distribution learning method is called
a C-agnostic PAC-learner for F with sample complexity
mC
F (ε, δ), if for all distributions g and all ε, δ > 0, given

ε, δ, and a sample of size mC
F (ε, δ), with probability at least

1− δ outputs an (ε, C)-approximation of g.2

Clearly, a C-agnostic PAC-learner (for any constant C) is
also a realizable PAC-learner, with the same error parameter
ε. Conversely a realizable PAC-learner can be thought of an
∞-agnostic PAC-learner.

3 Learning Mixture Models

Let Δn denote the n-dimensional simplex:

Δn = {(w1, . . . , wn) : wi ≥ 0,
k∑

i=1

wi = 1}

Definition 4. Let F be a class of probability distributions.
Then the class of k-mixtures of F , written Fk, is defined as

Fk :=

{
k∑

i=1

wifi : (w1, . . . , wk) ∈ Δk, f1, . . . , fk ∈ F
}
.

2Note that in some papers, only the case C ≤ 1 is called agnos-
tic learning, and the case C > 1 is called semi-agnostic learning.

Assume that we have a method to PAC-learn F . Does this
mean that we can PAC-learn Fk? And if so, what is the sam-
ple complexity of this task? Our main theorem gives an af-
firmative answer to the first question, and provides a bound
for sample complexity of learning Fk.

Theorem 5. Assume that F has a C-agnostic PAC-learner
with sample complexity mC

F (ε, δ) = λ(F , δ)/εα for some
C > 0, α ≥ 1 and some function λ(F , δ) = Ω(log(1/δ)).
Then there exists a 3C-agnostic PAC-learner for the class
Fk requiring m3C

Fk(ε, δ) =

O

(
λ(F , δ

3k )k log k

εα+2

)
= O

(
k log k ·mF (ε, δ

3k )

ε2

)
samples.

Since a realizable PAC-learner is an ∞-agnostic PAC-
learner, we immediately obtain the following corollary.

Corollary 6. Assume that F has a realizable PAC-learner
with sample complexity mF (ε, δ) = λ(F , δ)/εα for some
α ≥ 1 and some function λ(F , δ) = Ω(log(1/δ)). Then
there exists a realizable PAC-learner for the class Fk re-
quiring mFk(ε, δ) =

O

(
λ(F , δ

3k )k log k

εα+2

)
= O

(
k log k ·mF (ε, δ

3k )

ε2

)
samples.

Some remarks:

1. Our mixture learning algorithm has the property that, if
the F-learner is proper, then the Fk-learner is proper as
well.

2. The computational complexity of the resulting algorithm
is exponential in the number of required samples.

3. The condition λ(F , δ) = Ω(log(1/δ)) is a technical con-
dition that holds for all interesting classes F .

4. One may wonder about tightness of this theorem. In The-
orem 2 in (Suresh et al. 2014), it is shown that if F is
the class of spherical Gaussians, we have m

O(1)

Fk (ε, δ) =
Ω(kmF (ε, δ/k)), therefore, the factor of k is necessary
in general. However, it is not clear whether the additional
factor of log k/ε2 in the theorem is tight.

5. The constant 3 (in the 3C-agnostic result) comes from
(Devroye and Lugosi 2001, Theorem 6.3) (see Theo-
rem 8), and it is not clear whether it is necessary. If we
allow for randomized algorithms (which produce a ran-
dom distribution whose expected distance to the target is
bounded by ε), then the constant can be improved to 2,
see (Mahalanabis and Stefankovic 2008, Theorem 22).

In the rest of this section we prove Theorem 5. Let g be
the true data generating distribution, and let

g∗ = argmin
f∈Fk

‖g−f‖1 and ρ = ‖g∗− g‖1 = OPT(Fk, g) .

(1)
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Note that although g∗ ∈ Fk, g itself is not necessarily in the
form of a mixture. Since our algorithm works for mixtures,
we would first like to write g in the form of a mixture of k
distributions, such that each distribution is ρ-close to being
in F . This is done via the following lemma.

Lemma 7. Suppose that g is a distribution with
OPT(Fk, g) = ρ. Then we may write g =

∑
i∈[k] wiGi,

such that each Gi is a distribution, and for each i we have
OPT(F , Gi) ≤ ρ.

Proof. Since OPT(Fk, g) = ρ, we can write

g =
k∑

i=1

wifi + h =
k∑

i=1

wi(fi + h) (2)

with (w1, . . . , wk) ∈ Δk and each fi ∈ F , and ‖h‖1 = ρ.
Note that fi + h is not necessarily a density function. Let D
denote the set of density functions, that is, the set of nonneg-
ative functions with unit L1 norm. Note that this is a convex
set. Since projection is a linear operator, by projecting both
sides of (2) onto D we find

g =

k∑
i=1

wiGi,

where Gi is the L1 projection of fi + h onto D (since g ∈
D, the projection of g onto D is itself). Also, since fi ∈
F ∩ D and projection onto a convex set does not increases
distances, we have

OPT(F , Gi) ≤ ‖fi−Gi‖1 ≤ ‖fi−(fi+h)‖1 = ‖h‖1 = ρ,

as required.

By Lemma 7, we have

g =
∑
i∈[k]

wiGi,

where each Gi is a probability distribution. Let ρi :=
OPT(F , Gi), and by the lemma we have∑

i∈[k]
wiρi ≤ ρ. (3)

The idea now is to learn each of the Gi’s separately using
the agnostic learner for F . We will view g as a mixture of k
distributions G1, G2, . . . , Gk.

For proving Theorem 5, we will use the following the-
orem on learning finite classes of distributions, which im-
mediately follows from (Devroye and Lugosi 2001, Theo-
rem 6.3) and a standard Chernoff bound.

Theorem 8. Suppose we are given M candidate distribu-
tions f1, . . . , fM and we have access to i.i.d. samples from
an unknown distribution g. Then there exists an algorithm
that given the fi’s and ε > 0, takes log(3M2/δ)/2ε2 sam-
ples from g, and with probability ≥ 1−δ/3 outputs an index
j ∈ [M ] such that

‖fj − g‖1 ≤ 3 min
i∈[M ]

‖fi − g‖1 + 4ε .

Input: k, ε, δ and an i.i.d. sample S

0. Let Ŵ be an (ε/k)-cover for Δk in �∞ distance.
1. C = ∅ (set of candidate distributions)
2. For each (ŵ1, . . . , ŵk) ∈ Ŵ do:

3. For each possible partition of S into
A1, A2, ..., Ak:

4. Provide Ai to the F-learner, and let Ĝi

be its output.
5. Add the candidate distribution∑

i∈[k] ŵiĜi to C.
6. Apply the algorithm for finite classes (Theorem 8)
to C and output its result.

Figure 1: Algorithm for learning the mixture class Fk

We now describe an algorithm that with probability ≥
1− δ outputs a distribution with L1 distance 13ε+3Cρ to g
(the error parameter is 13ε instead of ε just for convenience
of the proof; it is clear that this does not change the order
of magnitude of sample complexity). The algorithm, whose
pseudocode is shown in Figure 1, has two main steps. In the
first step we generate a set of candidate distributions, such
that at least one of them is (3ε + ρ)-close to g in L1 dis-
tance. These candidates are of the form

∑k
i=1 ŵiĜi, where

the Ĝi’s are extracted from samples and are estimates for
the real components Gi, and the ŵi’s come from a fixed
discretization of Δk, and are estimates for the real mixing
weights wi. In the second step, we use Theorem 8 to obtain
a distribution that is (13ε+ 3Cρ)-close to g.

We start with describing the first step. We take

s = max

{
2kλ(F , δ/3k)

εα
,
16k log(3k/δ)

ε

}
(4)

i.i.d. samples from g. Let S denote the set of generated
points. Note that λ(F , δ) = Ω(log(1/δ)) implies

s = O(kλ(F , δ/3k)× ε−α).

Let Ŵ be an ε/k-cover for Δk in �∞ distance of cardinal-
ity (k/ε+ 1)k. That is, for any x ∈ Δk there exists w ∈ Ŵ
such that ‖w − x‖∞ ≤ ε/k. This can be obtained from a
grid in [0, 1]k of side length ε/k, which is an ε/k-cover for
[0, 1]k, and projecting each of its points onto Δk.

By an assignment, we mean a function A : S → [k].
The role of an assignment is to “guess” each sample point
is coming from which component, by mapping them to a
component index. For each pair (A, (ŵ1, . . . , ŵk)), where
A is an assignment and (ŵ1, . . . , ŵk) ∈ Ŵ , we generate a
candidate distribution as follows: let A−1(i) ⊆ S be those
sample points that are assigned to component i. For each
i ∈ [k], we provide the set A−1(i) of samples to our F-
learner, and the learner provides us with a distribution Ĝi.
We add the distribution

∑
i∈[k] ŵiĜi to the set of candidate

distributions.
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Lemma 9. With probability ≥ 1− 2δ/3, at least one of the
generated candidate distributions is (3ε+ Cρ)-close to g.

Before proving the lemma, we show that it implies our
main result, Theorem 5. By the lemma, we obtain a set of
candidates such that at least one of them is (3ε+ Cρ)-close
to g (with failure probability ≤ 2δ/3). This step takes s =
O(kλ(F , δ/3k)×ε−α) many samples. Then, we apply The-
orem 8 to output one of those candidates that is (13ε+3Cρ)-
close to g (with failure probability ≤ δ/3), therefore using
log(3M2/δ)/2ε2 additional samples. Note that the number
of generated candidate distributions is M = ks×(1+k/ε)k.
Hence, in the second step of our algorithm, we take

log(3M2/δ)/2ε2 = O

(
λ(F , δ/3k)k log k

εα+2

)
= O

(
mF (ε, δ/3k)k log k

ε2

)
additional samples. The proof is completed noting the total
failure probability is at most δ by the union bound.

We now prove Lemma 9. We will use the following con-
centration inequality, which holds for any binomial ran-
dom variable X (see (Mitzenmacher and Upfal 2005, Theo-
rem 4.5(2))):

Pr{X < EX/2} ≤ exp(−EX/8) . (5)

Say a component i is negligible if

wi ≤ 8 log(3k/δ)

s

Let L ⊆ [k] denote the set of negligible components. Let i be
a non-negligible component. Note that, the number of points
coming from component i is binomial with parameters s and
wi and thus has mean swi, so (5) implies that, with probabil-
ity at least 1 − δ/3k, S contains at least wis/2 points from
i. Since we have k components in total, the union bound im-
plies that, with probability at least 1− δ/3, uniformly for all
i /∈ L, S contains at least wis/2 points from component i.

Now consider the pair (A, (ŵ1, . . . , ŵk)) such that A as-
signs samples to their correct indices, and has the property
that |ŵi − wi| ≤ ε/k for all i ∈ [k]. We claim that the re-
sulting candidate distribution is (3ε+ Cρ)-close to g.

Let Ĝ1, . . . , Ĝk be the distributions provided by the
learner. For each i ∈ [k] define

εi :=

(
2λ(F , δ/3k)

wis

)1/α

For any i /∈ L, since there exists at least wis/2 samples for
component i, and since

wis/2 = λ(F , δ/3k)ε−α
i = mF (εi, δ/3k) ,

we are guaranteed that ‖Ĝi − Gi‖1 ≤ Cρi + εi with prob-
ability 1 − δ/3k (recall that each Gi is ρi-close to the class
F). Therefore, ‖Ĝi − Gi‖1 ≤ Cρi + εi holds uniformly
over all i /∈ L, with probability ≥ 1 − δ/3. Note that since

α ≥ 1, the function w
1−1/α
i is concave in wi, so by Jensen’s

inequality we have

∑
i∈[k]

w
1−1/α
i ≤ k

⎛⎝(
∑
i∈[k]

wi/k)
1−1/α

⎞⎠ = k1/α ,

hence ∑
i/∈L

wiεi =

(
2λ(F , δ/3k)

s

)1/α ∑
i/∈L

w
1−1/α
i

≤
(
2kλ(F , δ/3k)

s

)1/α

.

Also recall from (3) that
∑

i∈[k] wiρi ≤ ρ. Proving the
lemma is now a matter of careful applications of the triangle
inequality:∥∥∥∥∥∥

∑
i∈[k]

ŵiĜi − g

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑
i∈[k]

ŵiĜi −
∑
i∈[k]

wiGi

∥∥∥∥∥∥
1

≤
∥∥∥∥∥∥
∑
i∈[k]

wi(Ĝi −Gi)

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑
i∈[k]

(ŵi − wi)Ĝi

∥∥∥∥∥∥
1

≤
∥∥∥∥∥∑
i∈L

wi(Ĝi −Gi)

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i/∈L

wi(Ĝi −Gi)

∥∥∥∥∥
1

+
∑
i∈[k]

|ŵi − wi|
∥∥∥Ĝi

∥∥∥
1

≤ 2
∑
i∈L

wi +
∑
i/∈L

wi(εi + Cρi) +
∑
i∈[k]

ε/k × 1

≤ 2k × 8 log(3k/δ)

s
+

(
2kλ(F , δ/3k)

s

)1/α

+ Cρ+ ε

≤ ε+ ε+ ε+ Cρ ,

where for the last inequality we used the definition of s in
(4). This completes the proof of Lemma 9.

4 Learning Mixtures of Gaussians

Gaussian Mixture Models (GMMs) are probably the most
widely studied mixture classes with numerous applications;
yet, the sample complexity of learning this class is not fully
understood, especially when the number of dimensions is
large. In this section, we will show that our method for
learning mixtures can improve the state of the art for learn-
ing GMMs in terms of sample complexity. In the following,
Nd(μ,Σ) denotes a Gaussian density function defined over
R

d, with mean μ and covariance matrix Σ.

Mixtures of Axis-Aligned Gaussians

A Gaussian is called axis-aligned if its covariance matrix Σ
is diagonal. The class of axis-aligned Gaussian Mixtures is
an important special case of GMMs that is thoroughly stud-
ied in the literature (e.g. (Feldman, Servedio, and O’Donnell
2006)).
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Theorem 10. Let F denote the class of d-dimensional axis-
aligned Gaussians. Then F is 3-agnostic PAC-learnable
with m3

F (ε, δ) = O((d+ log(1/δ))/ε2).
We defer the proof of this result to Section 7. Combining

this theorem with Theorem 5 we obtain the following result:
Theorem 11. The class Fk of mixtures of k axis-aligned
Gaussians in R

d is 9-agnostic PAC-learnable with sample
complexity m9

Fk(ε, δ) = O(kd log k log(k/δ)/ε4). Accord-
ingly, it is also PAC-learnable in the realizable case with the
same number of samples.

This theorem improves the upper bound of
O(dk9 log2(d/δ)/ε4) proved in (Suresh et al. 2014,
Theorem 11) for spherical Gaussians in the realizable set-
ting. Spherical Gaussians are special cases of axis-aligned
Gaussians in which all eigenvalues of the covariance matrix
are equal, i.e., Σ is a multiple of the identity matrix. The
following minimax lower bound (i.e., worst-case on all
instances) on the sample complexity of learning mixtures of
spherical Gaussians is proved in the same paper.
Theorem 12 (Theorem 2 in (Suresh et al. 2014)). The class
Fk of mixtures of k axis-aligned Gaussians in R

d in the re-
alizable setting has mFk(ε, 1/2) = Ω(dk/ε2).

Therefore, our upper bound of Theorem 11 is optimal in
terms of dependence on d and k (up to logarithmic factors)
for axis-aligned Gaussians.

Mixtures of General Gaussians

For general Gaussians, we have the following result.
Theorem 13. Let F denote the class of d-dimensional
Gaussians. Then, F is 3-agnostic PAC-learnable with
m3
F (ε, δ) = O((d2 + log(1/δ))/ε2).
We defer the proof of this result to Section 7. Combining

this theorem with Theorem 5, we obtain the following result:
Theorem 14. The class Fk of mixtures of k Gaussians
in R

d is 9-agnostic PAC-learnable with sample complex-
ity m9

Fk(ε, δ) = O(kd2 log k log(k/δ)/ε4). Accordingly, it
is also PAC-learnable in the realizable case with the same
number of samples.

This improves by a factor of k2 the upper bound of
O(k3d2 log k/ε4) in the realizable setting, proved in (Di-
akonikolas, Kane, and Stewart 2017b, Theorem A.1).

Note that Theorem 12 gives a lower bound of Ω(kd/ε2)
for mFk(ε, δ), hence the dependence of Theorem 14 on k
is optimal (up to logarithmic factors). However, there is a
factor of d/ε2 between the upper and lower bounds.

5 Mixtures of Log-Concave Distributions

A probability density function over Rd is log-concave if its
logarithm is a concave function. The following result about
the sample complexity of learning log-concave distributions
is the direct consequence of the recent work of (Diakoniko-
las, Kane, and Stewart 2017a).
Theorem 15. Let F be the class of distributions corre-
sponding to the set of all log-concave densities over R

d.
Then F is 3-agnostic PAC learnable using m3(ε, δ) =
O((d/ε)(d+5)/2 log2(1/ε)) samples.

Using Theorem 5, we come up with the first result about
the sample complexity of learning mixtures of log-concave
distributions.

Theorem 16. The class of mixtures of k log-concave
distributions over R

d is 9-agnostic PAC-learnable using
Õ(d(d+5)/2ε−(d+9)/2k) samples.

6 Conclusions

We studied PAC learning of classes of distributions that
are in the form of mixture models, and proposed a generic
approach for learning such classes in the cases where we
have access to a black box method for learning a single-
component distribution. We showed that by going from
one component to a mixture model with k components,
the sample complexity is multiplied by a factor of at most
(k log2 k)/ε2.

Furthermore, as a corollary of this general result, we pro-
vided upper bounds for the sample complexity of learn-
ing GMMs and axis-aligned GMMs—O(kd2 log2 k/ε4) and
O(kd log2 k/ε4) respectively. Both of these results improve
upon the state of the art in terms of dependence on k and d.

It is worthwhile to note that for the case of GMMs, the de-
pendence of our bound is 1/ε4. Therefore, proving an upper
bound of kd2/ε2 remains open.

Also, note that our result can be readily applied to the
general case of mixtures of the exponential family. Let Fd

denote the d-parameter exponential family. Then the VC-
dimension of the corresponding Yatracos class (see Defini-
tion 20) is O(d) (see Theorem 8.1 in (Devroye and Lugosi
2001)) and therefore by Theorem 22, the sample complexity
of PAC learning Fd is O(d/ε2). Finally, applying Theorem
5 gives a sample complexity upper bound of Õ(kd/ε4) for
learning Fk

d .

7 Proofs of Theorems 10 and 13

We follow the general methodology of (Devroye and Lugosi
2001) to prove upper bounds on the sample complexity of
learning Gaussian distributions. The idea is to first connect
distribution learning to the VC-dimension of a class of a re-
lated set system (called the Yatracos class of the correspond-
ing distribution family), and then provide upper bounds on
VC-dimension of this system. Our Theorem 22 gives an up-
per bound for the sample complexity of agnostic learning,
given an upper bound for the VC-dimension of the Yatracos
class. We remark that a variant of this result, without explicit
dependence on the failure probability, is proved implicitly in
(Chan et al. 2014) and also appears explicitly in (Diakoniko-
las, Kane, and Stewart 2017a, Lemma 6).

Definition 17 (A-Distance). Let A ⊂ 2X be a class of sub-
sets of domain X . Let p and q be two probability distribu-
tions over X . Then the A-distance between p and q is defined
as

‖p− q‖A := sup
A∈A

|p(A)− q(A)|

Definition 18 (Empirical Distribution). Let S = {xi}mi=1
be a sequence of members of X . The empirical distribu-
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tion corresponding to this sequence is defined by p̂S(x) =∑m
i=1

�{x=xi}
m .

The following lemma is a well known refinement of
the uniform convergence theorem, see, e.g., (Anthony and
Bartlett 1999, Theorem 4.9).

Lemma 19. Let p be a probability distribution over X . Let
A ⊆ 2X and let v be the VC-dimension of A. Then, there
exist universal positive constants c1, c2, c3 such that

PrS∼pm{‖p− p̂S‖A ≥ ε} ≤ exp(c1 + c2v − c3mε2) .

Definition 20 (Yatracos class). For a class F of functions
from X to R, their Yatracos class is the family of subsets of
X defined as

Y(F) := {{x ∈ X : f1(x) ≥ f2(x)} for some f1, f2 ∈ F}

Observe that if f, g ∈ F then ‖f − g‖TV = ‖f − g‖Y(F ).

Definition 21 (Empirical Yatracos Minimizer). Let F be a
class of distributions over domain X . The empirical Yatra-
cos minimizer is defined as LF : ∪∞m=1X

m → F satisfying

LF (S) = argmin
q∈F

‖q − p̂S‖Y(F).

Theorem 22 (PAC Learning Families of Distributions). Let
F be a class of probability distributions, and let S ∼ pm be
an i.i.d. sample of size m generated from an arbitrary prob-
ability distribution p, which is not necessarily in F . Then
with probability at least 1− δ we have

‖p− LF (S)‖TV ≤ 3OPT(F , p) + α

√
v + log 1

δ

m

where v is VC-dimension of Y(F), and OPT(F , p) =
infq∗∈F ‖q∗ − p‖TV , and α is a universal constant. In par-
ticular, in the realizable setting p ∈ F , we have

‖p− LF (S)‖TV ≤ α

√
v + log 1

δ

m

Remark 23. The L1 distance is precisely twice the total
variation distance.

Proof. Let q∗ = argminq∈F ‖p−q‖TV , so ‖q∗−p‖Y(F) ≤
‖q∗ − p‖TV = OPT(F , p). Since LF (S), q∗ ∈ F
we have ‖LF (S) − q∗‖TV = ‖LF (S) − q∗‖Y(F). By
Lemma 19, with probability ≥ 1 − δ we have ‖p −
p̂S‖A ≤ α

√
(v + log 1

δ )/m for some universal constant α.

Also, since LF (S) is the empirical minimizer of the Y(F)-
distance, we have ‖LF (S) − p̂S‖Y(F) ≤ ‖q∗ − p̂S‖Y(F).
The proof follows from these facts combined with multiple

applications of the triangle inequality:

‖p− LF (S)‖TV ≤ ‖LF (S)− q∗‖TV + ‖q∗ − p‖TV

= ‖LF (S)− q∗‖Y(F) +OPT(F , p)

≤ ‖LF (S)− p̂S‖Y(F) + ‖p̂S − q∗‖Y(F) +OPT(F , p)

≤ ‖q∗ − p̂S‖Y(F) +
(‖p̂S − p‖A + ‖p− q∗‖Y(F)

)
+

OPT(F , p) ≤ (‖q∗ − p‖Y(F) + ‖p− p̂S‖A
)
+

‖p− p̂S‖Y(F) + 2OPT(F , p)

≤ ‖q∗ − p‖TV + 2‖p− p̂S‖Y(F) + 2OPT(F , p)

≤ 2α

√
v + log 1

δ

m
+ 3OPT(F , p) .

Theorem 22 provides a tool for proving upper bounds
on the sample complexity of distribution learning. To prove
Theorems 13 and 10, it remains to show upper bounds on
the VC dimensions of the Yatracos class of (axis-aligned)
Gaussian densities.

For classes F and G of functions, let

NN(G) := {{x : f(x) ≥ 0} for some f ∈ G}
and

ΔF := {f1 − f2 : f1, f2 ∈ F} ,
and notice that

Y(F) = NN(ΔF).

We upper bound the VC-dimension of NN(ΔF) via the fol-
lowing well known result in statistical learning theory, see,
e.g., (Devroye and Lugosi 2001, Lemma 4.2).

Theorem 24 (Dudley). Let G be an n-dimensional vector
space of real-valued functions. Then V C(NN(G)) ≤ n.

Now let h be an indicator function for an arbitrary element
in NN(f1 − f2), where f1, f2 are densities of (axis-aligned)
Gaussians. Then h is a {0, 1}-valued function and we have:

h(x) = �{N (μ1,Σ1) > N (μ2,Σ2)}
= �{α1 exp(

−1

2
(x− μ1)

TΣ−1
1 (x− μ1)) >

α2 exp(
−1

2
(x− μ2)

TΣ−1
2 (x− μ2))}

= �{(x− μ1)
TΣ−1

1 (x− μ1)

− (x− μ2)
TΣ−1

2 (x− μ2)− log
α2

α1
> 0} .

The inner expression is a quadratic form, and the linear di-
mension of all quadratic functions is O(d2). Furthermore,
for axis-aligned Gaussians, Σ1 and Σ2 are diagonal, and
therefore, the inner function lies in an O(d)-dimensional
space of functions spanned by {1, x1, . . . , xd, x

2
1, . . . , x

2
d}.

Hence, by Dudley’s theorem, we have the required up-
per bound (d or d2) on the VC-dimension of the Yatracos
classes. Finally, Theorems 13 and 10 follow from applying
Theorem 22 to the class of (axis-aligned) Gaussian distribu-
tions.
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Addendum

Very recently, the authors have improved Theorem 11
and showed that the class of mixtures of k axis-aligned
Gaussians in R

d is 3-agnostic PAC-learnable with sample
complexity Õ(kd/ε2). The proof uses novel techniques,
see (Ashtiani, Ben-David, and Mehrabian 2017).
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