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Abstract

Feature selection is effective in preparing high-dimensional
data for a variety of learning tasks such as classification, clus-
tering and anomaly detection. A vast majority of existing fea-
ture selection methods assume that all instances share some
common patterns manifested in a subset of shared features.
However, this assumption is not necessarily true in many
domains where data instances could show high individual-
ity. For example, in the medical domain, we need to capture
the heterogeneous nature of patients for personalized predic-
tive modeling, which could be characterized by a subset of
instance-specific features. Motivated by this, we propose to
study a novel problem of personalized feature selection. In
particular, we investigate the problem in an unsupervised sce-
nario as label information is usually hard to obtain in practice.
To be specific, we present a novel unsupervised personalized
feature selection framework UPFS to find some shared fea-
tures by all instances and instance-specific features tailored
to each instance. We formulate the problem into a principled
optimization framework and provide an effective algorithm
to solve it. Experimental results on real-world datasets verify
the effectiveness of the proposed UPFS framework.

Introduction
Recent years have witnessed huge amounts of high-
dimensional data in many data mining, machine learning,
computer vision and natural language processing applica-
tions. High-dimensional data not only demands more on the
computational and storage requirements, but also degener-
ates many learning algorithms due to the curse of dimen-
sionality (Friedman, Hastie, and Tibshirani 2001; Guyon
and Elisseeff 2003; Liu and Motoda 2007; Li et al. 2016;
Li and Liu 2017). Feature selection is one of the most ef-
fective data preprocessing strategies to deal with these high-
dimensional data. It directly selects a subset of relevant fea-
tures from the original high-dimensional feature space for a
compact and accurate representation. Feature selection helps
build simpler and more comprehensive learning models, im-
prove learning performance, and prepare clean and under-
standable data.

According to the availability of label information, feature
selection algorithms can be divided into supervised methods
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and unsupervised methods. Supervised methods are mainly
designed for classification or regression problems, they at-
tempt to find relevant features that can discriminate in-
stances from different classes. On the other hand, without
label information to guide the selection process, unsuper-
vised methods employ alternative criteria to assess the im-
portance of features such as data similarity (He, Cai, and
Niyogi 2005; Cai, Zhang, and He 2010), local discrimina-
tive information (Yang et al. 2011; Li et al. 2012) or data
reconstruction error (Farahat, Ghodsi, and Kamel 2011; Li,
Tang, and Liu 2017). As most real-world data is unlabeled
and label information is time consuming and labor intensive
to obtain, unsupervised feature selection is more appealing
in practical usage. Recently, sparse learning based feature
selection methods (Tibshirani 1996; Liu, Ji, and Ye 2009;
Cai, Zhang, and He 2010; Nie et al. 2010) received increas-
ing attention as they can embed feature selection into the
model construction phase, which often gives good learning
performance and model interpretability. Through a �1-norm
or a �2,1-norm sparse regularization term, feature sparsity is
achieved for all instances. The features with small or zero
weights then can be directly eliminated as they have limited
contribution to the model construction.

Most of the sparse learning based feature selection meth-
ods proposed so far, overwhelmingly build a single global
model (i.e., feature weight) for all data instances. Despite
its empirical success in terms of high prediction accuracy
(either classification or clustering), this kind of global mod-
els inevitably ignore the individuality or personality of each
individual data instance. In many cases, instances could
be highly idiosyncratic. For example, posting behaviors of
users in social media sites could differ remarkably. Based on
their personal characters and interests, the words and phrases
they frequently use are rather diverse, with different social
foci. In this regard, the key challenge centers around if we
can tailor the feature selection for each instance such that
important features for different instances can be different.
Although it is important to find personalized features, differ-
ent instances more or less have some commonality. For ex-
ample, in medical predictive modeling, despite the fact that
health conditions of patients could vary a lot, they may share
a certain amount of common symptoms for a specific dis-
ease. Hence, it is also of vital importance to leverage these
common patterns for learning by finding some shared fea-
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tures across all data instances.
Motivated by the above observations, we propose to per-

form personalized feature selection for each instance in an
unsupervised fashion. To be specific, we would like to cus-
tomize the feature selection process for each instance in find-
ing a subset of shared features and certain instance-specific
features. An illustration of the proposed unsupervised per-
sonalized feature selection is shown in Figure 1. In essence,
we study (1) how to mathematically model the common pat-
terns of all instances and personalized patterns of each spe-
cific data instance for feature selection. (2) how to find both
shared features and instance-specific features when label in-
formation is not available. To answer these two research
questions, we propose an unsupervised personalized feature
selection framework UPFS. The major contributions of this
work is summarized as follows:
• We formally define the problem of unsupervised person-

alized feature selection.
• We propose a principled way to capture common and in-

dividualized patterns by finding (1) shared features; and
(2) discriminative features customized for each instance.

• We present an effective alternating algorithm to solve the
optimization problem of the proposed UPFS framework.

• We validate the effectiveness of the UPFS framework on
real-world datasets of different types.

Problem Statement
We first summarize the notations used in this work. We use
bold uppercase letters for matrices (e.g., A), bold lower-
case letters for vectors (e.g., a), normal lowercase letters for
scalars (e.g., a). Also, we represent the i-th row of the ma-
trix A ∈ R

n×d as Ai∗, the j-th column as A∗j , the (i, j)-th
entry as Aij . We denote the transpose of the matrix A as
AT , the trace of A as tr(A) if it is a square matrix. The
Frobenius norm of matrix A is defined as ||A||F , and its
�2,1-norm is defined as ‖A‖2,1. More specifically, ‖A‖F =√∑n

i=1

∑d
j=1 A

2
ij and ||A||2,1 =

∑n
i=1

√∑d
j=1 A

2
ij . A⊗

B denotes the Kronecker product between matrices A and
B. The identity matrix of size d-by-d is denoted by Id and 1
is a vector whose elements are all 1.

With the above mentioned notations, the problem of un-
supervised personalized feature selection can be formally
defined as follows. Given a dataset X ∈ R

n×d with n in-
stances and d features, the task is to tailor the unsupervised
feature selection phase for each instance by finding (1) a
subset of discriminative features specific for each instance
xi; (2) some shared features for all instances {x1, ...,xn}.

Unsupervised Personalized Feature Selection
Framework - UPFS

In this section, we present the proposed unsupervised per-
sonalized feature selection framework - UPFS in detail. Let
X be the unlabeled dataset where each instance xi ∈ R

d

is in a d-dimensional feature space (d could be very large).
To tackle the challenges resulted from the lack of labels
in guiding feature selection, we introduce the concept of

pseudo labels. More specifically, we assume that these n
data instances are sampled from c different classes. Let
F ∈ {0, 1}n×c denote the one-hot class matrix such that
Fij = 1 if xi is assigned with the class j (we assume that
each instance only belongs to one class), otherwise Fij = 0.

With the definition of pseudo labels, we can perform fea-
ture selection to find some shared features that can discrim-
inate instances from different classes. One way to achieve
this target is to build a least squares classification model with
a sparse regularization term:

min
W

n∑
i=1

‖xiW − Fi∗‖22 + α‖W‖2,1, (1)

where W ∈ R
d×c is the global feature weight and α is to

control the sparsity of the global feature weight W. We im-
pose a �2,1-norm penalty on W to achieve joint feature spar-
sity across c different classes.

Above formulation assumes that feature weights are con-
sistent across all data instances. However, as mentioned pre-
viously, in many cases, feature importance for different data
instances could vary remarkably. Hence, it would be more
appealing to tailor the feature selection for each instance in
finding a subset of instance-specific features. To this end,
we propose to use a conjunction of the global feature weight
and a localized feature weight to perform the pseudo label
prediction for each instance, resulting in the following for-
mulation:

min
W,Ui

n∑
i=1

‖xi(W +Ui)− Fi∗‖22 + α‖W‖2,1, (2)

where Ui ∈ R
d×c is a localized feature weight for in-

stance xi. In order to find a subset of discriminative fea-
tures for each instance, we also would like to achieve fea-
ture sparsity for the localized feature weight Ui. In par-
ticular, the joint feature sparsity across c pseudo class la-
bels is desired. For that purpose, we formulate the prob-
lem as an exclusive group lasso problem (Kong et al. 2014;
2016). Specifically, we regard each localized feature weight
Ui as a group. As we attempt to find discriminative fea-
tures customized for each instance, we incentivize competi-
tion within each group but discourage competition between
groups. In this way, no groups will dominate others and it
enables us to find discriminative features for each instance.
Mathematically, we first impose a �2,1-norm penalty on each
Ui for joint feature sparsity across c pseudo labels. After-
wards, we introduce a �2-norm at the inter-group level for
non-sparsity. The objective function now is:

min
W

n∑
i=1

‖xi(W+Ui)−Fi∗‖22+α(‖W‖2,1+
n∑

i=1

‖Ui‖22,1). (3)

The above formulation enables us to perform unsuper-
vised personalized feature selection to obtain a number of
shared features across all instances and instance-specific
discriminative features. However, building a personalized
model for each instance is computationally expensive. In ad-
dition, we could only leverage one instance xi to train the lo-
calized feature weight Ui, thus the model learning process
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Figure 1: Illustration of the unsupervised personalized feature selection. Red cells indicate the shared features by all instances
while the blue cells represent the instance-specific features. White columns are the unselected features.

can easily overfit with poor generalization ability. To allevi-
ate this critical issue, we force instance to borrow strength
from its neighbors to learn the localized feature weight. In
particular, we first build a nearest neighbor affinity graph of
input data instances to realize the local geometry structure.
The nearest neighbor affinity graph S ∈ R

n×n is created as
follows:

Sij =

{
exp(− ‖xi−xj‖22

σ2 ) if xi ∈ Nk(xj) or xj ∈ Nk(xi)
0 otherwise,

(4)

where Np(xi) is the set of k-nearest neighbors of xi, σ is
a predefined parameter. Above formulation indicates that
if xi or xj is among the k-nearest neighbors of the other,
their similarity can be obtained by the RBF kernel, other-
wise their similarity is 0. With this, we force connected data
instances borrow strength from each other in learning the lo-
calized feature weight by the network lasso penalty (Hallac,
Leskovec, and Boyd 2015):

min
Ui(i=1,...,n)

n∑
i,j=1

Sij‖Ui −Uj‖F . (5)

The above network lasso penalty is similar but different from
the graph Laplacian. Without the square on the difference
between Ui and Uj , Eq. (5) forces Ui to be the same as
Uj if they have high similarity. Hence, it can greatly reduce
the number of model parameters for the personalized feature
selection and also mitigate the overfitting problem.

Furthermore, according to the spectral theory (Ng et al.
2001; Von Luxburg 2007), a rational choice of pseudo class
labels should preserve the local geometry structure of data
such that instances that are close to each other in the original
feature space should also have the same pseudo class labels.
Since the data local geometry structure has been modeled
by the affinity graph defined in Eq. (4), we make the pseudo
class labels F be smooth over the affinity graph S, resulting
in the following term:

min
F

1

2

n∑
i,j=1

Sij‖ Fi∗√
Dii

− Fj∗√
Djj

‖22 = tr(FTLF), (6)

where D is a diagonal matrix with Dii =
∑n

j=1 Sij . The
normalized Laplacian matrix L = D− 1

2 (D− S)D− 1
2 .

By combining the network lasso term in Eq. (5) and the
spectral analysis in Eq. (6), the final objective function of the

unsupervised personalized feature selection is as follows:

min
W,U,F

n∑

i=1

‖xi(W + U
i
) − Fi∗‖2

2 + α(‖W‖2,1 +
n∑

i=1

‖Ui‖2
2,1)

+β
n∑

i,j=1

Sij‖Ui − U
j‖F + γ tr(F

T
LF)

s.t. F ∈ {0, 1}n×c
, F

T
1 = 1,

(7)

where U = [U1; ...;Un] is the concatenation of all local-
ized feature weights. β and γ are two regularization param-
eters. In detail, β controls to what extent instances can bor-
row strength from neighbors in learning the localized feature
weight; and γ controls how well the pseudo labels preserve
the local geometry structure of the data. The above objective
function is difficult to solve due to the discrete constraint,
rendering it as an integer programming problem (Nemhauser
1998). Motivated by (Von Luxburg 2007), we relax the con-
straints with an orthogonal condition:

min
W,U,F

n∑

i=1

‖xi(W + U
i
) − Fi∗‖2

2 + α(‖W‖2,1 +
n∑

i=1

‖Ui‖2
2,1)

+β
n∑

i,j=1

Sij‖Ui − U
j‖F + γ tr(F

T
LF)

s.t. FT
F = Ic, F ≥ 0.

(8)

We can further rewrite the above objective function as:

min
W,U,F

n∑
i=1

‖xi(W +Ui)−Fi∗‖22 + α(‖W‖2,1 +
n∑

i=1

‖Ui‖22,1)

+β

n∑
i,j=1

Sij‖Ui −Uj‖F+γ tr(FTLF) +
θ

2
‖FTF− Ic‖2F

s.t. F ≥ 0.
(9)

Here we introduce another parameter θ to ensure that the or-
thogonal condition is satisfied. Normally, we set it as a con-
stant large number (e.g., 108) to ensure that the orthogonal
condition is satisfied.

After we solve the above objective function to obtain the
model parameters W, U and F, we can perform the pseudo
class label prediction. For each instance xi, the classifier is
a conjunction of the global feature weight W and the local-
ized feature weight Ui. In particular, for each data instance
xi, we define feature score of the j-th feature as ‖Kj∗‖22,
where K = W + Ui. After computing all feature scores,
we rank them in a descending order and return the top m
ranked features where m is the number of selected features
we want to select.
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Optimization Algorithm for UPFS
The optimization problem of the proposed UPFS framework
in Eq. (9) is not convex w.r.t. three variables W, U and F si-
multaneously. Fortunately, it is a convex optimization prob-
lem if we fix two model parameters and update the other
one. Therefore, we propose to solve the optimization prob-
lem of UPFS by an alternating optimization algorithm un-
til the objective function in Eq. (9) converges. The detailed
model update procedures are presented as follows.

Update Global Feature Weight W
First, we attempt to update the global feature W when the
other two model parameters U and F are fixed. We specify
Y = [diag(X∗1), diag(X∗2), ..., diag(X∗n)], where diag(.)
denotes the diagonalization of a vector to a diagonal matrix.
Then by removing the terms that are irrelevant to W, the
objective function can be rewritten as follows:

min
W

L(W) = ‖XW +YU− F‖2F + α‖W‖2,1, (10)

It is easy to verify that L(W) is a convex function, thus we
can obtain the optimal solution of W by taking the deriva-
tive of L(W) w.r.t. the variable W and set it to be zero:

∂L(W)

∂W
= 2XT (XW +YU− F) + 2αCW = 0, (11)

where C is a diagonal matrix whose diagonal element is
Cii = 1/2‖Wi∗‖2. It should be noted that in practice,
‖Wi∗‖2 could be zero technically. To tackle this problem,
we add a very small constant ε on the denominator and make
Cii = 1/(2‖Wi∗‖2 + ε). From Eq. (11), we obtain the
closed-form solution of W as:

W = −(XTX+ αC)−1XT (YU− F). (12)

Update Local Feature Weight U
Likewise, we update the local feature weight U when W
and F are fixed. We convert the optimization problem in
Eq. (9) into the following problem when we remove the
terms that are irrelevant to U:

min
U

L(U) = ‖XW +YU− F‖2F + α

n∑
i=1

‖Ui‖22,1

+ β
∑
i,j=1

Sij‖Ui −Uj‖F .
(13)

We denote ‖XW+YU−F‖2F ,
∑

i,j=1 Sij‖Ui−Uj‖F , and∑n
i=1 ‖Ui‖22,1 as L1(U), L2(U), and L3(U), respectively.
Eq. (13) is convex w.r.t. U. Hence, we take the derivative

of L(U) w.r.t. U and set it to be zero. The derivative of
L1(U) can be computed as follows:

∂L1(U)

∂U
= 2YT (YU+XW − F). (14)

The derivative of L2(U) w.r.t. each variable Ui (a block
of U) can be computed as follows:

∂L2(U)

∂Ui
=

n∑
j=1

Sji(U
i −Uj)

‖Uj −Ui‖F +

n∑
j=1

Sij(U
i −Uj)

‖Ui −Uj‖F . (15)

By putting all the derivative from different blocks together,
we can obtain the derivative of L2(U) w.r.t. U as follows:

∂L2(U)

∂U
= 2(E⊗ Id)U, (16)

where E is a n-by-n square matrix with its element as:

Eij =

{ ∑n
l=1

Sil

‖Ui−Ul‖F+ε
− Sij

‖Ui−Uj‖F+ε
(i = j)

−Sij

‖Ui−Uj‖F+ε
(i �= j).

(17)

In the above formulation, as L2(U) is not smooth at some
certain points due to the existence of �2,1-norm sparse reg-
ularization, we impose a very small constant ε (as shown in
Eq. (17)) to make sure the derivative of L2(U) can be ob-
tained at all points in its feasible region.

At last, we show the derivative of L3(U) w.r.t. U. The
derivative is presented in a matrix format:

∂L3

∂U
= 2GU, (18)

where G is a nd-by-nd diagonal matrix. Its diagonal ele-
ment is defined as follows:

Gii =

n∑
j=1

Ii,j‖Uj‖2,1
‖Ui∗‖2 + ε

, (19)

where Ii,j is an indicator function such that Ii,j = 1 if Ui∗
is from the block Uj , otherwise Ii,j = 0. As before, a very
small constant ε is introduced to make the derivative com-
putable at all points.

Combing the derivative of L1(U), L2(U), L3(U) w.r.t.
U together and set it the derivative to be zero, we get a
closed-form solution for the concatenation of all local fea-
ture weights, which is:

U = (YTY + βE⊗ Id + αG)−1YT (F−XW). (20)

Update Pseudo Class Labels F
At last, we discuss how to update the pseudo class labels F.
Specifically, when the other two model parameters W and
U are fixed, the objective function now can be reformulated
as follows:

min
F

tr(FT (In + γL)F)−2tr(HTF) +
θ

2
‖FTF− Ic‖2F

s.t. F ≥ 0,
(21)

where H = XW+YU. The above optimization problem is
a convex optimization problem with nonnegative constraint.
We introduce the Lagrangian multiplier Δij for the con-
straint Fij ≥ 0. Then the Lagrangian function is given as
follows:

min
F

LΔ(F) = tr(FT (In + γL)F)− 2tr(HTF)

+
θ

2
‖FTF− Ic‖2F + tr(ΔFT ).

(22)

By setting the derivative of LΔ(F) w.r.t. F to be zero, we
get the following formulation:

Δ = 2θF− 2θFFTF− 2(In + γL)F+ 2H. (23)
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Algorithm 1 Unsupervised Personalized Feature Selection
Input: X ∈ R

n×d, α, β, γ, θ = 108, m.
Output: W ∈ R

d×c, U ∈ R
nd×c, F ∈ R

n×c.
1: Initialize W, U, F;
2: Compute affinity graph S and Laplacian matrix L;
3: while objective function of UPFS in Eq. (9) not con-

verge do
4: Compute matrix C;
5: Update W by Eq. (12);
6: Compute matrix E and G;
7: Update U by Eq. (20);
8: Compute matrix H;
9: Update F by Eq. (25);

10: Normalize F;
11: end while
12: for each instance xi do
13: Compute K = W +Ui

14: Rank features according to ‖Kj∗‖22 in a descending
order;

15: Return the top m ranked features for xi;
16: end for

The Karush-Kuhn-Tuckre (KKT) condition (Boyd and Van-
denberghe 2004) for the nonnegative constraint of F gives:

[θF− θFFTF− (In + γL)F+H]ijFij = 0. (24)

Therefore, the multiplicative update rule for F is as follows:

Fij ← Fij

√
θF+H

(In + γL)F+ θFFTF
. (25)

After that, we normalize F to further ensure that it satisfies
the orthogonal constraint such that FTF = Ic.

With the above updating rules, the pseudo code of the pro-
posed UPFS framework is summarized in Algorithm 1.

Convergence Analysis
In each iteration, when we update the global feature weight
W and localized feature weight U, we have a closed form
solution. Thus, the objective function is guaranteed to de-
crease. In updating the pseudo class labels F, we rely on
the multiplicative update rule which is widely used in solv-
ing the nonnegative matrix factorization problems. Its con-
vergence has been proven in (Lee and Seung 2001). Thus,
the objective function also decreases when we update F. In
conclusion, as the objective function value is guaranteed to
decrease in each iteration, its convergence is proved. Empir-
ically, our proposed algorithm converges within 100 itera-
tions of datasets used in this paper.

Experiments
In this section, we conduct experiments to verify the effec-
tiveness of the proposed unsupervised personalized feature
selection framework - UPFS. Before presenting the detailed
experimental results, we first introduce the experimental set-
tings. Further experiments are performed to analyze the im-
pact of model parameters on UPFS.

Table 1: Dataset description

Type Data # instance # features # classes

Text

CNNStory 142 8,682 10
BlogCatalog 232 5,196 6

Flickr 150 8,189 9
DBLP 327 5,665 24

Image
Yale 165 1,024 15

warpPIE10P 210 2,420 10

Biology
Carcinoma 174 9,182 11

Prostate GE 102 5,966 2
TOX171 171 5,748 4

Experimental Settings
We choose 9 datasets from various domains, including
(1) four text datasets: CNNStory, BlogCatalog, Flickr and
DBLP; (2) two image datasets: Yale and warpPIE10P; (3)
three biology datasets: Carcinoma, Prostate GE and TOX-
171. Normally, datasets that demand feature selection are
often in the “fat” shape: with a small number of instances
but a large number of features. Therefore, we conduct ex-
periments on this kind of datasets. Detailed statistics of the
used datasets are shown in Table 1.

Following the common experiment settings of unsuper-
vised feature selection (Cai, Zhang, and He 2010; Du and
Shen 2015), we assess the performance of feature selection
by the clustering performance in terms of Clustering Ac-
curacy (ACC) and Normalized Mutual Information (NMI).
Suppose C and C ′ are the clustering results from ground
truth class labels and the predicted cluster labels, respec-
tively. The mutual information between C and C ′ can be
defined as:

MI(C,C ′) =
∑

ci∈C,c′j∈C′
p(ci, c

′
j)log

p(ci, c
′
j)

p(ci)p(c′j)
, (26)

where p(ci) and p(c′j) indicate the probabilities of instances
in cluster ci and c′j , respectively. p(ci, c′j) indicates the joint
probability of instances in cluster ci and in c′j simultane-
ously. NMI is further defined based on MI:

NMI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′))
, (27)

where H(C) and H(C ′) are the entropies of two clusters C
and C ′, respectively. Suppose gi and hi denote the clustering
result and the ground truth label for instance xi, respectively.
Then, accuracy (ACC) is defined as:

ACC =
1

n

n∑
i=1

δ(hi,map(gi)), (28)

where δ(.) is an indicator function with δ(x, y) = 1 if x =
y, otherwise δ(x, y) = 0. map(x) permutes the predicted
cluster labels to match the ground truth maximally.

Specifically, we first apply the unsupervised feature selec-
tion algorithms to select features and then employ k-means
clustering algorithm on the selected features. As k-means
may converge to different local optima because of different
initialization, we perform the experiments 20 times and re-
port the average clustering performance with the standard
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deviation. In the proposed UPFS framework, for each in-
stance xi, we first select the top m features according to the
corresponding entry in K = W + Ui, then we make the
feature values of the bottom ranked d − m features in xi

to be zero. Afterwards, we employ the refined data matrix
for clustering evaluation. The higher the clustering perfor-
mance, the better the selected features are.

Performance Evaluation
We compare the proposed UPFS framework with the fol-
lowing representative unsupervised feature selection algo-
rithms:
• All: all features are employed for clustering.
• Laplacian Score (LS): selects features that best preserve

the local manifold structure of data (He, Cai, and Niyogi
2005).

• SPEC: selects features based on spectral analysis (Zhao
and Liu 2007).

• MCFS: selects features based on spectral analysis and �1-
norm sparse regression (Cai, Zhang, and He 2010).

• NDFS: selects features with nonnegative spectral analysis
and �2,1-norm sparse regression (Li et al. 2012).

• RUFS: performs robust label learning and robust feature
selection simultaneously (Qian and Zhai 2013).

• FSASL: performs data structure learning and feature se-
lection in a joint framework (Du and Shen 2015).

In Laplacian Score, MCFS, NDFS, FSASL and UPFS, we
specify the number of nearest neighbors k as 5. These base-
line methods and the proposed UPFS framework have differ-
ent sets of parameters. To have a fair comparison, we tune
these parameters by the “grid-search” strategy. It is still an
open question to decide the optimal number of selected fea-
tures in feature selection research. Thus, we set the num-
ber of selected features among {10, 20, ..., 300} and report
the best clustering results. The clustering results in terms of
ACC and NMI are shown in Table 2 and Table 3. The fol-
lowing observations are induced from these two tables:

• Feature selection is necessary in most cases. As indicated
in the tables, when we use feature selection algorithms to
find discriminative features, it can improve the clustering
performance.

• The proposed UPFS framework outperforms baseline
methods in many cases, thus its effectiveness is verified.
We also perform a two-sample one tail t-test between
UPFS and other methods, the results show that UPFS is
significantly better with a significance level of 0.05. The
improvements can be attributed as follows: (1) instances
in a dataset can be highly idiosyncratic while a global fea-
ture weight cannot fully capture the individuality of in-
stances; (2) instances more or less share some common-
ality, hence, it would be beneficial to use a conjunction of
global feature weight and localized feature weight for the
pseudo label prediction.

• The proposed UPFS performs better on text data and bi-
ology data than image data. The reason is that in these

two domains, instances are more likely to show high in-
dividuality, which can be characterized by a number of
personalized features.

• NDFS is a special case of the UPFS by eliminating the
exclusive group lasso term and the network lasso term.
NDFS only employs one single global feature weight, the
improvement of UPFS over NDFS indicates that it is in-
deed helpful to find instances-specific features.

Parameter Study
We investigate the impacts of parameters of α, β and γ on
the performance of UPFS. Among them, α controls the fea-
ture sparsity, β controls to what extent instances can borrow
strength from neighbors in learning localized feature weight,
γ controls how well the pseudo class labels preserve the lo-
cal geometry structure of data. To study how its variation
affects the feature selection performance, we fix two pa-
rameters each time and vary the third one in the range of
{0.001, 0.01, 1, 10, 100, 1000}. The performance variation
of these parameters w.r.t. the number of selected features are
shown in Figure 2. Due to space limit, we only show the
parameter study results in terms of ACC on the BlogCatalog
dataset as we have similar observations on other datasets. As
can be observed, the best clustering performance is achieved
when α, β and γ is in the range of 0.1 to 10. Generally speak-
ing, the proposed UPFS framework is not very sensitive to
these model parameters, and it is safe to tune them in a wide
range, which is appealing in practice.

Related Work
Feature selection has shown its effectiveness in preparing
high-dimensional data for many learning tasks. As label in-
formation is rather difficult to obtain in many applications,
there is a surge of research studying unsupervised feature
selection. Without label information to assess feature rele-
vance, unsupervised feature selection methods employ some
alternative criteria such as data similarity (He, Cai, and
Niyogi 2005; Zhao and Liu 2007), local discriminative in-
formation (Yang et al. 2011; Li et al. 2012; Qian and Zhai
2013) and data reconstruction error (Masaeli et al. 2010;
Farahat, Ghodsi, and Kamel 2013; Li, Tang, and Liu 2017).
Recently, sparse learning based unsupervised learning with
�1-norm regularization or �2,1-norm regularization has re-
ceived increasingly attention. However, these methods pre-
dominately assume that all instances share the same feature
weights, which is not necessarily true in practice.

Personalized feature learning has significant implications
in many real-world applications such as medical predictive
modeling (Xu, Zhou, and Tan 2015), node classification (Li
et al. 2017) and sentiment classification (Gong, Al Boni,
and Wang 2016; Wu and Huang 2016). In (Xu, Zhou, and
Tan 2015), the authors regard the personalized feature learn-
ing as a multi-task learning task. The proposed personalized
models are assumed to share task relatedness by low rank-
ness and the low rank matrices are forced to be sparse. As
features could be high-dimensional, (Yamada et al. 2016)
studies how to build a high-dimensional localized regression
model. It assumes that different instances have different sets
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Table 2: Clustering results (ACC%± std) of different unsupervised feature selection algorithms.

Data All LS SPEC MCFS NDFS RUFS FSASL UPFS
CNNStory 50.70±3.83 54.02±6.83 24.13±1.33 54.61±7.33 51.17±6.68 53.24±5.58 53.81±5.02 54.82±3.92

BlogCatalog 24.78±1.85 25.08±3.80 23.28±0.20 26.25±2.02 26.51±0.63 27.91±2.76 27.01±1.55 28.30±0.85
Flickr 18.70±0.82 22.83±0.41 18.67±1.05 19.37±0.98 22.40±1.99 20.53±1.83 22.61±2.32 22.97±0.39
DBLP 34.01±1.07 35.62±2.56 35.17±2.33 38.07±3.89 35.60±5.84 38.01±3.09 39.27±0.50 39.72±1.22
Yale 38.30±3.83 41.30±3.01 38.52±3.42 40.18±1.86 42.48±3.36 42.61±2.96 42.87±2.47 39.92±2.60

warpPIE10P 26.67±2.03 38.69±2.63 40.38±2.38 27.29±1.98 37.60±3.56 38.83±2.45 33.40±1.05 28.74±1.48
Carcinoma 59.57±7.42 72.87±6.66 53.85±4.03 76.49±8.33 73.11±7.8 76.24±5.41 75.16±4.81 76.98±4.69
Prostate-GE 58.28±0.50 57.50±0.47 57.45±0.48 58.82±1.12 57.81±1.11 57.84±1.12 57.97±0.22 59.37±0.46

TOX-171 41.87±3.97 41.96±1.61 42.84±4.40 43.45±3.87 47.89±0.34 48.26±2.30 45.49±0.76 49.98±1.70

Table 3: Clustering results (NMI%± std) of different unsupervised feature selection algorithms.

Data All LS SPEC MCFS NDFS RUFS FSASL UPFS
CNNStory 50.65±4.82 57.25±3.02 36.02±0.79 52.88±8.45 51.63±5.8 53.24±4.49 53.29±3.38 59.71±4.08

BlogCatalog 4.14±2.47 5.75±1.77 2.18±0.72 6.27±0.99 5.11±2.07 6.46±2.93 5.94±1.04 7.20±0.08
Flickr 5.74±0.39 11.29±0.74 5.43±0.21 7.17±1.60 11.13±1.56 8.42±1.76 9.05±0.13 11.56±1.82
DBLP 3.86±1.63 7.06±2.66 1.19±0.30 6.64±1.98 6.05±2.50 5.43±2.44 7.99±2.37 9.86±0.44
Yale 43.89±3.93 46.71±2.17 44.16±2.12 44.90±1.40 50.04±2.10 51.83±2.19 53.09±0.95 45.49±3.53

warpPIE10P 25.61±4.18 38.11±3.49 42.81±2.73 26.16±3.59 43.59±5.20 35.86±4.16 32.68±6.02 29.54±0.82
Carcinoma 62.56±7.46 78.23±4.28 57.21±3.57 80.99±4.69 77.12±4.72 79.82±3.86 78.04±5.5 81.44±3.67

Prostate GE 2.07±0.31 1.61±0.20 1.59±0.21 3.09±2.13 1.80±0.34 1.80±0.34 2.65±0.08 3.64±0.63
TOX171 13.37±3.71 12.04±2.54 16.10±1.65 14.12±1.89 18.40±0.21 16.30±2.63 16.00±0.71 18.95±1.28
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(a) Effect of α (β = 1, γ = 0.1)
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(b) Effect of β (α = 0.1, γ = 0.1)
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(c) Effect of γ (α = 0.1, β = 1)

Figure 2: Parameter study on BlogCatalog dataset in terms of ACC.

of localized feature weights, the proposed model is shown
to outperform traditional lasso methods. Our work differs
from these as: (1) our model uses as a conjunction of global
model and localized model for feature learning; (2) to the
best of our knowledge, we are the first how to perform study
personalized feature selection in an unsupervised scenario.

Conclusions and Future Work
Real-world high-dimensional data is often unlabeled. With-
out label information to assess feature relevance, unsuper-
vised feature selection is more appealing in practical usage.
Existing unsupervised feature selection algorithms attempt
to find the same set of discriminative features for all in-
stances. However, these methods inevitably ignore the in-
dividuality of instances as important features for different
instances could vary significantly. To tackle this problem,
we study a novel problem of unsupervised personalized fea-
ture selection. Specifically, we propose a principled frame-

work UPFS to find a subset of shared features and instance-
specific discriminative features for each instance. Experi-
mental results on real-world datasets corroborate the effec-
tiveness of the proposed framework. Future work can be fo-
cused on designing more efficient distributed optimization
algorithm for UPFS and deploy it on real applications.
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