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Abstract

We introduce Dynamic Deep Neural Networks (D2NN), a
new type of feed-forward deep neural network that allows
selective execution. Given an input, only a subset of D2NN
neurons are executed, and the particular subset is determined
by the D2NN itself. By pruning unnecessary computation de-
pending on input, D2NNs provide a way to improve com-
putational efficiency. To achieve dynamic selective execu-
tion, a D2NN augments a feed-forward deep neural network
(directed acyclic graph of differentiable modules) with con-
troller modules. Each controller module is a sub-network
whose output is a decision that controls whether other mod-
ules can execute. A D2NN is trained end to end. Both regu-
lar and controller modules in a D2NN are learnable and are
jointly trained to optimize both accuracy and efficiency. Such
training is achieved by integrating backpropagation with re-
inforcement learning. With extensive experiments of various
D2NN architectures on image classification tasks, we demon-
strate that D2NNs are general and flexible, and can effectively
optimize accuracy-efficiency trade-offs.

Introduction

This paper introduces Dynamic Deep Neural Networks
(D2NN), a new type of feed-forward deep neural network
(DNN) that allows selective execution. That is, given an in-
put, only a subset of neurons are executed, and the particular
subset is determined by the network itself based on the par-
ticular input. In other words, the amount of computation and
computation sequence are dynamic based on input. This is
different from standard feed-forward networks that always
execute the same computation sequence regardless of input.

A D2NN is a feed-forward deep neural network (directed
acyclic graph of differentiable modules) augmented with
one or more control modules. A control module is a sub-
network whose output is a decision that controls whether
other modules can execute. Fig. 1 (left) illustrates a simple
D2NN with one control module (Q) and two regular mod-
ules (N1, N2), where the controller Q outputs a binary deci-
sion on whether module N2 executes. For certain inputs, the
controller may decide that N2 is unnecessary and instead ex-
ecute a dummy node D to save on computation. As an exam-
ple application, this D2NN can be used for binary classifica-
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tion of images, where some images can be rapidly classified
as negative after only a small amount of computation.

D2NNs are motivated by the need for computational ef-
ficiency, in particular, by the need to deploy deep networks
on mobile devices and data centers. Mobile devices are con-
strained by energy and power, limiting the amount of com-
putation that can be executed. Data centers need energy ef-
ficiency to scale to higher throughput and to save operating
cost. D2NNs provide a way to improve computational effi-
ciency by selective execution, pruning unnecessary compu-
tation depending on input. D2NNs also make it possible to
use a bigger network under a computation budget by execut-
ing only a subset of the neurons each time.

A D2NN is trained end to end. That is, regular modules
and control modules are jointly trained to optimize both ac-
curacy and efficiency. We achieve such training by integrat-
ing backpropagation with reinforcement learning, necessi-
tated by the non-differentiability of control modules.

Compared to prior work that optimizes computational ef-
ficiency in computer vision and machine learning, our work
is distinctive in four aspects: (1) the decisions on selective
execution are part of the network inference and are learned
end to end together with the rest of the network, as op-
posed to hand-designed or separately learned (Li et al. 2015;
Sun, Wang, and Tang 2013; Almahairi et al. 2016); (2)
D2NNs allow more flexible network architectures and ex-
ecution sequences including parallel paths, as opposed to ar-
chitectures with less variance (Denoyer and Gallinari 2014;
Shazeer et al. 2017); (3) our D2NNs directly optimize arbi-
trary efficiency metric that is defined by the user, while pre-
vious work has no such flexibility because they improve ef-
ficiency indirectly through sparsity constraints(Bengio et al.
2015; Bengio, Léonard, and Courville 2013; Shazeer et al.
2017). (4) our method optimizes metrics such as the F-score
that does not decompose over individual examples. This is
an issue not addressed in prior work. We will elaborate on
these differences in the Related Work section of this paper.

We perform extensive experiments to validate our D2NNs
algorithms. We evaluate various D2NN architectures on sev-
eral tasks. They demonstrate that D2NNs are general, flexi-
ble, and can effectively improve computational efficiency.

Our main contribution is the D2NN framework that allows
a user to augment a static feed-forward network with control
modules to achieve dynamic selective execution. We show
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Figure 1: Two D2NN examples. Input and output nodes are drawn as circles with the output nodes shaded. Function nodes
are drawn as rectangles (regular nodes) or diamonds (control nodes). Dummy nodes are shaded. Data edges are drawn as solid
arrows and control edges as dashed arrows. A data edge with a user defined default value is decorated with a circle.

that D2NNs allow a wide variety of topologies while shar-
ing a unified training algorithm. To our knowledge, D2NN is
the first single framework that can support various qualita-
tively different efficient network designs, including cascade
designs and coarse-to-fine designs. Our D2NN framework
thus provides a new tool for designing and training compu-
tationally efficient neural network models.

Related work

Input-dependent execution has been widely used in com-
puter vision, from cascaded detectors (Viola and Jones 2004;
Felzenszwalb, Girshick, and McAllester 2010) to hierarchi-
cal classification (Deng et al. 2011; Bengio, Weston, and
Grangier 2010). The key difference of our work from prior
work is that we jointly learn both visual features and con-
trol decisions end to end, whereas prior work either hand-
designs features and control decisions (e.g. thresholding), or
learns them separately.

In the context of deep networks, two lines of prior work
have attempted to improve computational efficiency. One
line of work tries to eliminate redundancy in data or com-
putation in a way that is input-independent. The methods in-
clude pruning networks (Han et al. 2015; Wen et al. 2016;
Alvarez and Salzmann 2016), approximating layers with
simpler functions (Denton et al. 2014; Zhang et al. 2016),
and using number representations of limited precision (Chen
et al. 2014; Gupta et al. 2015). The other line of work ex-
ploits the fact that not all inputs require the same amount
of computation, and explores input-dependent execution of
DNNs. Our work belongs to the second line, and we will
contrast our work mainly with them. In fact, our input-
dependent D2NN can be combined with input-independent
methods to achieve even better efficiency.

Among methods leveraging input-dependent execution,
some use pre-defined execution-control policies. For exam-
ple, cascade methods (Li et al. 2015; Sun, Wang, and Tang
2013) rely on manually-selected thresholds to control exe-
cution; Dynamic Capacity Network (Almahairi et al. 2016)
designs a way to directly calculate a saliency map for exe-
cution control. Our D2NNs, instead, are fully learn-able; the
execution-control policies of D2NNs do not require manual
design and are learned together with the rest of the network.

Our work is closely related to conditional computa-
tion methods (Bengio et al. 2015; Bengio, Léonard, and
Courville 2013; Shazeer et al. 2017), which activate part
of a network depending on input. They learn policies to
encourage sparse neural activations(Bengio et al. 2015) or
sparse expert networks(Shazeer et al. 2017). Our work dif-

fers from these methods in several ways. First, our con-
trol policies are learned to directly optimize arbitrary user-
defined global performance metrics, whereas conditional
computation methods have only learned policies that en-
courage sparsity. In addition, D2NNs allow more flexible
control topologies. For example, in (Bengio et al. 2015), a
neuron (or block of neurons) is the unit controllee of their
control policies; in (Shazeer et al. 2017), an expert is the
unit controllee. Compared to their fixed types of controllees,
our control modules can be added in any point of the net-
work and control arbitrary subnetworks. Also, various pol-
icy parametrization can be used in the same D2NN frame-
work. We show a variety of parameterizations (as different
controller networks) in our D2NN examples, whereas pre-
vious conditional computation works have used some fixed
format: For example, control policies are parametrized as the
sigmoid or softmax of an affine transformation of neurons or
inputs (Bengio et al. 2015; Shazeer et al. 2017).

Our work is also related to attention models (Denil et al.
2012; Mnih et al. 2014; Gregor et al. 2015). Note that at-
tention models can be categorized as hard attention (Mnih
et al. 2014; Ba, Mnih, and Kavukcuoglu 2014; Almahairi
et al. 2016) versus soft (Gregor et al. 2015; Stollenga et al.
2014). Hard attention models only process the salient parts
and discard others (e.g. processing only a subset of image
subwindows); in contrast, soft attention models process all
parts but up-weight the salient parts. Thus only hard atten-
tion models perform input-dependent execution as D2NNs
do. However, hard attention models differ from D2NNs be-
cause hard attention models have typically involved only
one attention module whereas D2NNs can have multiple at-
tention (controller) modules — conventional hard attention
models are “single-threaded” whereas D2NN can be “multi-
threaded”. In addition, prior work in hard attention models
have not directly optimized for accuracy-efficiency trade-
offs. It is also worth noting that many mixture-of-experts
methods (Jacobs et al. 1991; Jordan and Jacobs 1994;
Eigen, Ranzato, and Sutskever 2013) also involve soft at-
tention by soft gating experts: they process all experts but
only up-weight useful experts, thus saving no computation.

D2NNs also bear some similarity to Deep Sequential Neu-
ral Networks (DSNN) (Denoyer and Gallinari 2014) in terms
of input-dependent execution. However, it is important to
note that although DSNNs’ structures can in principle be
used to optimize accuracy-efficiency trade-offs, DSNNs are
not for the task of improving efficiency and have no learning
method proposed to optimize efficiency. And the method to
effectively optimize for efficiency-accuracy trade-off is non-
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trivial as is shown in the following sections. Also, DSNNs
are single-threaded: it always activates exactly one path in
the computation graph, whereas for D2NNs it is possible to
have multiple paths or even the entire graph activated.

Definition and Semantics of D2NNs
Here we precisely define a D2NN and describe its semantics,
i.e. how a D2NN performs inference.

D2NN definition A D2NN is defined as directed acyclic
graph (DAG) without duplicated edges. Each node can be
one of the three types: input nodes, output nodes, and func-
tion nodes. An input or output node represents an input or
output of the network (e.g. a vector). A function node repre-
sents a (differentiable) function that maps a vector to another
vector. Each edge can be one of the two types: data edges
and control edges. A data edge represents a vector sent from
one node to another, the same as in a conventional DNN. A
control edge represents a control signal, a scalar, sent from
one node to another. A data edge can optionally have a user-
defined “default value”, representing the output that will still
be sent even if the function node does not execute.

For simplicity, we have a few restrictions on valid D2NNs:
(1) the outgoing edges from a node are either all data edges
or all control edges (i.e. cannot be a mix of data edges and
control edges); (2) if a node has an incoming control edge,
it cannot have an outgoing control edge. Note that these two
simplicity constraints do not in any way restrict the expres-
siveness of a D2NN. For example, to achieve the effect of a
node with a mix of outgoing data edges and control edges,
we can just feed its data output to a new node with outgoing
control edges and let the new node be identity function.

We call a function node a control node if its outgoing
edges are control edges. We call a function node a regular
node if its outgoing edges are data edges. Note that it is pos-
sible for a function node to take no data input and output
a constant value. We call such nodes “dummy” nodes. We
will see that the “default values” and “dummy” nodes can
significantly extend the flexibility of D2NNs. Hereafter we
may also call function nodes “subnetwork”, or “modules”
and will use these terms interchangeably. Fig. 1 illustrates
simple D2NNs with all kinds of nodes and edges.

D2NN Semantics Given a D2NN, we perform inference
by traversing the graph starting from the input nodes. Be-
cause a D2NN is a DAG, we can execute each node in a
topological order (the parents of a node are ordered before it;
we take both data edges and control edges in consideration),
same as conventional DNNs except that the control nodes
can cause the computation of some nodes to be skipped.

After we execute a control node, it outputs a set of con-
trol scores, one for each of its outgoing control edges. The
control edge with the highest score is “activated”, meaning
that the node being controlled is allowed to execute. The rest
of the control edges are not activated, and their controllees
are not allowed to execute. For example, in Fig 1 (right), the
node Q controls N2 and N3. Either N2 or N3 will execute
depending on which has the higher control score.

Although the main idea of the inference (skipping nodes)
seems simple, due to D2NNs’ flexibility, the inference topol-

ogy can be far more complicated. For example, in the case
of a node with multiple incoming control edges (i.e. con-
trolled by multiple controllers), it should execute if any of
the control edges are activated. Also, when the execution of
a node is skipped, its output will be either the default value or
null. If the output is the default value, subsequent execution
will continue as usual. If the output is null, any downstream
nodes that depend on this output will in turn skip execution
and have a null output unless a default value has been set.
This “null” effect will propagate to the rest of the graph.
Fig. 1 (right) shows a slightly more complicated example
with default values: if N2 skips execution and outputs null,
so will N4 and N6. But N8 will execute regardless because
its input data edge has a default value. In our Experiments
Section, we will demonstrate more sophisticated D2NNs.

We can summarize the semantics of D2NNs as follows:
a D2NN executes the same way as a conventional DNN ex-
cept that there are control edges that can cause some nodes
to be skipped. A control edge is active if and only if it has
the highest score among all outgoing control edges from a
node. A node is skipped if it has incoming control edges
and none of them is active, or if one of its inputs is null. If
a node is skipped, its output will be either null or a user-
defined default value. A null will cause downstream nodes
to be skipped whereas a default value will not.

A D2NN can also be thought of as a program with condi-
tional statements. Each data edge is equivalent to a variable
that is initialized to either a default value or null. Executing
a function node is equivalent to executing a command as-
signing the output of the function to the variable. A control
edge is equivalent to a boolean variable initialized to False.
A control node is equivalent to a “switch-case” statement
that computes a score for each of the boolean variables and
sets the one with the largest score to True. Checking the con-
ditions to determine whether to execute a function is equiv-
alent to enclosing the function with an “if-then” statement.
A conventional DNN is a program with only function calls
and variable assignment without any conditional statements,
whereas a D2NN introduces conditional statements with the
conditions themselves generated by learnable functions.

D2NN Learning

Due to the control nodes, a D2NN cannot be trained the
same way as a conventional DNN. The output of the net-
work cannot be expressed as a differentiable function of all
trainable parameters, especially those in the control nodes.
As a result, backpropagation cannot be directly applied.
The main difficulty lies in the control nodes, whose out-
puts are discretized into control decisions. This is similar to
the situation with hard attention models (Mnih et al. 2014;
Ba, Mnih, and Kavukcuoglu 2014), which use reinforcement
learning. Here we adopt the same general strategy.

Learning a Single Control Node For simplicity of ex-
position we start with a special case where there is only
one control node. We further assume that all parameters ex-
cept those of this control node have been learned and fixed.
That is, the goal is to learn the parameters of the control
node to maximize a user-defined reward, which in our case
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is a combination of accuracy and efficiency. This results in
a classical reinforcement learning setting: learning a con-
trol policy to take actions so as to maximize reward. We
base our learning method on Q-learning (Mnih et al. 2013;
Sutton and Barto ). We let each outgoing control edge rep-
resent an action, and let the control node approximate the
action-value (Q) function, which is the expected return of an
action given the current state (the input to the control node).

It is worth noting that unlike many prior works that use
deep reinforcement learning, a D2NN is not recurrent. For
each input to the network (e.g. an image), each control node
only executes once. And the decisions of a control node
completely depend on the current input. As a result, an ac-
tion taken on one input has no effect on another input. That
is, our reinforcement learning task consists of only one time
step. Our one time-step reinforcement learning task can also
be seen as a contextual bandit problem, where the context
vector is the input to the control module, and the arms are
the possible action outputs of the module. The one time-step
setting simplifies our Q-learning objective to that of the fol-
lowing regression task:

L = (Q(s,a)− r)2, (1)

where r is a user-defined reward, a is an action, s is the in-
put to control node, and Q is computed by the control node.
As we can see, training a control node here is the same as
training a network to predict the reward for each action un-
der an L2 loss. We use mini-batch gradient descent; for each
training example in a mini-batch, we pick the action with the
largest Q, execute the rest of the network, observe a reward,
and perform backpropagation using the L2 loss in Eqn. 1.

During training we also perform ε-greedy exploration —
instead of always choosing the action with the best Q value,
we choose a random action with probability ε. The hyper-
parameter ε is initialized to 1 and decreases over time. The
reward r is user defined. Since our goal is to optimize the
trade-off between accuracy and efficiency, in our experi-
ments we define the reward as a combination of an accuracy
metric A (for example, F-score) and an efficiency metric E
(for example, the inverse of the number of multiplications),
that is, λA+ (1− λ)E where λ balances the trade-off.

Mini-Bags for Set-Based Metrics Our training algorithm
so far has defined the state as a single training example, i.e.,
the control node takes actions and observe rewards on each
training example independent of others. This setup, how-
ever, introduces a difficulty for optimizing for accuracy met-
rics that cannot be decomposed over individual examples.

Consider precision in the context of binary classification.
Given predictions on a set of examples and the ground truth,
precision is defined as the proportion of true positives among
the predicted positives. Although precision can be defined
on a single example, precision on a set of examples does
not generally equal the average of the precisions of indi-
vidual examples. In other words, precision as a metric does
not decompose over individual examples and can only be
computed using a set of examples jointly. This is different
from decomposable metrics such as error rate, which can
be computed as the average of the error rates of individual

examples. If we use precision as our accuracy metric, it is
not clear how to define a reward independently for each ex-
ample such that maximizing this reward independently for
each example would optimize the overall precision. In gen-
eral, for many metrics, including precision and F-score, we
cannot compute them on individual examples and average
the results. Instead, we must compute them using a set of ex-
amples as a whole. We call such metrics “set-based metrics”.
Our learning setup so far is ill-equipped for such metrics be-
cause a reward is defined on each example independently.

To address this issue we generalize the definition of a state
from a single input to a set of inputs. We define such a set
of inputs as a mini-bag. With a mini-bag of images, any set-
based metric can be computed and can be used to directly
define a reward. Note that a mini-bag is different from a
mini-batch which is commonly used for batch updates in
gradient decent methods. Actually in our training, we cal-
culate gradients using a mini-batch of mini-bags. Now, an
action on a mini-bag s = (s1, . . . , sm) is now a joint action
a = (a1, . . . , am) consisting of individual actions ai on ex-
ample si. Let Q(s, a) be the joint action-value function on
the mini-bag s and the joint action a. We constrain the para-
metric form of Q to decompose over individual examples:

Q =

m∑

i=1

Q(si, ai), (2)

where Q(si, ai) is a score given by the control node when
choosing the action ai for example si. We then define our
new learning objective on a mini-bag of size m as

L = (r −Q(s, a))2 = (r −
m∑

i=1

Q(si, ai))
2, (3)

where r is the reward observed by choosing the joint action
a on mini-bag s. That is, the control node predicts an action-
value for each example such that their sum approximates the
reward defined on the whole mini-bag.

It is worth noting that the decomposition of Q into sums
(Eqn. 2) enjoys a nice property: the best joint action a∗ under
the joint action-value Q(s, a) is simply the concatenation of
the best actions for individual examples because maximizing
a∗ = argmaxa(Q(s, a)) = argmaxa(

∑m
i=1 Q(si, ai)) is

equivalent to maximizing the individual summands: a∗i =
argmaxai

Q(si, ai), i = 1, 2...m. That is, during test time
we still perform inference on each example independently.

Another implication of the mini-bag formulation is:
∂L
∂xi

= 2(r − ∑m
j=1 Q(sj , aj))

∂Q(si,ai)
∂xi

, where xi is the
output of any internal neuron for example i in the mini-bag.
This shows that there is no change to the implementation of
backpropagation except that we scale the gradient using the
difference between the mini-bag Q-value Q and reward r.

Joint Training of All Nodes We have described how to
train a single control node. We now describe how to extend
this strategy to all nodes including additional control nodes
as well as regular nodes. If a D2NN has multiple control
nodes, we simply train them together. For each mini-bag,
we perform backpropagation for multiple losses together.
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Figure 2: The accuracy-cost or fscore-cost curves of various D2NN architectures, as well as conventional DNN baselines
consisting of only regular nodes.

Figure 3: Four different D2NN architectures.

Specifically, we perform inference using the current param-
eters, observe a reward for the whole network, and then use
the same reward (which is a result of the actions of all con-
trol nodes) to backpropagate for each control node.

For regular nodes, we can place losses on them the same
as on conventional DNNs. And we perform backpropaga-
tion on these losses together with the control nodes. The
implementation of backpropagation is the same as conven-
tional DNNs except that each training example have a differ-
ent network topology (execution sequence). And if a node is
skipped for a particular training example, then the node does
not have a gradient from the example.

It is worth noting that our D2NN framework allows arbi-
trary losses to be used for regular nodes. For example, for
classification we can use the cross-entropy loss on a regu-
lar node. One important detail is that the losses on regular
nodes need to be properly weighted against the losses on the
control nodes; otherwise the regular losses may dominate,
rendering the control nodes ineffective. One way to elimi-
nate this issue is to use Q-learning losses on regular nodes
as well, i.e. treating the outputs of a regular node as action-
values. For example, instead of using the cross-entropy loss
on the classification scores, we treat the classification scores
as action-values—an estimated reward of each classification
decision. This way Q-learning is applied to all nodes in a
unified way and no additional hyperparameters are needed
to balance different kinds of losses. In our experiments un-
less otherwise noted we adopt this unified approach.

Experiments

We here demonstrate four D2NN structures motivated by
different demands of efficient network design to show its

flexibility and effectiveness, and compare D2NNs’ ability to
optimize efficiency-accuracy trade-offs with prior work.

We implement the D2NN framework in Torch. Torch pro-
vides functions to specify the subnetwork architecture inside
a function node. Our framework handles the high-level com-
munication and loss propagation.

High-Low Capacity D2NN Our first experiment is with
a simple D2NN architecture that we call “high-low capac-
ity D2NN”. It is motivated by that we can save computation
by choosing a low-capacity subnetwork for easy examples.
It consists of a single control nodes (Q) and three regular
nodes (N1-N3) as in Fig. 3a). The control node Q chooses
between a high-capacity N2 and a low-capacity N3; the N3
has fewer neurons and uses less computation. The control
node itself has orders of magnitude fewer computation than
regular nodes (this is true for all D2NNs demonstrated).

We test this hypothesis using a binary classification task in
which the network classifies an input image as face or non-
face. We use the Labeled Faces in the Wild (Huang et al.
2007; Learned-Miller 2014) dataset. Specifically, we use the
13k ground truth face crops (112×112 pixels) as positive ex-
amples and randomly sampled 130k background crops (with
an intersection over union less than 0.3) as negative exam-
ples. We hold out 11k images for validation and 22k for test-
ing. We refer to this dataset as LFW-B and use it as a testbed
to validate the effectiveness of our new D2NN framework.

To evaluate performace we measure accuracy using the
F1 score, a better metric than percentage of correct pre-
dictions for an unbalanced dataset. We measure computa-
tional cost using the number of multiplications following
prior work (Almahairi et al. 2016; Shazeer et al. 2017) and
for reproductivity. Specifically, we use the number of mul-
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tiplications (control nodes included), normalized by a con-
ventional DNN consisting of N1 and N2, that is, the high-
capacity execution path. Note that our D2NNs also allow to
use other efficiency measurement such as run-time, latency.

During training we define the Q-learning reward as a lin-
ear combination of accuracy A and efficiency E (negative
cost): r = λA + (1 − λ)E where λ ∈ [0, 1]. We train in-
stances of high-low capacity D2NNs using different λ’s. As
λ increases, the learned D2NN trades off efficiency for accu-
racy. Fig. 2a) plots the accuracy-cost curve on the test set; it
also plots the accuracy and efficiency achieved by a conven-
tional DNN with only the high capacity path N1+N2 (High
NN) and a conventional DNN with only the low capacity
path N1+N3 (Low NN). As we can see, the D2NN achieves
a trade-off curve close to the upperbound: there are points
on the curve that are as fast as the low-capacity node and
as accurate as the high-capacity node. Fig. 4(left) plots the
distribution of examples going through different execution
paths. It shows that as λ increases, accuracy becomes more
important and more examples go through the high-capacity
node. These results suggest that our learning algorithm is
effective for networks with a single control node.

With inference efficiency improved, we also observe that
for training, a D2NN typically takes 2-4 times more iter-
ations to converge than a DNN, depending on particular
model capacities, configurations and trade-offs.

Cascade D2NN We next experiment with a more sophis-
ticated design that we call a “cascade D2NN” (Fig. 3b). It is
inspired by the standard cascade design commonly used in
computer vision. The intuition is that many negative exam-
ples may be rejected early using simple features. The cas-
cade D2NN consists of seven regular nodes (N1-N7) and
three control nodes (Q1-Q3). N1-N7 form 4 cascade stages
(i.e. 4 conventional DNNs, from small to large) of the cas-
cade: N1+N2, N3+N4, N5+N6, N7. Each control node de-
cides whether to execute the next cascade stage or not.

We evaluate the network on the same LFW-B face classifi-
cation task using the same evaluation protocol as in the high-
low capacity D2NN. Fig. 2b) plots the accuracy-cost trade-
off curve for the D2NN. Also included are the accuracy-
cost curve (“static NNs”) achieved by the four conventional
DNNs as baselines, each trained with a cross-entropy loss.
We can see that the cascade D2NN can achieve a close to
optimal trade-off, reducing computation significantly with
negligible loss of accuracy. In addition, we can see that our
D2NN curve outperforms the trade-off curve achieved by
varying the design and capacity of static conventional net-
works. This result demonstrates that our algorithm is suc-
cessful for jointly training multiple control nodes.

For a cascade, wall time of inference is often an important
consideration. Thus we also measure the inference wall time
(excluding data loading with 5 runs) in this Cascade D2NN.
We find that a 82% wall-time cost corresponds to a 53%
number-of-multiplication cost; and a 95% corresponds to a
70%. Defining reward directly using wall time can further
reduce the gap.

Chain D2NN Our third design is a “Chain D2NN”
(Fig. 3c). The network is shaped as a chain, where each link

consists of a control node selecting between two (or more)
regular nodes. In other words, we perform a sequence of
vector-to-vector transforms; for each transform we choose
between several subnetworks. One scenario that we can use
this D2NN is that the configuration of a conventional DNN
(e.g. number of layers, filter sizes) cannot be fully decided.
Also, it can simulate shortcuts between any two layers by us-
ing an identity function as one of the transforms. This chain
D2NN is qualitatively different from other D2NNs with a
tree-shaped data graph because it allows two divergent data
paths to merge again. That is, the number of possible execu-
tion paths can be exponential to the number of nodes.

In Fig. 3c), the first link is that Q1 chooses between a
low-capacity N2 and a high-capacity N3. If one of them is
chosen, the other will output a default value zero. The node
N4 adds the outputs of N2 and N3 together. Fig. 2c) plots the
accuracy-cost curve on the LFW-B task. The two baselines
are: a conventional DNN with the lowest capacity path (N1-
N2-N5-N8-N10), and a conventional DNN with the highest
capacity path (N1-N3-N6-N9-N10). The cost is measured as
the number of multiplications, normalized by the cost of the
high-capacity baseline. Fig. 2c) shows that the chain D2NN
achieves a trade-off curve close to optimal and can speed
up computation significantly with little accuracy loss. This
shows that our learning algorithm is effective for a D2NN
whose data graph is a general DAG instead of a tree.

Hierarchical D2NN In this experiment we design a D2NN
for hierarchical multiclass classification. The idea is to first
classify images to coarse categories and then to fine cat-
egories. This idea has been explored by numerous prior
works (Liu et al. 2013; Bengio, Weston, and Grangier 2010;
Deng et al. 2011), but here we show that the same idea can
be implemented via a D2NN trained end to end.

We use ILSVRC-10, a subset of the ILSVRC-65 (Deng et
al. 2012). In ILSVRC-10, 10 classes are organized into a 3-
layer hierarchy: 2 superclasses, 5 coarse classes and 10 leaf
classes. Each class has 500 training images, 50 validation
images, and 150 test images. As in Fig. 3d), the hierarchy in
this D2NN mirrors the semantic hierarchy in ILSVRC-10.
An image first goes through the root N1. Then Q1 decides
whether to descend the left branch (N2 and its children), and
Q2 decides whether to descend the right branch (N3 and its
children). The leaf nodes N4-N8 are each responsible for
classifying two fine-grained leaf classes. It is important to
note that an input image can go down parallel paths in the
hierarchy, e.g. descending both the left branch and the right
branch, because Q1 and Q2 make separate decisions. This
“multi-threading” allows the network to avoid committing
to a single path prematurely if an input image is ambiguous.

Fig. 2d) plots the accuracy-cost curve of our hierarchical
D2NN. The accuracy is measured as the proportion of cor-
rectly classified test examples. The cost is measured as the
number of multiplications, normalized by the cost of a con-
ventional DNN consisting only of the regular nodes (denoted
as NN in the figure). We can see that the hierarchical D2NN
can match the accuracy of the full network with about half of
the computational cost. Fig. 4(right) plots for the hierarchi-
cal D2NN the distribution of examples going through exe-
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Figure 4: Distribution of examples going through different execution paths. Skipped nodes are in grey. The hyperparameter λ
controls the trade-off between accuracy and efficiency. A bigger λ values accuracy more. Left: for the high-low capacity D2NN.
Right: for the hierarchical D2NN. The X-axis is the number of nodes activated.

Figure 5: Examples with different paths in a high-low D2NN (left) and a hierarchical D2NN (right).
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Figure 6: Accuracy-cost curve for a chain D2NN on the CM-
NIST task compared to DCN (Almahairi et al. 2016).

cution sequences with different numbers of nodes activated.
Due to the parallelism of D2NN, there can be many different
execution sequences. We also see that as λ increases, accu-
racy is given more weight and more nodes are activated.

Comparison with Dynamic Capacity Networks In this
experiment we empirically compare our approach to closely
related prior work. Here we compare D2NNs with Dynamic
Capacity Networks (DCN) (Almahairi et al. 2016), for
which efficency measurement is the absolute number of mul-
tiplications. Given an image, a DCN applies an additional
high capacity subnetwork to a set of image patches, selected
using a hand-designed saliency based policy. The idea is that
more intensive processing is only necessary for certain im-
age regions. To compare, we evaluate with the same multi-
class classification task on the Cluttered MNIST (Mnih et
al. 2014), which consists of MNIST digits randomly placed
on a background cluttered with fragments of other digits.
We train a chain D2NN of length 4 , which implements the
same idea of choosing a high-capacity alternative subnet-
work for certain inputs. Fig. 6 plots the accuracy-cost curve
of our D2NN as well as the accuracy-cost point achieved by
the DCN in (Almahairi et al. 2016)—an accuracy of 0.9861
and and a cost of 2.77× 107. The closest point on our curve

is an slightly lower accuracy of 0.9698 but slightly better
efficiency (a cost of 2.66× 107). Note that although our ac-
curacy of 0.9698 is lower, it compares favorably to those of
other state-of-the-art methods such as DRAW (Gregor et al.
2015): 0.9664 and RAM (Mnih et al. 2014): 0.9189.

Visualization of Examples in Different Paths In Fig. 5
(left), we show face examples in the high-low D2NN for
λ=0.4. Examples in low-capacity path are generally eas-
ier (e.g. more frontal) than examples in high-capacity path.
In Fig. 5 (right), we show car examples in the hierarchical
D2NN with 1) a single path executed and 2) the full graph
executed (for λ=1). They match our intuition that examples
with a single path executed should be easier (e.g. less occlu-
sion) to classify than examples with the full graph executed.

CIFAR-10 Results We train a Cascade D2NN on CIFAR-
10 where the corresponded DNN baseline is the ResNet-110.
We see a 16% improvement of efficiency with a 1% loss on
accuracy, and a 42% improvement of efficiency with a 4%
loss on accuracy. The D2NN’s ability to improve efficiency
relies on the assumption that not all inputs require the same
amount of computation. In CIFAR-10, all images are low
resolution (32 × 32), and it is likely that few images are sig-
nificantly easier to classify than others. As a result, the effi-
ciency improvement is modest compared to other datasets.

Conclusions

We have introduced Dynamic Deep Neural Networks
(D2NN), a new type of feed-forward deep neural networks
that allow selective execution. Extensive experiments have
demonstrated that D2NNs are flexible and effective for opti-
mizing accuracy-efficiency trade-offs.
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