
Multi-Step Reinforcement Learning:
A Unifying Algorithm

Kristopher De Asis,1 J. Fernando Hernandez-Garcia,1

G. Zacharias Holland,1 Richard S. Sutton
Reinforcement Learning and Artificial Intelligence Laboratory, University of Alberta

{kldeasis,jfhernan,gholland,rsutton}@ualberta.ca

Abstract

Unifying seemingly disparate algorithmic ideas to produce
better performing algorithms has been a longstanding goal
in reinforcement learning. As a primary example, TD(λ) el-
egantly unifies one-step TD prediction with Monte Carlo
methods through the use of eligibility traces and the trace-
decay parameter λ. Currently, there are a multitude of al-
gorithms that can be used to perform TD control, includ-
ing Sarsa, Q-learning, and Expected Sarsa. These methods
are often studied in the one-step case, but they can be ex-
tended across multiple time steps to achieve better perfor-
mance. Each of these algorithms is seemingly distinct, and no
one dominates the others for all problems. In this paper, we
study a new multi-step action-value algorithm called Q(σ)
that unifies and generalizes these existing algorithms, while
subsuming them as special cases. A new parameter, σ, is in-
troduced to allow the degree of sampling performed by the
algorithm at each step during its backup to be continuously
varied, with Sarsa existing at one extreme (full sampling),
and Expected Sarsa existing at the other (pure expectation).
Q(σ) is generally applicable to both on- and off-policy learn-
ing, but in this work we focus on experiments in the on-policy
case. Our results show that an intermediate value of σ, which
results in a mixture of the existing algorithms, performs better
than either extreme. The mixture can also be varied dynami-
cally which can result in even greater performance.

The Landscape of TD Algorithms

Temporal-difference (TD) methods (Sutton and Barto 1998)
are an important concept in reinforcement learning (RL) that
combines ideas from Monte Carlo and dynamic program-
ming methods. TD methods allow learning to occur directly
from raw experience in the absence of a model of the envi-
ronment’s dynamics, like with Monte Carlo methods, while
also allowing estimates to be updated based on other learned
estimates without waiting for a final result, like with dy-
namic programming. The core concepts of TD methods pro-
vide a flexible framework for creating a variety of powerful
algorithms that can be used for both prediction and control.

There are a number of TD control methods that have been
proposed. Q-learning (Watkins 1989; Watkins and Dayan

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Authors contributed equally, and are listed alphabetically.

1992) is arguably the most popular, and is considered an off-
policy method because the policy generating the behaviour
(the behaviour policy), and the policy that is being learned
(the target policy) are different. Sarsa (Rummery and Ni-
ranjan 1994; Sutton 1996) is the classical on-policy con-
trol method, where the behaviour and target policies are the
same. However, Sarsa can be extended to learn off-policy
with the use of importance sampling (Precup, Sutton, and
Singh 2000). Expected Sarsa is an extension of Sarsa that,
instead of using the action-value of the next state to update
the value of the current state, uses the expectation of all the
subsequent action-values of the current state with respect
to the target policy. Expected Sarsa has been studied as a
strictly on-policy method (van Seijen et al. 2009), but in this
paper we present a more general version that can be used
for both on- and off-policy learning and that also subsumes
Q-learning. All of these methods are often described in the
simple one-step case, but they can also be extended across
multiple time steps.

The TD(λ) algorithm unifies one-step TD learning with
Monte Carlo methods (Sutton 1988). Through the use of el-
igibility traces, and the trace-decay parameter, λ ∈ [0, 1], a
spectrum of algorithms is created. At one end, λ = 1, exists
Monte Carlo methods, and at the other, λ = 0, exists one-
step TD learning. In the middle of the spectrum are interme-
diate methods which can perform better than the methods
at either extreme (Sutton and Barto 1998). The concept of
eligibility traces can also be applied to TD control methods
such as Sarsa and Q-learning, which can create more effi-
cient learning and produce better performance (Rummery
1995).

Multi-step TD methods are usually thought of in terms of
an average of many multi-step returns of differing lengths
and are often associated with eligibility traces, as is the case
with TD(λ). However, it is also natural to think of them
in terms of individual n-step returns with their associated
n-step backup (Sutton and Barto 1998). We refer to each
of these individual backups as atomic backups, whereas the
combination of several atomic backups of different lengths
creates a compound backup.

In the existing literature, it is not clear how best to ex-
tend one-step Expected Sarsa to a multi-step algorithm. The
Tree-backup algorithm was originally presented as a method
to perform off-policy evaluation when the behaviour policy

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2902

is non-Markov, non-stationary or completely unknown (Pre-
cup, Sutton, and Singh 2000). In this paper, we re-present
Tree-backup as a natural multi-step extension of Expected
Sarsa. Instead of performing the updates with entirely sam-
pled transitions as with multi-step Sarsa, Tree-backup per-
forms the update using the expected values of all the actions
at each transition.

Q(σ) is an algorithm that was first proposed by Sutton
and Barto (2018) which unifies and generalizes the exist-
ing multi-step TD control methods. The degree of sampling
performed by the algorithm is controlled by the sampling
parameter, σ. At one extreme (σ = 1) exists Sarsa (full sam-
pling), and at the other (σ = 0) exists Tree-backup (pure ex-
pectation). Intermediate values of σ create algorithms with
a mixture of sampling and expectation, and σ can be inter-
preted as a way to control the bias-variance trade-off inher-
ent in multi-step TD algorithms.

In this work, on problems with a tabular representation
and a problem requiring function approximation, we show
that an intermediate value of σ can outperform the algo-
rithms that exist at either extreme. In addition, we show that
σ can be varied dynamically to produce even greater perfor-
mance. We limit our discussion of Q(σ) to the atomic multi-
step case without eligibility traces, but a natural extension is
to make use of compound backups and is an avenue for fu-
ture research. Furthermore, Q(σ) is generally applicable to
both on- and off-policy learning, but for our initial empiri-
cal study we examined only on-policy prediction and control
problems.

MDPs and One-step Solution Methods

The sequential decision problem encountered in RL is of-
ten modeled as a Markov decision process (MDP). Under
this framework, an agent and the environment interact over
a sequence of discrete time steps t. At every time step, the
agent receives information about the environment’s state,
St ∈ S , where S is the set of all possible states. The
agent uses this information to select an action, At, from
the set of all possible actions A. Based on the behavior of
the agent and the state of the environment, the agent re-
ceives a reward, Rt+1 ∈ R, and moves to another state,
St+1 ∈ S , with a state-transition probability p(s′|s, a) =
P (St+1 = s′|St = s,At = a), for a ∈ A and s, s′ ∈ S .

The agent behaves according to a policy π(a|s), which is a
probability distribution over the set S×A. Through the pro-
cess of policy iteration (Sutton and Barto 1998), the agent
learns the optimal policy, π∗, that maximizes the expected
discounted return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

T−t−1∑
k=0

γkRt+1+k,

(1)
for a discount factor γ ∈ [0, 1) and T = ∞ for continuing
tasks, or γ ∈ [0, 1] and T equal to the final time step in
episodic tasks.

TD algorithms strive to maximize the expected return by
computing value functions that estimate the expected future
rewards in terms of the elements of the environment and the

actions of the agent. The state-value function is the expected
return when the agent is in a state s and follows policy π,
defined as vπ(s) = Eπ[Gt|St = s]. For control, most of
the time we focus on estimating the action-value function,
which is the expected return when the agent takes an action
a, in a state s, while following a policy π, and is defined as:

qπ(s, a) = Eπ[Gt|St = s,At = a]. (2)

Equation 2 can be estimated iteratively by observing new
rewards, bootstrapping on old estimates of qπ , and using the
update rule:

Q(St, At) ← Q(St, At) (3)
+ α[Rt+1 + γQ(St+1, At+1)−Q(St, At)],

where α ∈ (0, 1] is the step size parameter. Update rules are
also known as backup operations because they transfer in-
formation back from future states to the current one. A com-
mon way to visualize backup operations is by using backup
diagrams such as the ones depicted in Figure 1.

For clarity, the algorithmic ideas in this paper are pre-
sented initially as tabular solution methods, but we also ex-
tend them to use function approximation, and thus they also
serve as approximate solution methods.

The term in brackets in (3):

δSt = Rt+1 + γQ(St+1, At+1)−Q(St, At), (4)

is also known as the TD error, denoted δt. TD control meth-
ods are characterized by their TD error; for example, the
TD error in (4) corresponds to the classic on-policy method
known as Sarsa.

Because learning requires a certain amount of explo-
ration, behaving greedily with respect to the estimated op-
timal policy is often infeasible. Therefore, agents are of-
ten trained under ε-greedy policies for which the agent only
chooses the optimal action with a probability (1 − ε) and
behaves randomly with probability ε, for ε ∈ [0, 1]. Never-
theless, learning the optimal policy is possible if it is done
off-policy. When the agent is learning off-policy, it behaves
according to a behavior policy, μ, while learning a target
policy, π. This can be achieved by using another TD control
method, Expected Sarsa. In contrast with Sarsa, Expected
Sarsa behaves according to the behavior policy, but updates
its estimate by taking an expectation of Q(St, At) over the
actions at time t, according to the target policy (van Seijen
et al. 2009). For convenience, let the expected action-value
be defined as:

Vt+1 =
∑
a

π(a|St+1)Q(St+1, a). (5)

Then, the TD error of Expected Sarsa can be written as:

δES
t = Rt+1 + γVt+1 −Q(St, At). (6)

A special case of Expected Sarsa is Q-learning, where the
estimate is updated according to the maximum of Q(St, a)
over the actions (Watkins 1989):

δQL
t = Rt+1 + γmax

a
Q(St+1, a)−Q(St, At). (7)

Q-learning is the resulting algorithm when the target policy
of Expected Sarsa is the greedy policy with respect to Q.

2903

Figure 1: Backup diagrams for atomic 4-step Sarsa, Ex-
pected Sarsa, Tree-backup, and Q(σ). Here we can see that
Q(σ) encompasses the other three algorithms based on the
setting of σ.

Atomic Multi-Step Algorithms

The TD methods presented in the previous section can be
generalized even further by bootstrapping over longer time
intervals. This has been shown to decrease the bias of the up-
date at the cost of increasing the variance (Jaakkola, Jordan,
and Singh 1994). Nevertheless, in many cases it is possible
to achieve better performance by choosing a value for the
backup length parameter, n, greater than one (Sutton and
Barto 1998). We refer to algorithms which make use of a
multi-step atomic backup as atomic multi-step algorithms.
Just like how one-step methods are defined by their TD er-
ror, each atomic multi-step algorithm is characterized by its
n-step return. For atomic multi-step Sarsa, the n-step return
is:

Gt:t+n =Rt+1 + γRt+2 + γ2Rt+3 + ...

+ γn−1Rt+n + γnQt+n−1(St+n, At+n),

=
n−1∑
k=0

γkRt+k+1 + γnQt+n−1(St+n, At+n), (8)

where Qt+n−1 is the estimate of qπ at time t+n−1, and the
subscript range, t : t + n, denotes the length of the backup.
n-step Sarsa can be adapted for off-policy learning by intro-
ducing an importance sampling ratio term (Precup, Sutton,
and Singh 2000):

ρt+n
t =

τ∏
k=t

π(Ak|Sk)

μ(Ak|Sk)
, (9)

and multiplying it with the TD error to get the following
update rule:

Qt+n(St, At) ← Qt+n−1(St, At) (10)

+ αρt+n
t+1 [Gt:t+n −Qt+n−1(St, At)],

where τ = min(t + n − 1, T − 1) is the time step before
the end of the update or before the end of the episode. In

the update, the action-values for all other states remain the
same – i.e. Qt+n(s, a) = Qt+n−1(s, a), ∀ s �= St, and a �=
At. This update rule is not only applicable for off-policy n-
step Sarsa, but is a generally useful form for other atomic
multi-step algorithms as well. We present the algorithms in
this work as general off-policy solution methods, but in the
experiments section we evaluate them empirically on-policy
only which provides useful insight into their behaviour. We
defer the empirical study and comparison of the algorithms
in an off-policy setting to future work.

Expected Sarsa can also be generalized to a multi-step
method by using the return:

Gt:t+n = Rt+1 + γRt+2 + γ2Rt+3 + ...+ γnVt+n. (11)

The first n−1 states and actions are sampled according to
the behaviour policy, as with n-step Sarsa, but the last state
is backed up according to the expected action-value under
the target policy. To make n-step Expected Sarsa entirely
off-policy, an importance sampling ratio term can also be
introduced, but it needs to omit the last time step. The re-
sulting update would be the same as in (10), but would use
ρt+n−1
t+1 and the n-step return for n-step Expected Sarsa from

(11).
A drawback to using importance sampling to learn off-

policy is that it can create high variance which must be com-
pensated for by using small step sizes; this can slow learn-
ing (Precup, Sutton, and Singh 2000). In the next section we
present a method that is also a generalization of Expected
Sarsa, but that can learn off-policy without importance sam-
pling.

Tree-backup

As shown in (11), the TD return of n-step Expected Sarsa
is calculated by taking an expectation over the actions at
the last step of the backup. However, it is possible to ex-
tend this idea to every time step of the backup by taking an
expectation at every step (Precup, Sutton, and Singh 2000).
The resulting algorithm is a multi-step generalization of Ex-
pected Sarsa that is known as Tree-backup because of its
characteristic backup diagram (Figure 1). Moreover, just like
Expected Sarsa and Q-learning, this proposed generaliza-
tion does not require importance sampling to be applied off-
policy. Hence, it could be argued that it is a more appropriate
generalization of Expected Sarsa to multi-step learning (Sut-
ton and Barto 2018). Because Expected Sarsa subsumes Q-
learning, Tree-backup can also be thought of as a multi-step
generalization of Q-learning if the target policy is greedy
with respect to the action-value function.

Tree-backup has several advantages over n-step Expected
Sarsa. Tree-backup has the capacity for learning off-policy
without the need for importance sampling, reducing the vari-
ance due to the importance sampling ratios. Additionally,
because an importance sampling ratio does not need to be
computed, the behavior policy does not need to be station-
ary, Markov, or even known (Precup, Sutton, and Singh
2000).

Each branch of the tree represents an action, while the
main branch represents the action taken at time t. The value
of each of the branches is the value of Qt+n(St, At) for the

2904

corresponding t, whereas the value of each segment of the
main branch is the reward at the corresponding time step.
The n-step return is the sum of the values of each branch
weighted by the product of the probabilities of the actions
leading to the branch and multiplied by the corresponding
power of the discount term. For clarity, it is easier to present
the n-step return of the Tree-backup algorithm in terms of
the TD error of Expected Sarsa from (6):

Gt:t+n =Qt−1(St, At) +
τ∑

k=t

δES
k

k∏
i=t+1

γπ(Ai|Si). (12)

This atomic version of multi-step Tree-backup was first pre-
sented by Sutton and Barto (2018).

As a result of the product term in (12), in addition to the
discount factor γ, future rewards are further discounted by
the probabilities of the actions taken. The Tree-backup algo-
rithm therefore assigns less weight to the reward sequence
received, and compensates by bootstrapping off of the val-
ues of actions not taken. Due to this, Tree-backup is more
biased than Sarsa in the multi-step case with a stochastic pol-
icy, as Sarsa gives full weight to every reward received prior
to bootstrapping. However, this increase in bias (towards the
estimates in the value function) is traded off with decreased
variance in the reward sequence from taking expectations.

The Q(σ) Algorithm

In the previous sections we have incrementally introduced
several generalizations for the TD control methods Sarsa and
Expected Sarsa, and in this section we present an algorithm
that unifies them called Q(σ).

Sarsa can be generalized to an atomic multi-step algo-
rithm by using an n-step return, and n-step Sarsa general-
izes to an off-policy algorithm through the use of impor-
tance sampling. In contrast, Expected Sarsa can learn off-
policy without the need for importance sampling, and gener-
alizes to the atomic multi-step algorithms: Tree-backup and
n-step Expected Sarsa. All of the algorithms presented so
far can be broadly categorized into two families: those that
backup their actions as samples, like Sarsa; and those that
consider an expectation over all actions in their backup, like
Expected Sarsa and Tree-backup. In this section, we intro-
duce a method to unify both families of algorithms by intro-
ducing a new parameter, σ. The possibility of unifying Sarsa
and Tree-backup was first suggested by Precup et al. (2000),
and the first formulation of Q(σ) was presented by Sutton
and Barto (2018).

The intuition behind Q(σ) is based on the idea that we
have a choice to update the estimate of qπ based on one ac-
tion sampled from the set of possible future actions, or based
on the expectation over the possible future actions. For ex-
ample, with n-step Sarsa, a sample is taken at every step of
the backup, whereas with the Tree-backup algorithm, an ex-
pectation is taken instead. However, the choice of sampling
or expectation does not have to remain constant for every
step of the backup. Furthermore, the backup at a time step
t could be based on a weighted average of both sampling
and expectation. In order to implement this, the parameter,
σt ∈ [0, 1], is introduced to control the degree of sampling

Algorithm 1 Off-policy n-step Q(σ) for estimating qπ

Input: a behaviour policy μ and a target policy π
Initialize S0 �= terminal; select A0 according to μ(.|S0)
Store S0, A0, and Q(S0, A0)
for t = 0, 1, 2, ..., T + n− 1 do

if t < T then
Take action At; observe R and St+1

Store St+1

if St+1 is terminal then
Store: δσt = R−Q(St, At)

else
Select At+1 according to μ(·|St+1) and Store
Store: Q(St+1, At+1), σt+1, π(At+1|St+1)
Store: δσt = R+ γ[σt+1Q(St+1, At+1)

+(1− σt+1)Vt+1]−Q(St, At)

Store: ρt+1 = π(At+1|St+1)
μ(St+1|At+1)

end if
end if
τ ← t− n+ 1
if τ ≥ 0 then

ρ ← 1
E ← 1
G ← Q(Sτ , Aτ)
for k = τ, ...,min(τ + n− 1, T − 1) do

G ← G+ Eδσk
E ← γE [(1− σk)π(Ak+1|Sk+1) + σk+1]
ρ ← ρ(1− σk + σkρk)

end for
Q(Sτ , Aτ) ← Q(Sτ , Aτ) + αρ[G−Q(Sτ , Aτ)]

end if
end for

at each step of the backup. Thus, the TD error of Q(σ) can
be represented in terms of a weighted sum of the TD errors
of Sarsa and Expected Sarsa:

δσt = σt+1δ
S
t + (1− σt+1)δ

ES
t ,

= Rt+1 + γ[σt+1Qt(St+1, At+1) + (1− σt+1)Vt+1]

−Qt−1(St, At). (13)
The n-step return is then:

Gt:t+n = Qt−1(St, At) (14)

+
τ∑

k=t

δσk

k∏
i=t+1

γ[(1− σi)π(Ai|Si) + σi].

Moreover, the importance sampling ratio from (9) can be
modified to include σ as follows:

ρt+n
t+1 =

τ∏
k=t+1

(
σk

π(Ak|Sk)

μ(Ak|Sk)
+ 1− σk

)
. (15)

The update rule for Q(σ) can then be obtained by using
Gt:t+n from (14) and ρt+n

t+1 from (15), with the update rule
from (10). Algorithm 1 shows the pseudocode for the com-
plete off-policy n-step Q(σ) algorithm.

Additionally, a proof for one-step Q(σ) is readily avail-
able by applying the results from Jakkola et al. (1994), Singh
et al. (2000), and van Seijen et al. (2009).

2905

Theorem 1. The one-step Q(σ) estimate defined by

Qt+1(St, At) = (1− αt)Qt(St, At) + αt[Rt+1

+ γ(σt+1Qt+1(St+1, At+1) + (1− σt+1)Vt+1)],
(16)

converges to the optimal policy when the following condi-
tions are satisfied:

1. The size of the set S ×A is finite.
2. αt = αt(St, At) ∈ [0, 1],

∑
t αt = ∞,

∑
t α

2
t < ∞ w.p.

1 and ∀(s, a) �= (St, At) : αt(St, At) = 0.
3. The policy is greedy in the limit with infinite exploration.
4. The reward function is bounded.

We defer the full details of the proof to the appendix; how-
ever, There are two important results from the proof that are
worth emphasizing. First, just as with one-step Q-learning,
Sarsa, and Expected Sarsa, one-step Q(σ) can be used to
learn optimal action-value functions. Second, at each time
step t it is possible to choose a σt such that the contrac-
tion property of the Q(σ) update is less than or equal to the
contraction induced by the Sarsa or Expected Sarsa updates.
This implies that it is possible to choose σt at every time step
in order to speed up convergence.

It is important to note that every TD control method pre-
sented thus far can be obtained with Q(σ) by varying the
sampling parameter, σ; when σ = 1, we obtain Sarsa, when
σ = 0, we obtain Expected Sarsa and Tree-backup, and
when σ = 1 for every step of the backup except for the
last, where σ = 0, we obtain n-step Expected Sarsa. Thus,
tuning the hyper-parameter σ is not strictly necessary since
it can be set to a fixed value in order to obtain one of the
existing TD control algorithms. Nevertheless, intermediate
values of σ between 0 and 1 create entirely new algorithms
that exist somewhere between full sampling and pure expec-
tation and that could result in better performance. Further-
more, σ does not need to remain constant throughout every
episode or even at every time step during an episode or con-
tinuing task. σ could be varied dynamically as a function of
time, of the current state, or of some measure of the learning
progress. In particular, σ could also be varied as a function
of the episode number, which we investigate in our experi-
ments. There are potentially a variety of effective schemes
for choosing and varying σ, and would be a subject for fur-
ther research.

Experiments

19-State Random Walk

The 19-state random walk, shown in Figure 2, is a 1-
dimensional environment where an agent randomly transi-
tions to one of two neighboring states. There is a terminal
state on each end of the environment, transitioning to one
of them gives a reward of -1, and transitioning to the other
gives a reward of 1. To compare algorithms that involve tak-
ing an expectation based on its policy, the task is formulated
such that each state had two actions. Each action determin-
istically transitions to one of the two neighboring states, and
the agent learns on-policy under an equiprobable random be-
havior policy. This differs from typical random walk setups

Figure 2: The 19-state random walk MDP. The goal is to ac-
curately estimate the value of each state under equiprobable
random behavior.

where each state has one action that will randomly transition
to either neighboring state (Sutton and Barto 1998), but the
resulting state values are identical.

This environment was treated as a prediction task where
a learning algorithm is to estimate a value function under
its behavior policy. We conducted an experiment compar-
ing various Q(σ) algorithm instances, assessing different
multi-step backup lengths, step sizes, and degrees of sam-
pling. The root-mean-square (RMS) error between its esti-
mated value function and the analytically computed values
was measured after each episode. Each Q(σ) instance and
parameter setting ran for 50 episodes and the results are av-
eraged across 100 runs.

Figure 3 shows the results with n = 3 and α = 0.4, which
was found to be representative of the best parameter setting
for each instance of Q(σ) on this task. Sarsa (full sampling)
had better initial performance but poor asymptotic perfor-
mance, Tree-backup (no sampling) had poor initial perfor-
mance but better asymptotic performance, and intermedi-
ate degrees of sampling traded off between the initial and
asymptotic performances. This motivated the idea of dynam-
ically decreasing σ from 1 (full sampling) towards 0 (pure
expectation) to take advantage of the initial performance of
Sarsa, and the asymptotic performance of Tree-backup. To
accomplish this we decreased σ by a factor of 0.95 after each
episode. Q(σ) with a dynamically varying σ outperformed
all of the fixed degrees of sampling.

Stochastic Windy Gridworld

The windy gridworld is a tabular navigation task in a
standard gridworld which is described by Sutton and
Barto (1998). There is a start state and a goal state, and there
are four possible moves: right, left, up, and down. When the
agent moves into one of the middle columns of the grid-
world, it is affected by an upward “wind” which shifts the
resultant next state upwards by a number of cells and varies
from column to column. If the agent is at the edge of the
world and selects a move that would cause it to leave the
grid, or would be pushed off the world by the wind, it is
simply replaced in the nearest state at the edge of the world.
At each time step the agent receives a constant reward of -1
until the goal is reached.

A variation of the windy gridworld, called the stochas-
tic windy gridworld, is one where the results of choosing an
action are not deterministic. The layout, actions, and wind
strengths are the same, but at each time step, with a prob-
ability of 10%, the next state that results from picking any
action is determined at random from the 8 states currently
surrounding the agent.

2906

Figure 3: 19-state random walk results. The plot shows the
performance of Q(σ) in terms of RMS error in the value
function. The results are an average of 100 runs, and the
standard errors are all less than 0.006. Q(1) had the best
initial performance, Q(0) had the best asymptotic perfor-
mance, and dynamic σ outperformed all fixed values of σ.

We conducted an experiment on the stochastic windy
gridworld which consisted of 1000 runs of 100 episodes
each to evaluate the performance of various instances of
Q(σ) with different parameter combinations. All instances
of the algorithms behaved and learned according to an ε-
greedy policy, with ε = 0.1. As the performance measure,
we compared the average return over the 100 episodes. The
results are summarized in Figure 4.

For all the values of σ that we tested, choosing n = 3
resulted in the greatest performance; higher and lower val-
ues of n decreased the performance. Overall, Q(σ) with a
dynamic σ performed the best, while σ = 0.5 was a close
second.

Mountain Cliff

We implemented a variant of the classical episodic task,
mountain car, as described by Sutton and Barto (1998). For
this implementation, the rewards, actions and goal remained
the same. However, if the agent ever ventured past the top of
the leftmost mountain, it would fall off a cliff, be rewarded
-100 and returned to a random initial location in the valley
between the two hills. We named this environment mountain
cliff. Both environments were tested and showed the same
trend in the results. However, the results obtained in moun-
tain cliff were more pronounced and thus were more suitable
for demonstration purposes.

Because the state space is continuous, we approximated
qπ using tile coding function approximation. Specifically,
we used version 3 of Sutton’s tile coding software (n.d.) with
8 tilings, an asymmetric offset by consecutive odd numbers,
and each tile taking over 1/8 fraction of the feature space,
which gives a resolution of approximately 1.6%.

For each algorithm, we conducted 500 independent runs

Figure 4: Stochastic windy gridworld results. The plot shows
the performance of Q(σ) in terms of the average return over
100 episodes as a function of the step size, α, for various
values of σ. The results are for selected α values, then are
connected by straight lines, and are an average of 1000 runs.
The standard errors are all less than 0.3 which is about a line
width. 3-step algorithms performed better than their 1-step
equivalents, and Q(σ) with a dynamic σ performed the best
overall.

of 500 episodes each. All training was done on-policy under
an ε-greedy policy with ε = 0.1 and γ = 1. We optimized
for the average return after 500 episodes over different val-
ues of the step size parameter, α, and the backup length,
n. The results correspond to the best-performing parameter
combination for each algorithm: α = 1/6 and n = 4 for
Sarsa; α = 1/6 and n = 8 for Tree-backup; α = 1/4 and
n = 4 for Q(0.5); and α = 1/7 and n = 8 for Dynamic σ.
We omit n-step Expected Sarsa in the results because its per-
formance was not much different from n-step Sarsa’s perfor-
mance.

Figure 6 shows the return per episode averaged over 500
runs. To smooth the results, we computed a right-centered
moving average with a window of 30 successive episodes.
Additionally, we added the average return per episode in a
lighter tone to show the variance of each algorithm. As it can
be observed, atomic multi-step Sarsa and Q(0.5) had fairly
similar performance. Among the atomic multi-step meth-
ods with static σ, Tree-backup had the best performance.
Nonetheless, Q(σ) with dynamic σ outperformed all the al-
gorithms that were using static σ.

In order to gain more insight into the nature of the results,
we looked at the average return per episode after 50 (initial
performance) and 500 (asymptotic performance) episodes
for each algorithm. Additionally, a 95% confidence inter-
val was computed in order to validate the results. After 50
episodes, Q(0.5) had the best performance among the four
algorithms with an average return per episode of -398.0;
Dynamic σ was a close second with an average return per
episode of -406.3. On the other hand, after 500 episodes,

2907

Figure 5: The mountain cliff environment. The goal of the
agent is to drive past the flag without falling off the cliff.
The agent receives a reward of -1 at every time step, and
falling off the cliff returns it to a random initial location in
the valley with a reward of -100.

Dynamic σ managed to outperform all the other algorithms
with an average return per episode of -163.7 followed by
Q(0.5) with an average return per episode of -167.9. Q(1)
(Sarsa) had the lowest performance with -447.3 average
return per episode after 50 episodes and -173.2 after 500
episodes. These results contrast with Figure 6 because the
average is taken over all the previous episode instead of the
preceding 30 episodes.

Discussion

From our experiments, it is evident that there is merit in uni-
fying the space of algorithms with Q(σ). In prediction tasks,
such as the 19-state random walk, varying the degree of sam-
pling results in a trade-off between initial and asymptotic
performance. In control tasks, such as the stochastic windy
gridworld, intermediate degrees of sampling are capable of
achieving a higher per-episode average return than either ex-
treme, depending on the number of elapsed episodes.

These findings also extend to tasks with continuous state
spaces, such as the mountain cliff. Intermediate values of σ
allow for a higher initial performance, whereas small values
of σ allow for a better asymptotic performance. As shown in
Figure 6, Q(σ) with dynamic σ is able to exploit these two
benefits by adjusting σ over time.

Moreover, our experiments in the stochastic windy grid-
world task demonstrated that it is possible to improve per-
formance by choosing a higher value of the backup length
parameter, n. Varying n controls a bias-variance trade-off by
adjusting how many rewards are included in the backup be-
fore bootstrapping, similar to the parameter λ in the TD(λ)
algorithm. The parameter σ also has a bias-variance trade-
off interpretation, as the Tree-backup algorithm decays the
weighting of future rewards based on the stochasticity in the
policy (and is therefore more biased). The length parame-
ter n controls the bias-variance trade-off in the direction of

Figure 6: Mountain cliff results. The plot shows the perfor-
mance of each atomic multi-step algorithm in terms of the
average return per episode. The dark lines show the results
smoothed using a right-centered moving average with a win-
dow of 30 successive episodes, while the light lines show the
un-smoothed results. Q(σ) with dynamic σ had the best per-
formance among all the algorithms.

the trajectory taken, while the parameter σ manages it by
controlling the bootstrapping in the direction of actions not
taken. A qualitative result that illustrates the bias-variance
trade-off induced by the parameter σ can be observed in the
19-State Random Walk experiment. A large value of σ re-
sults in lower bias at the beginning of training and a lower
RMS error as a consequence. However, as the bias of the
return decreases in the asymptote, the low variance inherent
to small values of σ result in more accurate estimates of the
action-value function.

Conclusions

In this paper we studied Q(σ), which is a unifying algo-
rithm for multi-step TD control methods. Q(σ), through the
use of the sampling parameter σ, allows for continuous vari-
ation between updating based on full sampling and updat-
ing based on pure expectation. Our results on prediction and
control problems showed that an intermediate fixed degree
of sampling can outperform the methods that exist at the ex-
tremes (Sarsa and Tree-backup). In addition, we presented
simple way of dynamically adjusting σ which outperformed
any fixed degree of sampling.

Our presentation of Q(σ) was limited to the atomic multi-
step case without eligibility traces, we only conducted ex-
periments on on-policy problems, and we only investigated
one simple method for dynamically varying σ. This leaves
open several avenues for future research. First, Q(σ) could
be extended to use eligibility traces and compound back-
ups. Second, the performance of Q(σ) could be evaluated
on off-policy problems. Third, other schemes for dynami-
cally varying σ could be investigated – perhaps as a function
of state, the recently observed rewards, or some measure of
the learning progress.

2908

Acknowledgments

The authors thank Vincent Zhang, Harm van Seijen, Doina
Precup, and Pierre-luc Bacon for insights and discussions
contributing to the results presented in this paper, and the
entire Reinforcement Learning and Artificial Intelligence
research group for providing the environment to nurture
and support this research. We gratefully acknowledge fund-
ing from Alberta Innovates – Technology Futures, Google
Deepmind, and from the Natural Sciences and Engineering
Research Council of Canada.

Appendix

Proof of Theorem 1

Let X = S ×A, Xt = (St, At) ∈ X , R̄t = E{Rt}, and Q∗
be the optimal action-value function defined as

Q∗(St, At) = R̄t+1 + γE{max
a

Q∗(St+1, a)}. (17)

We define a new stochastic process (αt,Δt, Ft)t≥0 by sub-
tracting Q∗(Xt) from both sides of equation (16)

Δt+1(Xt) = (1− αt(Xt))Δt(Xt)− αt(Xt)Ft(Xt),

and letting αt ∈ (0, 1], Δt(Xt) = Qt(Xt) − Q∗(Xt), and
Ft = Rt+1+γ[σt+1Qt(Xt+1)+(1−σt+1)Vt+1]−Q∗(Xt).
Additionally, let Pt be a sequence of increasing σ-fields rep-
resenting the history such that α0 and Δ0 are P0-measurable
and αt, Δt, and Ft−1 are Pt-measurable for t ≥ 1.

Proving that Δt converges to 0 as t → ∞ is equivalent
to showing that Qt converges to Q∗ as t → ∞. Conse-
quently, the proof is equivalent to showing that the condi-
tions of lemma 1 from Sing et al. (2000) are satisfied for
Δt.

Conditions one, two, and three of the lemma are satisfied
by the corresponding assumptions of the theorem. Hence,
we only need to show that ||E{Ft|Pt}|| ≤ k||Δt|| + Ct

where ||.|| is the maximum norm, k ∈ [0, 1), and Ct

goes to 0 with probability 1. By adding and subtracting
maxa Qt(St, a), using the definition of Q∗ and the triangle
inequality, we can show that

||E{Ft|Pt}||
≤ ||E{Rt+1 + γmax

a
Qt(St+1, a)−Q∗(St, At)}||

+ γ||E{σt+1Qt(st+1, at+1) + (1− σt+1)Vt+1

−max
a

Qt(st+1, a)}||
= γ||E{max

a
Qt(St+1, a)−max

b
Q∗(St+1, b)}||+ Ct

≤ γmax
s

|max
a

Qt(s, a)−max
b

Q∗(s, b)|+ Ct

≤ γmax
s

max
a

|Qt(s, a)−Q∗(s, a)|+ Ct

= γ||Δt||+ Ct.

Note that if the policy is greedy and σt+1 ∈
[0, 1], then σt+1Qt(St+1, At+1) + (1 − σt+1)Vt+1 =
maxa Qt(St+1, a). Therefore, Ct goes to 0 as the policy
becomes greedy in the limit. Consequently, condition 3 of
lemma 1 from Sing et al. (2000) is satisfied. Therefore, Δt

converges to 0 w.p. 1, which implies that Qt converges to
Q∗ w.p. 1.

References

Jaakkola, T.; Jordan, M. I.; and Singh, S. P. 1994. On the
convergence of stochastic iterative dynamic programming
algorithms. Neural Computation 6(6):1185–1201.
Precup, D.; Sutton, R. S.; and Singh, S. 2000. Eligibility
traces for off-policy policy evaluation. In Kaufman, M., ed.,
Proceedings of the 17th International Conference on Ma-
chine Learning, 759–766.
Rummery, G. A., and Niranjan, M. 1994. On-line Q-
learning using connectionist systems. Technical report,
CUED/F-INFENG/TR 166, Engineering Department, Cam-
bridge University.
Rummery, G. A. 1995. Problem Solving with Reinforcement
Learning. Ph.D. Dissertation, Cambridge University.
Singh, S.; Jaakkola, T.; Littman, M. L.; and Szepesvári,
C. 2000. Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learning
38(3):287–308.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement
Learning: An Introduction. Cambridge, Massachusetts: MIT
Press.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. 2nd edition. Manuscript in prepara-
tion.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine learning 3(1):9–44.
Sutton, R. S. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
Touretzky, D. S., and Hasselmo, M. E., eds., Advances in
Neural Information Processing Systems 8, 1038–1044. MIT
Press.
van Seijen, H.; van Hasselt, H.; Whiteson, S.; and Wiering,
M. 2009. A theoretical and empirical analysis of expected
Sarsa. In Proceedings of the IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning, 177–
184.
Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning. Ma-
chine learning 8(3-4):279–292.
Watkins, C. J. C. H. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation, Cambridge University.

2909

