
Sparse Gaussian Conditional Random Fields
on Top of Recurrent Neural Networks

Xishun Wang, Minjie Zhang, Fenghui Ren
School of Computing and Information Technology,
University of Wollongong, 2522, NSW, Australia.

xw357@uowmail.edu.au; {minjie, fren}@uow.edu.au

Abstract

Predictions of time-series are widely used in different disci-
plines. We propose CoR, Sparse Gaussian Conditional Ran-
dom Fields (SGCRF) on top of Recurrent Neural Networks
(RNN), for problems of this kind. CoR gains advantages from
both RNN and SGCRF. It can not only effectively represent
the temporal correlations in observed data, but can also learn
the structured information of the output. CoR is challenging
to train because it is a hybrid of deep neural networks and
densely-connected graphical models. Alternative training can
be a tractable way to train CoR, and furthermore, an end-to-
end training method is proposed to train CoR more efficiently.
CoR is evaluated by both synthetic data and real-world data,
and it shows a significant improvement in performance over
state-of-the-art methods.

Introduction

Predictions of time-series data occur widely in financial anal-
ysis, market demand prediction and video analysis (Box et al.
2015). This paper studies multi-step prediction of time-series
data, which can be formally defined as follows:

y = fW (X), (1)

where fW is a transformation (to be learned) parameterized
by W , X = [x1, x2, · · · , xT] is a T ×D matrix, representing
T steps and D observed features in each step, and y is a
T -dimension structured output.

The challenge of this problem comes from two aspects:
1) There are temporal and nonlinear correlations in the ob-
served data X; 2) The predicted sequence y is inherently struc-
tured. AutoRegressive Integrated Moving Average (ARIMA)
is a traditional model for time-series prediction (Box and
Pierce 1970), which utilizes the temporal correlations of the
observed data and output for prediction. Gradient boosting
(Friedman 2001) has shown competitive performance for re-
gression problems. However, gradient boosting calls for extra
effort (usually by feature engineering) to model time-series
data. Recently, deep Recurrent Neural Networks (RNN) (Pas-
canu et al. 2013) and Sparse Gaussian Conditional Random
Fields (SGCRF) (Wytock and Kolter 2013) have been intro-
duced to time-series prediction, showing promising results.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

SGCRF is an effective structured learning model, while it
is weak in representing nonlinearities in features. As a conse-
quence, SGCRF relies heavily on feature engineering. RNN
can effectively model time-series data and represent heteroge-
neous features, while it misses the structured information in
the output. This paper proposes Sparse Gaussian Conditional
Random Fields on top of Recurrent Neural Networks (CoR)
for multi-step time-series prediction. CoR shows several ad-
vantages over RNN and SGCRF. Compared to RNN, CoR
can learn structured information and thus lead to a significant
boost in performance. Compared to SGCRF, CoR can effec-
tively represent heterogeneous temporal features and greatly
outperform SGCRF. Moreover, CoR consumes many fewer
computational resources than SGCRF.

CoR has a deep architecture as illustrated in Figure 1.
To enhance the representational capacity, we build stacked
Bi-directional RNNs. On top of the deep RNNs is then SG-
CRF. The challenges of training CoR come from two aspects:
1) CoR is a complex hybrid of deep neural networks and
densely-connected graphical models; 2) The training of CoR
is a constrained optimization problem, where the precision
matrix in SGCRF must be positive-definite. It is natural to
resort to alternative training for CoR, in which RNN and
SGCRF are trained alternatively until they converge. Further-
more, we propose an end-to-end training method for CoR
based on projected gradient descent (Lin 2007). Compared
to alternative training, end-to-end training is more efficient
and results in better prediction accuracy.

In experiments, the advantages of CoR over stacked Bi-
RNNs and SGCRF are demonstrated via synthetic data. Un-
der varying conditions of synthetic data, we also discover
several interesting properties of SGCRF, stacked Bi-RNNs
and CoR. CoR is also evaluated by real-world data from an
electricity demand prediction competition, and it shows better
performance than other state-of-the-art methods.

The contributions of this paper may be summarized in three
aspects. 1) We propose a new model called CoR for multi-step
time-series prediction. CoR gains advantages from RNN and
SGCRF. It can simultaneously represent nonlinear temporal
features and capture the structured information of the output.
2) CoR is a complex hybrid model that is challenging to train.
We propose two methods, alternative training and end-to-end
training, to train CoR. In comparison, the end-to-end training
is more effective. 3) CoR shows a significant improvement

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4219

in performance over other models in multi-step time-series
prediction. The performance boost of CoR suggests that both
temporal correlations and structured output information are
important in multi-step time-series prediction.

Related Work
Prediction of time-series data is an important topic and has
been studied for decades. ARIMA (Box and Pierce 1970) is
a traditional algorithm and has been successfully applied in
different disciplines, such as financial analysis and demand
prediction (Box et al. 2015). ARIMA makes use of the tem-
poral correlations in observed data and output, yet it is not
sophisticated enough compared to recent models and thus is
less competitive in performance.

Gradient boosting (Friedman 2001) is a strong ensemble
model and recently shows competitive performance in regres-
sion problems (Chen and Guestrin 2016). However, gradient
boosting does not naturally model time-series data. Extra fea-
ture engineering has to be conducted when applying gradient
boosting to time-series prediction.

RNN (Pineda 1987) can effectively model sequential data
and therefore may be used in time-series predictions. Deep
RNN architectures can enhance representational capacity and
show competitive performance in time-series prediction (Lin,
Guo, and Aberer 2017). Though deep RNNs are powerful,
they miss the structured output information. Therefore, there
is still room to improve deep RNNs.

SGCRF (Wytock and Kolter 2013) improves fully-
connected graphical models by pruning redundant connec-
tions. It can effectively learn salient-structured information
and has achieved success in predictions of time-series data.
However, SGCRF is a log-linear model that relies heavily
on feature engineering. Moreover, SGCRF consumes a very
large computation resource for large problems. McCarter
and Kim (McCarter and Kim 2016) made efforts to reduce
computational cost on large-scale learning of SGCRF.

Different from previous models, we propose CoR, an in-
tegration of RNN and SGCRF, for time-series prediction.
CoR combines advantages from RNN and SGCRF, so it can
simultaneously represent temporal features and learn struc-
tured information. We demonstrate that CoR significantly
outperforms the aforementioned models in real-world data
predictions.

Deep neural networks have achieved great success in var-
ious fields, such as computer vision and natural language
processing (Bengio and others 2009). However, neural net-
works cannot directly model structured information. Recently,
there have been efforts to combine deep neural networks with
graphical models. Zheng et al. (Zheng et al. 2015) combined
convolutional neural networks with conditional random fields
for semantic segmentation and achieved improved perfor-
mance. Lample et al. (Lample et al. 2016) integrated Long
Short-Term Memory (LSTM) and conditional random fields
for named entity recognition. Our work integrates RNN and
SGCRF for time-series prediction. Compared to previous
research, we are developing a different model to solve the
problem in another field.

There are some very recent studies of time-series predic-
tion based on deep neural networks. Osogami and Otsuka

(Osogami and Otsuka 2015) proposed Dynamic Blotzmann
Machine (DyBM) for time-series prediction. The most no-
table character of DyBM is online updating, while its per-
formance is not as good as RNN in off-line learning. Lin et
al. (Lin, Guo, and Aberer 2017) used attention-based RNN
and introduced dual-stage attention to improve the accuracy
of time-series prediction. Their work tried to model the ob-
served data in a more effective way, but lacked consideration
of structured information of output.

Architecture of CoR
The overall architecture of CoR is illustrated in Figure 1. CoR
has two modules: the bottom part is stacked bi-directional
RNNs (Bi-RNNs); and the top part is SGCRF. X ∈ R

T×D

is the input observation. y ∈ R
T is the final output, which

corresponds to the observation in each time step. z ∈ R
T

is an intermediate variable, which is the output of stacked
Bi-RNNs and the input of SGCRF. In the following sections,
the stacked Bi-RNNs and SGCRF are described in detail.

Figure 1: The overall architecture of CoR. The bottom part
is stacked Bi-RNNs, and the top part is SGCRF. X is the
input observation, y is the final output variable, and z is an
intermediate variable, which is the output of stacked Bi-RNN
and the input of SGCRF. Ω denotes all the parameters of
stacked Bi-RNNs, while Θ and Λ are parameters of SGCRF.

Stacked Bi-RNNs

To illustrate the stacked Bi-RNNs, we start from a standard
RNN (Pineda 1987). An input sample X ∈ R

T×D is a data
sequence. For the sequence x1, x2, · · · , xT , each in RD, RNN
computes a sequence of hidden states h1, h2, · · · , hT , each
in R

M , and a sequence of predictions ẑ1, ẑ2, · · · , ẑT , each in
R

K , by iterating the equations
ht = ϕh(Whxxt + Whhht−1 + bh) (2)
ẑt = ϕz(Wzhht + bz) (3)

4220

where Whx,Whh,Wzh are weight matrices, bh, bz are bias
terms, and ϕh, ϕz are activation functions.

Bi-RNN is a combination of two standard RNNs in re-
versed directions. The performance of Bi-RNN has been
better and more stable than a standard RNN in speech recog-
nition (Graves and Schmidhuber 2005). To adapt Bi-RNN
for regression, the ouputs of two reversed RNNs are added
together as the output of Bi-RNN. Multiple Bi-RNNs can be
stacked to construct a deep network to further enhance rep-
resentational capacity. We build stacked Bi-RNNs networks,
shown in Figure 1, as the bottom part of CoR. As the output
of stacked Bi-RNN is in R

K in each time step, a dense layer
is added to reduce RK to R

1 for the last Bi-RNN. The output
z of stacked Bi-RNNs can be formulated as

z = fΩ(X), (4)

where fΩ is the learned mapping parameterized by Ω.
The architecture of stacked Bi-RNNs can be flexible. If

the amount of training data is small, it can be reduced to a
single RNN. If the number of time steps is large, Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
can be introduced to replace standard RNN, while the other
structures remain. The flexibility of stacked Bi-RNNs enables
CoR to apply to different real-world time-series prediction
problems.

SGCRF

Gaussian CRF is a graphical model that can effectively model
the structured information of output. It takes z as input and
ouputs y. We resort to the energy model to illustrate Gaussian
CRF. The energy function E(z, y) has two terms,

E(z, y) = 2zTΘy + yTΛy, (5)

where the first term maps z to y, parameterized by Θ, and
the second term models the conditional dependencies of y,
parameterized by Λ. The inverse covariance matrix Λ is con-
strained to be positive-definite to ensure a valid multivariate
Gaussian. The resultant Gaussian CRF is formulated as

p(y|z) = 1

Q(z)
exp{−E(z, y)}, (6)

where Q(z) is the partition function,

1

Q(z)
= c|Λ|exp{−zTΘΛ−1ΘT z}. (7)

Parameter Θ encodes dense dependencies of y on z, and
parameter Λ also introduces dense conditional dependencies
on y. These dense dependencies are illustrated in Figure
1. It was observed that the connections are redundant and
may cause overfitting (Wytock and Kolter 2013). Therefore,
constraints for sparsity are applied to these dependencies by
using L1 norm to Θ and Λ in the training process. Gaussian
CRF with sparse dependencies is thus called SGCRF.

The stacked Bi-RNNs offer powerful nonlinearities that
can effectively represent the temporal and heterogeneous
features, while SGCRF can model the structured output infor-
mation. CoR, an integration of stacked Bi-RNNs and SGCRF,
can take advantage of the two models for multi-step time-
series prediction.

Training CoR

We propose two training methods for CoR, alternative train-
ing and end-to-end training. The following denotations are
used in both training methods. Assuming there are N training
samples, X = {X(1), · · · ,X(N)} denotes the whole training
feature set. Y = {y(1), · · · , y(N)} denotes the N predictions,
while Ẏ denotes the corresponding N ground-truths. Z de-
notes the N intermediate predictions by stacked Bi-RNNs,
which is also the input of SGCRF.

Alternative training

As CoR has two modules, it is natural to train the two modules
alternatively. Alternative training first trains the stacked Bi-
RNNs with Mean Absolute Error (MAE), and then trains
SGCRF by minimizing its negative log-likelihood. Finally,
it trains stacked Bi-RNNs and SGCRF alternatively until
convergence, using a common loss function.

1. Initial training of stacked Bi-RNNs We first train the
stacked Bi-RNNs with the feature set X and ground-truth Ẏ .
Here, MAE is the loss function for stacked Bi-RNNs. An L2

norm is also introduced to regularize the parameter Ω. The
resultant regularized loss is as follows,

L(Ω) = 1

NT

N∑

n=1

T∑

t=1

|z(n)t − ẏ
(n)
t |+ λR ‖ Ω ‖2, (8)

noting that parameter Ω is hidden in z (see Equation 4).
Mini-batch Stochastic Gradient Descent (SGD) is used to

train stacked Bi-RNNs. Adam (Kingma and Ba 2014) is a
popular way to train deep neural networks. However, SGD
with nesterov momentum (Nesterov 1983) shows a better
result if momentum scheduling (Sutskever et al. 2013) is
applied. Throughout this study, SGD with nesterov momen-
tum is used as the default optimization method for stacked
Bi-RNNs.

2. Initial training of SGCRF Feeding the trained stacked
Bi-RNNs with training feature X , the intermediate prediction
Z is obtained. Then SGCRF is trained according to Z and
ground-truth Ẏ by minimizing its negative log-likelihood,
which is formulated as

L(Θ,Λ) = − log |Λ|+ tr(SyyΛ+ 2SyzΘ+Λ−1ΘTSzzΘ),
(9)

where S terms are empirical covariance,

Syy =
1

N
Ẏ T Ẏ , Syz =

1

N
Ẏ TZ, Szz =

1

N
ZTZ.

(10)
Equation 9 is a commonly used loss function for SGCRF

(Wytock and Kolter 2013)(McCarter and Kim 2016). How-
ever, we find that |Λ| suffers a risk of overflow when the num-
ber of time step is large. Therefore, we introduce eigenvalue
decomposition for Λ. As Λ is positive definite, its determi-
nant equals the multiplications of all eigenvalues. Thus, we
have

log |Λ| =
T∑

i=1

log λi, (11)

4221

where λi is an eigenvalue. We will use Equation 11 for log |Λ|
to avoid the overflow problem.

Recall that it is necessary to apply penalties for sparsity to
the parameters, the resultant loss function with L1 regulariza-
tion is then as follows,

L(Θ,Λ) = L(Θ,Λ) + λT ‖ Θ ‖1 +λL ‖ Λ ‖1,∗, (12)

where λL ‖ Λ ‖1,∗ denotes the L1 norm of Λ off diagonal
elements.

The regularized loss L(Θ,Λ) is optimized by Newton Co-
ordinate Descent (Newton CD) with active set (Wytock and
Kolter 2013). In each iteration, Newton CD finds a general-
ized Newton descent direction by forming a second-order ap-
proximation of the smooth part (i.e. L(Θ,Λ)) and minimizes
this along with L1 penalties. Given the Newton direction, the
parameters are updates with a step size found by line search.
The positive-definite constraint of Λ is taken care of in the
line search step.

3. Alternative tuning of stacked Bi-RNNs and SGCRF
Stacked Bi-RNNs and SGCRF are then tuned alternatively,
using the final loss function L(Ω,Θ,Λ)

L(Ω,Θ,Λ) = L(Θ,Λ) + λR ‖ Ω ‖2, (13)

where the first term is seen in Equation 12, and the second
term is the regularization term seen in Equation 8. Recall that
parameter Ω is hidden in Z and thus also hidden in L(Θ,Λ).

Stacked Bi-RNNs are tuned first with the loss function
L(Ω,Θ,Λ). Θ and Λ are frozen and regarded as constants.
The gradient of Ω can be derived according to the chain rule.

∂L(Ω,Θ,Λ)

∂Ω
=

2

N
(ẎΘT + ZΘΛ−1ΘT) · ∂Z

∂Ω
+ 2λRΩ,

(14)
where ∂Z/∂Ω is handled in the stacked Bi-RNNs. With the
obtained gradient, SGD with nesterov momentum can be ap-
plied to fine-tune Ω. We feed the fine-tuned stacked Bi-RNNs
with training feature X and obtain new Z. Then, SGCRF
is trained according to the new Z and Ẏ . In this step, Ω
is frozen, while Θ and Λ are optimized using Newton CD
with active set. The alternated training of stacked Bi-RNNs
and SGCRF repeats until they converged. In our study, five
alternations are sufficient to reach convergence.

Algorithm 1 summarizes alternative training of CoR.

End-to-end training

We further propose a more efficient end-to-end training
method for CoR. We first set effective initial parameters
for CoR, and then fine-tune the parameters end-to-end.

1. Initializations We reuse the first two steps of alternative
training to set effective initializations for CoR. Stacked Bi-
RNNs are initially trained with respect to the loss function
L(Ω) (see Equation 8). We feed the trained stacked Bi-RNNs
with input data X to obtain an intermediate prediction Z.
Then SGCRF can be trained with Z and Ẏ according to the
loss L(Θ,Λ) (see Equation 12). With the initial training of
stacked Bi-RNNs and SGCRF, we can set effective initializa-
tions for the parameters Ω, Θ and Λ.

Algorithm 1 Alternative training of CoR

Require: Training feature set X , ground-truth Ẏ ;
Ensure: Parameters Ω, Θ, Λ;

1: With input X and Ẏ , initially train stacked Bi-RNNs
with respect to the loss function L(Ω) (Equation 8);

2: Feed X to stacked Bi-RNNs to obtain Z;
3: With input Z and Ẏ , initially train SGCRF with respect

to the loss function L(Θ,Λ) (Equation 12);
4: while not converged do
5: Freeze Θ and Λ, and train stacked Bi-RNNs with

input X and Ẏ according to the final loss L(Ω,Θ,Λ)
(Equation 13);

6: Feed X to the trained stacked Bi-RNNs and obtain
new Z;

7: Freeze Ω and train SGCRF with input Z and Ẏ
according to L(Ω,Θ,Λ);

8: end while

The motivation of initialization is as follows. The stacked
Bi-RNNs can be naturally trained with a first-order gradient
descent method, while the training of SGCRF is much more
challenging. Newton CD with active set has been demon-
strated as an effective training method for SGCRF, which
outperforms other second-order methods (Wytock and Kolter
2013). It is believed that the second-order Newton CD with
active set is much more efficient than first-order methods.
Consequently, we still employ Newton CD to supply ini-
tializations for Θ and Λ. With well initialized parameters,
we further use first-order gradient descent to fine-tune the
parameters end-to-end.

2. End-to-end fine-tuning We then apply gradient descent
to fine-tune the parameters of CoR. However, the param-
eter Λ is constrained to be positive-definite, and thus the
unconstrained gradient descent cannot be directly applied.
We resort to the Projected Gradient Descent (PGD) for Λ in
the end-to-end training.

PGD comprises two steps. The first step is a regular
gradient descent, which updates Λ by Λt+1 = Λt −
α∇ΛL(Ω,Θ,Λ), where L(Ω,Θ,Λ) is defined in Equation
13, and α is the learning rate. The second step projects
Λt+1 back to the definition domain C of Λ. The projection
is defined by ΠC(Λ

t+1) = argminc∈C ‖ c − Λt+1 ‖2.
The projection to a positive definite matrix has been well
studied (Henrion and Malick 2012). As Λt+1 is a symmet-
ric matrix, its eigenvalue decomposition can be written as
Λt+1 = UDiag[λ1, · · · , λT]U

T , where Diag[λ1, · · · , λT]
is a diagonal matrix of eigenvalues. The projection is accord-
ingly defined as follows,

ΠC(Λ
t+1) ⇐ UDiag[max(μ, λ1), · · · ,max(μ, λT)]U

T ,
(15)

where μ is a small positive value.
Λ is updated by PGD, while Ω and Θ are updated by or-

dinary gradient descent. In implementation, both PGD and
gradient descent use a mini-batch mode. In the end-to-end
training, SGCRF influences what RNN learns and causes
internal covariance shift (Ioffe and Szegedy 2015) in stacked

4222

Bi-RNNs. We find that it is beneficial to apply batch normal-
ization (Ioffe and Szegedy 2015) to the intermediate predic-
tion z. We add a batch normalization layer between stacked
Bi-RNNs and SGCRF, and thereafter apply end-to-end fine-
tuning.

Algorithm 2 summarizes the end-to-end training of CoR.

Algorithm 2 End-to-end training of CoR

Require: Training feature set X , ground-truth Ẏ ;
Ensure: Parameters Ω, Θ, Λ;

1: With input X and Ẏ , initially train stacked Bi-RNNs
with respect to the loss function L(Ω) (Equation 8);

2: Feed X to stacked Bi-RNNs to obtain Z;
3: With input Z and Ẏ , initially train SGCRF with respect

to the loss function L(Θ,Λ) (Equation 12);
4: Add a batch normalization layer between stacked Bi-

RNNs and SGCRF;
5: while t < max iteration do
6: Update Ω, Θ and Λ according to gradient descent

rule: θt+1 = θt − α∇θL(θ), where L(θ) is defined
by Equation 13;

7: Project Λt+1 according to Equation 15;
8: t = t+ 1;
9: end while

Prediction of CoR

The prediction of CoR comprises two steps.

• Step 1. For a test sample, we feed the observed feature X
to the stacked Bi-RNNs. Through a feed-forward process,
we obtain an intermediate prediction z.

• Step 2. We predict y given z through the prediction pro-
cess of SGCRF, which seeks to maximize p(y|z). The
underlying model of SGCRF is a Gaussian distribution:
y|z = N (−zΘΛ−1,Λ−1). so the maximum of p(y|z) is
the mean of the Gaussian. Thus, the final prediction y is
formulated as

y = −zΘΛ−1. (16)

We can see that the prediction of CoR is quite efficient.
Due to the Gaussian distribution, we can conveniently derive
the 95% confidence interval as follows,

ỹ = y ± 1.96diag(Λ−1), (17)

where diag(Λ−1) is the diagonal elements of Λ−1. This equa-
tion may assist the decision making in uncertain environ-
ments.

Experiment

CoR is evaluated using both synthetic data and real-world
data. Experiment 1 evaluates CoR by synthetic data. We
demonstrate the advantages of CoR over RNN and SGCRF
with synthetic data. Experiment 2 evaluates CoR using a
real-world electricity demand prediction competition. In this
experiment, CoR shows better performance than state-of-the-
art methods in time-series prediction.

In implementations, we use Theano (Theano Development
Team 2016) and Lasagne (Dieleman et al. 2015) for deep
neural network. For the Newton CD in training SGCRF, we
refer to (Wytock and Kolter 2013).

Evaluations using synthetic data

Through the evaluations using synthetic data, we demonstrate
the advantages of CoR over SGCRF and stacked Bi-RNNs.
As we can change the number of time steps and training
samples of synthetic time-series data, we also discover some
interesting properties of evaluated models. We furthermore
conduct an evaluation using large-scale data to compare the
computational cost of SGCRF, stacked Bi-RNNs and CoR.

Evaluations using controlled data The models to be eval-
uated include SGCRF, stacked Bi-RNNs, RNN+SGCRF (a
combination of stacked Bi-RNNs and SGCRF without joint
training, which can be defined by Lines 1-3 in Algorithm
1), CoR trained by alternative training (CoR v1), and CoR
trained by end-to-end training (CoR v2). We change the time
steps and sample quantities of synthetic data to evaluate dif-
ferent models, and find some interesting properties of these
models.

The synthetic data are generated as follows. The dimension
of feature D is fixed as 10, while the time step T can be varied
in {10, 20, 40}, and number of samples N can be varied
in {1000, 2000, 4000, 8000}. The data generation includes
three steps:

1) Generate temporally correlated features X . 10 random
real values are sampled from a standard Gaussian N (0, 1),
denoted as x. The feature xi for each time step is generated by
xi = (1− 0.2x) ∗ sin(iπ/T), where the sin function models
temporal correlations.

2) Introduce nonlinear transformations to features. Each
xi is transformed by a dense network parameterized by W ,
which is a D × D matrix with diagonal Wi,i = 0.8, sub-
diagonal Wi−1,i = −0.2, super-diagonal Wi,i+1 = −0.3,
and the other elements are 0. The following transformation is
a dense network parameterized by v and b = 0.3, where v is
a D-dimension vector vi = 0.2. This neural network reduces
the dimension of each step output to 1. For both networks,
the non-linear activation is leaky ReLU with leakiness = 0.2.

3) Introduce structured information on output. The output
of neural network is then put into a SGCRF parameterized by
Θ and Λ. Θ is a T × T diagonal matrix with Θi,i = 0.2, and
Λ is a T × T matrix with diagonal Λi,i = 0.8, sub-diagonal
Λi−1,i = −0.5 and super-diagonal Λi,i+1 = 0.2. The output
of SGCRF is the final sequence y to be predicted.

The simulated multi-step time-series prediction problem
has temporal feature correlations, nonlinear feature transfor-
mations and structured information. It is adequate to evaluate
the performances of different models on time-series predic-
tion. Neural networks and SGCRF are used to encode feature
nonlinearities and structured information for convenience,
while actually they are equivalent to nonlinear functions.

We evaluate the five models on different time steps with
different numbers of samples. In each evaluation, random
80% samples are used for training, while the rest are for test-
ing. Mean Absolute Percentage Error (MAPE) is used as the

4223

Figure 2: Evaluations of five models on synthetic data. Note that X axes are uneven and the scales of Y axes are different.

metric, which is defined as |g − ĝ|/g × 100%, where g is
ground-truth and ĝ is prediction. Figure 2 illustrate the evalu-
ation results (best performance is shown for each model with
tuned hyper-parameters). We analyze the results in individual
figures, and then summarize across three figures.

In Figure 2(a), the time step of time-series data is 10. With
different numbers of training samples, the MAPE of SGCRF
is relatively stable, about 3.2%. Stacked Bi-RNNs show better
results than SGCRF. When the number of training samples
increases, the performance of stacked Bi-RNNs improves
significantly. This is an indication that deep neural networks
favor a large quantity of training data. RNN+SGCRF obtains
a little improvement against stacked Bi-RNNs. CoR v1 and
CoR v2 significantly outperforms the previous three mod-
els, and CoR v2 consistently achieves the best MAPE. It is
stressed that when training samples are few, CoR improves
stacked Bi-RNNs greatly. This suggests that CoR is a better
choice than deep neural networks especially when only a
limited number of training samples is available.

In Figure 2(b), the time step of time-series data is 20. For
the five models, we observe similar trends in performance
variations as those in Figure 2(a). When the time step in-
creases to 40 in Figure 2(c), the observed rules of MAPEs of
different models stay the same.

We then summarize across Figure 2(a)-(c). From Figure
2(a) to Figure 2(c), the time step of time-series data is in-
creasing, which indicates that the difficulty of prediction
increases. We can see that the performances of different mod-
els decrease when the time step increases. SGCRF does not
perform well because it misses the nonlinearities in features.
Stacked Bi-RNNs outperform SGCRF as they have powerful
nonlinearities to fit the data. It is noted that the relative gap of
stacked Bi-RNNs and SGCRF decreases when the number of
training sample is small (i.e. N = 1000). SGCRF is a sparse
model that can generalize well with limited training samples,
while the performance of stacked Bi-RNNs strongly depends
on the number of training samples. A simple combination of
stacked Bi-RNNs and SGCRF (i.e. RNN+SGCRF) can im-
prove performance, but not always (see N = 8000 in Figure
2 (a) and (b)). CoR can reliably improve MAPE over stacked
Bi-RNNs and SGCRF. The end-to-end trained CoR (CoR v2)
shows the best performance. When the training samples are
limited, CoR shows significant advantage over other models.

Evaluations using large-scale data We further evaluate
SGCRF, stacked Bi-RNNs and CoR on large problems to
compare their precision and computation cost. We generate
100K time-series samples with time step T = 200 and step
feature D = 100. The synthetic data are generated in the
previous way, while the sizes of parameters are increased ac-
cordingly. In this large problem evaluation, we use LSTM to
replace standard RNN in stacked Bi-RNNs and CoR, because
standard RNN has difficulty in modeling long sequences.
CoR is trained by the end-to-end training method, which is
more efficient than alternative training. Evaluations are con-
ducted on a server with 8 CPUs and 64 GB Memory. We
still use MAPE to measure prediction precisions of different
models. Table 1 summarizes the precisions and computation
costs of the three models.

Table 1: Comparison of SGCRF, stacked Bi-LSTMs and
CoR(LSTM) on a large time-series prediction problem.

Model MAPE Memory usage Time usage

SGCRF 0.065 17.21G 50.33h
stacked Bi-LSTMs 0.032 3.53G 5.43h

CoR(LSTM) 0.026 3.55G 9.41h

In Table 1, the prediction precisions of the three models
accord with previous rules. The MAPE of CoR is the low-
est among the three models. We pay more attention to the
computation cost. The advantages of stacked Bi-LSTMs and
CoR over SGCRF come from both modeling and training
processes. In modeling time-series, the parameter matrix Θ
in SGCRF has a size of (D×T)×T , while the size of param-
eter matrix in stacked Bi-LSTMs and CoR is in proportion to
D × T . For the same problem, SGCRF has more parameters
than stacked Bi-LSTMs and CoR. In training process, the
main computation of SGCRF is the calculation of Hessian
matrix with a size (T × D + T) × (T × D + T). This a
large matrix whose size increases quadratically with respect
to T or D. Therefore, when problems grow bigger, SGCRF
requires quadratically larger memory to work. For stacked Bi-
LSTMs, their memory usage is in proportion to T × (T ×D),
which is much less than that of SGCRF. For CoR(LSTM),
there is a little more memory usage than stacked Bi-LSTMs,
while its computational time is almost twice as that of stacked
Bi-LSTMs.

4224

Evaluations on real-world data

We apply CoR to an electricity demand prediction problem,
which is a competition called NPower Forecasting Challenge
2016 1. This competition adopted a rolling forecasting mode
to simulate the real-world scenario. We follow this mode to
evaluate CoR and other comparison models in round one and
two (The ground-truth of round three is not available).

The task of this competition is to predict the future power
demand in every half hour according to weather data. In round
one, the training data range from 2012-01-01 to 2014-09-31,
and the task is to predict power demand from 2014-10-01 to
2015-03-01. In round two, the rolling forecasting releases the
ground-truth from 2014-10-01 to 2015-03-31, and accord-
ingly the task becomes predicting the power demand from
2015-04-01 to 2015-09-30.

In this time-series prediction problem, the features ex-
tracted include the following three categories: 1) Temporal
feature, including the year, the month and the number of time
step; 2) Calendar feature, including the day of a week and
the public holiday; 3) Weather feature, including tempera-
ture, cloudiness, altogether nine measurements. Features and
ground-truths are normalized by Gaussian (subtracting the
mean and dividing by variance), and then input to different
models.

We use ARIMA as the baseline model. We also evalu-
ate SGCRF and RNN. SGCRF is evaluated in two modes:
SGCRF without feature engineering (SGCRF w/o) and SG-
CRF with feature engineering (SGCRF w). A standard RNN
is very hard to train (Note the time step is 48), and thus
we evaluate LSTM instead. A two-layer stacked Bi-RNNs
can converge steadily, which is evaluated for reference. We
also evaluate stacked Bi-LSTMs as comparison. CoR can
have two variants, which are based on stacked Bi-RNNs
(CoR(RNN)) and stacked Bi-LSTMs (CoR(LSTM)). The
two variants are trained by alternative training and end-to-end
training. Overall, there are four CoR variants (CoR(RNN) v1,
CoR(RNN) v2, CoR(LSTM) v1, CoR(LSTM) v2) to evalu-
ate. Moreover, we evaluate other two state-of-the-art methods,
namely, Gradient boosting (Chen and Guestrin 2016) with
feature engineering (add previous time step features to the
current), and attentional stacked Bi-LSTMs (Bahdanau, Cho,
and Bengio 2014).

Unless clearly noted with feature engineering, all mod-
els are evaluated on the raw features. This competition uses
MAPE as the evaluation metric. Table 2 summarizes the eval-
uation results of different models. The top three results in this
competition are listed for reference. These winning methods
did not employ sophisticated models, but were concerned
with detailed features and feature engineering 2. The basic
ARIMA model achieves MAPE of 8.95% and 8.77%, which
are not as good as the top three results in the competition.

The following methods are very recent. SGCRF w/o is
almost as competitive as the 2nd Place, while SGCRF w

1https://www.npowerjobs.com/graduates/forecasting-
challenge. Data are publicly available. Competition results
are also published on this webpage.

2http://blog.drhongtao.com/2016/12/winning-methods-from-
npower-forecasting-challenge-2016.html

Table 2: Evaluation results of the two rounds in NPower
Forecasting Challenge 2016.

Model MAPE in round 1 MAPE in round 2

1st Place 3.14% 7.13%
2nd Place 6.43% 4.89%
3rd Place 7.84% 7.48%
ARIMA 8.95% 8.77%

SGCRF w/o 5.83% 6.64%
SGCRF w 4.91% 5.60%

LSTM (4.92± 0.15)% (4.73± 0.17)%
stacked Bi-RNNs (4.88± 0.21)% (4.56± 0.20)%

stacked Bi-LSTMs (4.43± 0.16)% (4.31± 0.14)%
Gradient boosting 4.90% 4.61%
Attentional LSTM (4.37± 0.15)% (4.25± 0.16)%

CoR(RNN) v1 (4.25± 0.04)% (4.10± 0.05)%
CoR(RNN) v2 (4.19± 0.06)% (4.03± 0.05)%

CoR(LSTM) v1 (4.11± 0.04)% (3.94± 0.03)%
CoR(LSTM) v2 (4.05± 0.05)% (3.87± 0.03)%

shows significantly improvement compared to SGCRF w/o.
Models based on deep neural networks outperform SGCRF.
The overall performance of LSTM is comparable to the 1st

Place. Stacked Bi-RNNs are slightly better than a single
LSTM. In contrast, stacked Bi-LSTMs achieve lower MAPE
than stacked Bi-RNNs. It suggests that LSTM is more ef-
fective than standard RNN when the number of time step
gets larger. Even though we apply feature engineering to
gradient boosting, it does not show any advantage over deep
RNN models. The state-of-the-art attentional LSTM (also
in a stacked bi-directional structure) slightly outperforms
stacked Bi-LSTMs.

The four variants of CoR show better results compared to
previous models. In building different CoR variants, we use
deep RNN models which achieve median performances (note
the fluctuations in results). CoR(RNN) v2 achieves an aver-
age MAPE of 4.11%, which is relative 10.8% improvement
on stacked Bi-RNNs. Similarly, CoR(LSTM) v2 achieves
relative 9.8% improvement on stacked Bi-LSTMs. Moreover,
CoR models are more stable than deep RNNs. The best model,
CoR(LSTM) v2 achieves an average MAPE of 3.96%, which
is much better than 5.14%, the average MAPE of 1st Place.
The disadvantage of CoR and deep RNN models is that the
result suffers fluctuations, but this can be compensated by
model ensemble.

Conclusion

This paper proposes CoR, which integrates the advantages of
RNN and SGCRF, for multi-step time-series prediction. Two
training methods are proposed for CoR. Experimental results
show that the end-to-end training is more efficient than the
alternative training. The evaluations with both synthetic data
and real-world data demonstrate that CoR can significantly
improve prediction precision over stacked Bi-RNNs and SG-
CRF. CoR also outperforms other state-of-the-art methods in
the real-world multi-step time-series prediction. The success
of CoR suggests that both nonlinear and temporal correla-
tions in observed data and structured output information are
important in multi-step time-series prediction.

4225

Acknowledgments

The authors would like to thank Lei Wang and Luping Zhou
for their helpful discussion. This work is supported by a
Discovery Project (DP140100974) from Australian Research
Council.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.
Bengio, Y., et al. 2009. Learning deep architectures for ai.
Foundations and trends R© in Machine Learning 2(1):1–127.
Box, G. E., and Pierce, D. A. 1970. Distribution of residual
autocorrelations in autoregressive-integrated moving aver-
age time series models. Journal of the American statistical
Association 65(332):1509–1526.
Box, G. E.; Jenkins, G. M.; Reinsel, G. C.; and Ljung, G. M.
2015. Time series analysis: forecasting and control. John
Wiley & Sons.
Chen, T., and Guestrin, C. 2016. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data
mining, 785–794. ACM.
Dieleman, S.; Schlter, J.; Raffel, C.; Olson, E.; Snderby, S. K.;
Nouri, D.; Maturana, D.; Thoma, M.; Battenberg, E.; Kelly,
J.; Fauw, J. D.; Heilman, M.; de Almeida, D. M.; McFee,
B.; Weideman, H.; Takcs, G.; de Rivaz, P.; Crall, J.; Sanders,
G.; Rasul, K.; Liu, C.; French, G.; and Degrave, J. 2015.
Lasagne: First release.
Friedman, J. H. 2001. Greedy function approximation: a
gradient boosting machine. Annals of statistics 1189–1232.
Graves, A., and Schmidhuber, J. 2005. Framewise phoneme
classification with bidirectional lstm and other neural network
architectures. Neural Networks 18(5):602–610.
Henrion, D., and Malick, J. 2012. Projection methods in
conic optimization. In Handbook on Semidefinite, Conic and
Polynomial Optimization. Springer. 565–600.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In International Conference on Machine Learning,
448–456.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami,
K.; and Dyer, C. 2016. Neural architectures for named entity
recognition. arXiv preprint arXiv:1603.01360.
Lin, T.; Guo, T.; and Aberer, K. 2017. A dual-stage attention-
based recurrent neural network for time series prediction. In
IJCAI.
Lin, C.-J. 2007. Projected gradient methods for nonnegative
matrix factorization. Neural computation 19(10):2756–2779.

McCarter, C., and Kim, S. 2016. Large-scale optimization
algorithms for sparse conditional gaussian graphical models.
In Artificial Intelligence and Statistics, 528–537.
Nesterov, Y. 1983. A method of solving a convex program-
ming problem with convergence rate o (1/k2). In Soviet
Mathematics Doklady, volume 27, 372–376.
Osogami, T., and Otsuka, M. 2015. Learning dynamic
boltzmann machines with spike-timing dependent plasticity.
arXiv preprint arXiv:1509.08634.
Pascanu, R.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2013.
How to construct deep recurrent neural networks. arXiv
preprint arXiv:1312.6026.
Pineda, F. J. 1987. Generalization of back-propagation to re-
current neural networks. Physical review letters 59(19):2229.
Sutskever, I.; Martens, J.; Dahl, G. E.; and Hinton, G. E. 2013.
On the importance of initialization and momentum in deep
learning. ICML (3) 28:1139–1147.
Theano Development Team. 2016. Theano: A Python frame-
work for fast computation of mathematical expressions. arXiv
e-prints abs/1605.02688.
Wytock, M., and Kolter, Z. 2013. Sparse gaussian conditional
random fields: Algorithms, theory, and application to energy
forecasting. In International conference on machine learning,
1265–1273.
Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.;
Su, Z.; Du, D.; Huang, C.; and Torr, P. H. 2015. Conditional
random fields as recurrent neural networks. In Proceedings
of the IEEE International Conference on Computer Vision,
1529–1537.

4226

