
Adversarial Dropout for Supervised
and Semi-Supervised Learning

Sungrae Park, JunKeon Park, Su-Jin Shin, Il-Chul Moon
Department of Industrial and System Engineering

KAIST
Deajeon, South Korea

{sungraepark, alex3012, sujin.shin, icmoon}@kaist.ac.kr

Abstract

Recently, training with adversarial examples, which are gen-
erated by adding a small but worst-case perturbation on in-
put examples, has improved the generalization performance
of neural networks. In contrast to the biased individual inputs
to enhance the generality, this paper introduces adversarial
dropout, which is a minimal set of dropouts that maximize
the divergence between 1) the training supervision and 2) the
outputs from the network with the dropouts. The identified
adversarial dropouts are used to automatically reconfigure the
neural network in the training process, and we demonstrated
that the simultaneous training on the original and the recon-
figured network improves the generalization performance of
supervised and semi-supervised learning tasks on MNIST,
SVHN, and CIFAR-10. We analyzed the trained model to find
the performance improvement reasons. We found that adver-
sarial dropout increases the sparsity of neural networks more
than the standard dropout. Finally, we also proved that ad-
versarial dropout is a regularization term with a rank-valued
hyper parameter that is different from a continuous-valued
parameter to specify the strength of the regularization.

Introduction
Deep neural networks (DNNs) have demonstrated the sig-
nificant improvement on benchmark performances in a
wide range of applications. As neural networks become
deeper, the model complexity also increases quickly, and
this complexity leads DNNs to potentially overfit a train-
ing data set. Several techniques (Hinton et al. 2012; Poole,
Sohl-Dickstein, and Ganguli 2014; Bishop 1995b; Lasserre,
Bishop, and Minka 2006) have emerged over the past years
to address this challenge, and dropout has become one of
dominant methods due to its simplicity and effectiveness
(Hinton et al. 2012; Srivastava et al. 2014).

Dropout randomly disconnects neural units during train-
ing as a method to prevent the feature co-adaptation (Baldi
and Sadowski 2013; Wager, Wang, and Liang 2013; Wang
and Manning 2013; Li, Gong, and Yang 2016). The ear-
lier work by Hinton et al. (2012) and Srivastava et al.
(2014) interpreted dropout as an extreme form of model
combinations, a.k.a. a model ensemble, by sharing exten-
sive parameters on neural networks. They proposed learn-
ing the model combination through minimizing an expected

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

loss of models perturbed by dropout. They also pointed
out that the output of dropout is the geometric mean of
the outputs from the model ensemble with the shared pa-
rameters. Extending the weight sharing perspective, sev-
eral studies (Baldi and Sadowski 2013; Chen et al. 2014;
Jain et al. 2015) analyzed the ensemble effects from the
dropout.

The recent work by Laine & Aila (2016) enhanced the en-
semble effect of dropout by adding self-ensembling terms.
The self-ensembling term is constructed by a divergence be-
tween two sampled neural networks from the dropout. By
minimizing the divergence, the sampled networks learn from
each other, and this practice is similar to the working mech-
anism of the ladder network (Rasmus et al. 2015), which
builds a connection between an unsupervised and a super-
vised neural network. Our method also follows the princi-
ples of self-ensembling, but we apply the adversarial train-
ing concept to the sampling of neural network structures
through dropout.

At the same time that the community has developed the
dropout, adversarial training has become another focus of
the community. Szegedy et al. (2013) showed that a cer-
tain neural network is vulnerable to a very small perturba-
tion in the training data set if the noise direction is sensi-
tive to the models’ label assignment y given x, even when
the perturbation is so small that human eyes cannot dis-
cern the difference. They empirically proved that robustly
training models against adversarial perturbation is effective
in reducing test errors. However, their method of identi-
fying adversarial perturbations contains a computationally
expensive inner loop. To compensate it, Goodfellow et al.
(2014) suggested an approximation method, through the lin-
earization of the loss function, that is free from the loop.
Adversarial training can be conducted on supervised learn-
ing because the adversarial direction can be defined when
true y labels are known. Miyato et al. (2015) proposed a
virtual adversarial direction to apply the adversarial train-
ing in the semi-supervised learning that may not assume
the true y value. Until now, the adversarial perturbation can
be defined as a unit vector of additive noise imposed on
the input or the embedding spaces (Szegedy et al. 2013;
Goodfellow, Shlens, and Szegedy 2014; Miyato et al. 2015).

Our proposed method, adversarial dropout, can be
viewed from the dropout and from the adversarial train-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3917

cross-

entropy

divergence

metric

network ()

with random

dropout mask ()

network ()

with random

dropout mask ()

weighted

sum

cross-

entropy

divergence

metric

network ()

with random

dropout mask ()

network ()

with adversarial

dropout mask ()

weighted

sum

cross-

entropy

divergence

metric

network ()

network ()

weighted

sum

Adversarial

perturbation

()

Figure 1: Diagram description of loss functions from Π
model (Laine and Aila 2016), the adversarial training (Miy-
ato et al. 2015), and our adversarial dropout.

ing perspectives. Adversarial dropout can be interpreted as
dropout masks whose direction is optimized adversarially to
the model’s label assignment. However, it should be noted
that adversarial dropout and traditional adversarial training
with additive perturbation are different because adversarial
dropout induces the sparse structure of neural network while
the other does not make changes in the structure of the neu-
ral network, directly.

Figure 1 describes the proposed loss function construc-
tion of adversarial dropout compared to 1) the recent dropout
model, which is Π model (Laine and Aila 2016) and 2) the
adversarial training (Goodfellow, Shlens, and Szegedy 2014;
Miyato et al. 2015). When we compare adversarial dropout
to Π model, both divergence terms are similarly com-
puted from two different dropped networks, but adversar-
ial dropout uses an optimized dropped network to adapt the
concept of adversarial training. When we compare adversar-
ial dropout to the adversarial training, the divergence term of
the adversarial training is computed from one network struc-
ture with two training examples: clean and adversarial exam-
ples. On the contrary, the divergence term of the adversarial
dropout is defined with two network structures: a randomly
dropped network and an adversarially dropped network.

Our experiments demonstrated that 1) adversarial dropout
improves the performance on MNIST supervised learning
compared to the dropout suggested by Π model, and 2) ad-
versarial dropout showed the state-of-the-art performance on
the semi-supervised learning task on SVHN and CIFAR-10
when we compare the most recent techniques of dropout
and adversarial training. Following the performance com-
parison, we visualize the neural network structure from ad-
versarial dropout to illustrate that the adversarial dropout en-
ables a sparse structure compared to the neural network of
standard dropout. Finally, we theoretically show the origi-

nal characteristics of adversarial dropout that specifies the
strength of the regularization effect by the rank-valued pa-
rameter while the adversarial training specifies the strength
with the conventional continuous-valued scale.

Preliminaries

Before introducing adversarial dropout, we briefly intro-
duce stochastic noise layers for deep neural networks. After-
wards, we review adversarial training and temporal ensem-
bling, or Π model, because two methods are closely related
to adversarial dropout.

Noise Layers

Corrupting training data with noises has been well-known to
be a method to stabilize prediction (Bishop 1995a; Maaten
et al. 2013; Wager, Wang, and Liang 2013). This section de-
scribes two types of noise injection techniques, such as ad-
ditive Gaussian noise and dropout noise.

Let h(l) denote the lth hidden variables in a neural net-
work, and this layer can be replaced with a noisy version
h̃(l). We can vary the noise types as the followings.

• Additive Gaussian noise: h̃(l) = h(l) + γ, where γ ∼
N (0, σ2Id×d) with the parameter σ2 to restrict the degree
of noises.

• Dropout noise: h̃(l) = h(l) � ε, where � is the element-
wise product of two vectors, and the elements of the noise
vector are εi ∼ Bernoulli(1 − p) with the parameter p.
To simply put, this function specifies that εi = 0 with
probability p and εi = 1 with probability (1− p).

Both additive Gaussian noise and dropout noise are gener-
alization techniques to increase the generality of the trained
model, but they have different properties. The additive Gaus-
sian noise increases the margin of decision boundaries while
the dropout noise affects a model to be sparse (Srivastava
et al. 2014). These noise layers can be easily included in a
deep neural network. For example, there can be a dropout
layer between two convolutional layers. Similarly, a layer of
additive Gaussian noise can be placed on the input layer.

Self-Ensembling Model

The recently reported self-ensembling (SE) (Laine and Aila
2016), or Π model, construct a loss function that mini-
mizes the divergence between two outputs from two sam-
pled dropout neural networks with the same input stimulus.
Their suggested regularization term can be interpreted as the
following:

LSE(x;θ) := D[fθ(x, ε
1), fθ(x, ε

2)], (1)

where ε1 and ε2 are randomly sampled dropout noises in a
neural network fθ , whose parameters are θ. Also, D[y,y′] is
a non-negative function that represents the distance between
two output vectors: y and y′. For example, D can be the
cross entropy function, D[y,y′] = −∑

i yi logy
′
i, where

y and y′ are the vectors whose ith elements represent the
probability of the ith class. The divergence could be calcu-
lated between two outputs of two different structures, which

3918

turn this regularization to be semi-supervised (Bachman, Al-
sharif, and Precup 2014). Π model is based on the principle
of Γ model, which is the ladder network by Rasmus et al.
(2015). Our proposed method, adversarial dropout, can be
seen as a special case of Π model when one dropout neural
network is adversarially sampled.

Adversarial Training

Adversarial dropout follows the training mechanism of ad-
versarial training, so we briefly introduce a generalized for-
mulation of the adversarial training. The basic concept of
adversarial training (AT) is an incorporation of adversar-
ial examples on the training process. Additional loss func-
tion by including adversarial examples (Szegedy et al. 2013;
Goodfellow, Shlens, and Szegedy 2014; Miyato et al. 2015)
can be defined as a generalized form:

LAT (x, y;θ, δ) := D[g(x, y,θ), fθ(x+ γadv)] (2)

where γadv := argmaxγ;‖γ‖∞≤δD[g(x, y,θ), fθ(x+ γ)].

Here, θ is a set of model parameters, δ is a hyperparameter
controlling the intensity of the adversarial perturbation γadv .
The function fθ(x) is an output distribution of a neural net-
work to be learned. Adversarial training can be diversified
by differentiating the definition of g(x, y,θ), as the follow-
ing.
• Adversarial training (AT) (Goodfellow, Shlens, and

Szegedy 2014; Kurakin, Goodfellow, and Bengio 2016)
defines g(x, y,θ) as g(y) ignoring x and θ, so g(y) is an
one-hot encoding vector of y.

• Virtual adversarial training (VAT) (Miyato et al. 2015;
Miyato, Dai, and Goodfellow 2016) defines g(x, y,θ) as
fθ̂(x) where θ̂ is the current estimated parameter. This
training method does not use any information from y in
the adversarial part of the loss function. This enables the
adversarial part to be used as a regularization term for the
semi-supervised learning.

Method

This section presents our adversarial dropout that combines
the ideas of adversarial training and dropout. First, we for-
mally define the adversarial dropout. Second, we propose
a training algorithm to find the instantiations of adversarial
dropouts with a fast approximation method.

General Expression of Adversarial Dropout

Now, we propose the adversarial dropout (AdD), which
could be an adversarial training method that determines the
dropout condition to be sensitive on the model’s label as-
signment. We use fθ(x, ε) as an output distribution of a
neural network with a dropout mask. The below is the de-
scription of the additional loss function by incorporating ad-
versarial dropout.

LAdD(x, y, εs;θ, δ) := D[g(x, y,θ), fθ(x, ε
adv)] (3)

where εadv := argmaxε;‖εs−ε‖2≤δHD[g(x, y,θ), fθ(x, ε)].

Here, D[·, ·] indicates a divergence function; g(x, y,θ) rep-
resents an adversarial target function that can be diversified

by its definition; εadv is an adversarial dropout mask under
the function fθ when θ is a set of model parameters; εs is
a sampled random dropout mask instance; δ is a hyperpa-
rameter controlling the intensity of the noise; and H is the
dropout layer dimension.

We introduce the boundary condition, ‖εs − ε‖2 ≤ δH ,
which indicates a restriction of the number of the difference
between two dropout conditions. An adversarial dropout
mask should be infinitesimally different from the random
dropout mask. Without this constraint, the network with ad-
versarial dropout may become a neural network layer with-
out connections. By restricting the adversarial dropout with
the random dropout, we prevent finding such irrational layer,
which does not support the back propagation. We found that
the Euclidean distance between two ε vectors can be calcu-
lated by using the graph edit distance or the Jaccard distance.
In the supplementary material, we proved that the graph edit
distance and the Jaccard distance can be abstracted as Eu-
clidean distances between two ε vectors.

In the general form of adversarial training, the key point
is the existence of the linear perturbation γadv . We can in-
terpret the input with the adversarial perturbation as this ad-
versarial noise input x̃adv = x + γadv . From this perspec-
tive, the authors of adversarial training limited the adversar-
ial direction only on the space of the additive Gaussian noise
x̃ = x + γ0, where γ0 is a sampled Gaussian noise on the
input layer. In contrast, adversarial dropout can be consid-
ered as a noise space generated by masking hidden units,
h̃adv = h � εadv where h is hidden units, and εadv is an
adversarially selected dropout condition. If we assume the
adversarial training as the Gaussian additive perturbation on
the input, the perturbation is linear in nature, but adversarial
dropout could be non-linear perturbation if the adversarial
dropout is imposed upon multiple layers.

Supervised Adversarial Dropout Supervised Adversar-
ial dropout (SAdD) defines g(x, y,θ) as y, so g is a one-hot
vector of y as the typical neural network. The divergence
term from Formula 3 can be converted as follows:

LSAdD(x, y, εs;θ, δ) := D[g(y), fθ(x, ε
adv)] (4)

where εadv := argmaxε;‖εs−ε‖2≤δHD[g(y), fθ(x, ε)].

In this case, the divergence term can be seen as the pure
loss function for a supervised learning with a dropout regu-
larization. However, εadv is selected to maximize the diver-
gence between the true information and the output from the
dropout network, so εadv eventually becomes the mask on
the most contributing features. This adversarial mask pro-
vides the learning opportunity on neurons, so called dead
filter, that was considered to be less informative.

Virtual Adversarial Dropout Virtual adversarial
dropout (VAdD) defines g(x, y,θ) = fθ(x, ε

s). This
uses the loss function as a regularization term for semi-
supervised learning. The divergence term in Formula 3 can
be represented as below:

LV AdD(x, y, εs;θ, δ) := D[fθ(x, ε
s), fθ(x, ε

adv)] (5)

where εadv := argmaxε;‖εs−ε‖2≤δHD[fθ(x, ε
s), fθ(x, ε)].

3919

VAdD is a special case of a self-ensembling model with two
dropouts. They are 1) a dropout, εs, sampled from a ran-
dom distribution with a hyperparameter and 2) a dropout,
εadv , composed to maximize the divergence function of the
learner, which is the concept of the noise injection from the
virtual adversarial training. The two dropouts create a reg-
ularization as the virtual adversarial training, and the in-
ference procedure optimizes the parameters to reduce the
divergence between the random dropout and the adversar-
ial dropout. This optimization triggers the self-ensemble
learning in (Laine and Aila 2016). However, the adversarial
dropout is different from the previous self-ensembling be-
cause one dropout is induced by the adversarial setting, not
by a random sampling.

Learning with Adversarial Dropout The full objective
function for the learning with the adversarial dropout is
given by

l(y, fθ(x, ε
s)) + λLAdD(x, y, εs;θ, δ) (6)

where l(y, fθ(x, ε
s)) is the negative log-likelihood for y

given x under the sampled dropout instance εs. There are
two scalar-scale hyper-parameters: (1) a trade-off parameter,
λ, for controlling the impact of the proposed regularization
term and (2) the constraints, δ, specifying the intensity of
adversarial dropout.

Combining Adversarial Dropout and Adversarial Train-
ing Additionally, it should be noted that the adversarial
training and the adversarial dropout are not exclusive train-
ing methods. A neural network can be trained by imposing
the input perturbation with the Gaussian additive noise, and
by enabling the adversarially chosen dropouts, simultane-
ously. Formula 7 specifies the loss function of simultane-
ously utilizing the adversarial dropout and the adversarial
training.

l(y, fθ(x, ε
s)) + λ1LAdD(x, y, εs) + λ2LAT (x, y) (7)

where λ1 and λ2 are trade-off parameters controlling the im-
pact of the regularization terms.

Fast Approximation Method for Finding
Adversarial Dropout Condition

Once the adversarial dropout, εadv , is identified, the evalua-
tion of LAdD simply becomes the computation of the loss
and the divergence functions. However, the inference on
εadv is difficult because of three reasons. First, we cannot
obtain a closed-form solution on the exact adversarial noise
value, εadv . Second, the feasible space for εadv is restricted
under ‖εs − εadv‖2 ≤ δH , which becomes a constraint in
the optimization. Third, εadv is a binary-valued vector rather
than a continuous-valued vector because εadv indicates the
activation of neurons. This discrete nature requires an opti-
mization technique like integer programming.

To mitigate this difficulty, we approximated the objective
function, LAdD, with the first order of the Taylor expansion
by relaxing the domain space of εadv . This Taylor expansion
of the objective function was used in the earlier works of ad-
versarial training (Goodfellow, Shlens, and Szegedy 2014;

Miyato et al. 2015). After the approximation, we found
an adversarial dropout condition by solving an integer pro-
gramming problem.

To define a neural network with a dropout layer, we
separate the output function into two neural sub-networks,
fθ(x, ε) = fupper

θ1
(h(x)�ε), where fupper

θ1
is the upper part

neural network of the dropout layer and h(x) = funder
θ2

(x)
is the under part neural network. Our objective is optimizing
an adversarial dropout noise εadv by maximizing the follow-
ing divergence function under the constraint ‖εs−εadv‖2 ≤
δH:
D(x, ε;θ, εs) = D[g(x, y,θ, εs), fupper

θ1
(h(x)� ε))] (8)

where εs is a sampled dropout mask, and θ is a parameter
of the neural network model. We approximate the above di-
vergence function by deriving the first order of the Taylor
expansion by relaxing the domain space of ε from the multi-
ple binary spaces, {0, 1}H , to the real value spaces, [0, 1]H .
This conversion is a common step in the integer program-
ming research as (Hemmecke et al. 2010):
D(x, ε;θ, εs) ≈ D(x, ε0;θ, εs) + (ε− ε0)TJ(x, ε0) (9)

where J(x, ε0) is the Jacobian vector given by J(x, ε0) :=
�εD(x, ε;θ, εs)|ε=ε0 when ε0 = 1 indicates no noise in-
jection. The above Taylor expansion provides a linearized
optimization objective function by controlling ε. Therefore,
we reorganized the Taylor expansion with respect to ε as the
below:

D(x, ε;θ, εs) ∝
∑
i

εiJi(x, ε
0) (10)

where Ji(x, ε
0) is the ith element of J(x, ε0). Since we can-

not proceed further with the given formula, we introduce
an alternative Jaccobian formula that further specifies the
dropout mechanism by � and h(x) as the below.

J(x, ε0) ≈ h(x)��h(x)D(x, ε0;θ, εs) (11)

where h(x) is the output vector of the under part neural net-
work of the adversarial dropout.

The control variable, ε, is a binary vector whose elements
are either one or zero. Under this approximate divergence,
finding a maximal point of ε can be viewed as the 0/1 knap-
sack problem (Kellerer, Pferschy, and Pisinger 2004), which
is one of the most popular integer programming problems.

To find εadv with the constraint, we propose Algorithm
1 based on the dynamic programming for the 0/1 knapsack
problem. In the algorithm, εadv is initialized with εs, and
εadv changes its value by the order of the degree increasing
the objective divergence until ‖εs − εadv‖2 ≤ δH; or there
is no increment in the divergence. After using the algorithm,
we obtain εadv that maximizes the divergence with the con-
straint, and we evaluate the loss function LAdD.

We should notice that the complex vector of the Tay-
lor expansion is not εs, but ε0. In the case of vir-
tual adversarial dropout, whose divergence is formed as
D[fθ(x, ε

s), fθ(x, ε)], εs is the minimal point leading the
gradient to be zero because of the identical distribution be-
tween the random and the optimized dropouts. This zero gra-
dient affects the approximation of the divergence term as
zero. To avoid the zero gradients, we set the complex vector
of the Taylor expansion as ε0.

3920

Algorithm 1: Finding Adversarial Dropout Condi-
tion

Input : εs is current sampled dropout mask
Input : δ is a hyper-parameter for the boundary
Input : J is the Jacobian vector
Input : H is the layer dimension.
Output: εadv

1 begin
2 z ←− |J| // absolute values of the Jacobian
3 i ←− Arg Sort z as zi1 ≥ ... ≥ ziH
4 εadv ←− εs

5 d ←− 1

6 while ‖εs − εadv‖2 ≤ δH and d ≤ H do

7 if εadvid
= 0 and Jid > 0 then

8 εadvid
←− 1

9 else if εadvid
= 1 and Jid < 0 then

10 εadvid
←− 0

11 end
12 d ←− d+ 1
13 end

14 end

Table 1: Test performance with 1,000 labeled (semi-
supervised) and 60,000 labeled (supervised) examples on
MNIST. Each setting is repeated for eight times.

Error rate (%) with # labels
Method 1,000 All (60,000)
Plain (only dropout) 2.99 ± 0.23 0.53 ± 0.03
AT - 0.51 ± 0.03
VAT 1.35 ± 0.14 0.50 ± 0.01
Π model 1.00 ± 0.08 0.50 ± 0.02
SAdD - 0.46 ± 0.01
VAdD (KL) 0.99 ± 0.07 0.47 ± 0.01
VAdD (QE) 0.99 ± 0.09 0.46 ± 0.02

Experiments

This section evaluates the empirical performance of adver-
sarial dropout for supervised and semi-supervised classifi-
cation tasks on three benchmark datasets, MNIST, SVHN,
and CIFAR-10. In every presented task, we compared ad-
versarial dropout, Π model, and adversarial training. We also
performed additional experiments to analyze the sparsity of
adversarial dropout.

Supervised and Semi-supervised Learning on
MNIST task

In the first set of experiments, we benchmark our method
on the MNIST dataset (LeCun et al. 1998), which consists
of 70,000 handwritten digit images of size 28 × 28 where
60,000 images are used for training and the rest for testing.

Our basic structure is a convolutional neural network
(CNN) containing three convolutional layers, which filters
are 32, 64, and 128, respectively, and three max-pooling lay-
ers sized by 2 × 2. The adversarial dropout applied only on

the final hidden layer. The structure detail and the hyper-
parameters are described in Appendix B.1.

We conducted both supervised and semi-supervised learn-
ings to compare the performances from the standard
dropout, Π model, and adversarial training models utiliz-
ing linear perturbations on the input space. The supervised
learning used 60,000 instances for training with full labels.
The semi-supervised learning used 1,000 randomly selected
instances with their labels and 59,000 instances with only
their input images. Table 1 shows the test error rates includ-
ing the baseline models. Over all experiment settings, SAdD
and VAdD further reduce the error rate from Π model, which
had the best performance among the baseline models. In the
table, KL and QE indicate Kullback-Leibler divergence and
quadratic error, respectively, to specify the divergence func-
tion, D[y, ŷ].

Supervised and Semi-supervised Learning on
SVHN and CIFAR-10

We experimented the performances of the supervised and
the semi-supervised tasks on the SVHN (Netzer et al. 2011)
and the CIFAR-10 (Krizhevsky and Hinton 2009) datasets
consisting of 32 × 32 color images in ten classes. For these
experiments, we used the large-CNN (Laine and Aila 2016;
Miyato et al. 2017). The details of the structure and the set-
tings are described in Appendix B.2.

Table 2 shows the reported performances of the close fam-
ily of CNN-based classifiers for the supervised and semi-
supervised learning. We did not consider the recently ad-
vanced architectures, such as ResNet (He et al. 2016) and
DenseNet (Huang et al. 2016), because we intend to com-
pare the performance increment by the dropout and other
training techniques.

In supervised learning tasks using all labeled train data,
adversarial dropout models achieved the top performance
compared to the results from the baseline models, such as
Π model and VAT, on both datasets. When applying adver-
sarial dropout and adversarial training together, there were
further improvements in the performances.

Additionally, we conducted experiments on the semi-
supervised learning with randomly selected labeled data and
unlabeled images. In SVHN, 1,000 labeled and 72,257 un-
labeled data were used for training. In CIFAR-10, 4,000 la-
beled and 46,000 unlabeled data were used. Table 2 lists the
performance of the semi-supervised learning models, and
our implementations with both VAdD and VAT achieved the
top performance compared to the results from (Sajjadi, Ja-
vanmardi, and Tasdizen 2016).

Our experiments demonstrate that VAT and VAdD are
complementary. When applying VAT and VAdD together
by simply adding their divergence terms on the loss func-
tion, see Formula 7, we achieved the state-of-the-art perfor-
mances on the semi-supervised learning on both datasets;
3.55% of test error rates on SVHN, and 10.04% and 9.22%
of test error rates on CIFAR-10. Additionally, VAdD alone
achieved a better performance than the self-ensemble model
(Π model). This indicates that considering an adversarial
perturbation on dropout layers enhances the self-ensemble
effect.

3921

Table 2: Test performances of semi-supervised and supervised learning on SVHN and CIFAR-10. Each setting is repeated
for five times. KL and QE indicate Kullback-Leibler divergence and quadratic error, respectively, to specify the divergence
function, D[y, ŷ]

SVHN with # labels CIFAR-10 with # labels
Method 1,000 73,257 (All) 4,000 50,000 (All)
Π model (Laine and Aila 2016) 4.82 2.54 12.36 5.56
Tem. ensembling (Laine and Aila 2016) 4.42 2.74 12.16 5.60
Sajjadi et al. (Sajjadi, Javanmardi, and Tasdizen 2016) - - 11.29 -
VAT (Miyato et al. 2017) 3.86 - 10.55 5.81
Π model (our implementation) 4.35 ± 0.04 2.53 ± 0.05 12.62 ± 0.29 5.77 ± 0.11
VAT (our implementation) 3.74 ± 0.09 2.69 ± 0.04 11.96 ± 0.10 5.65 ± 0.17
SAdD - 2.46 ± 0.05 - 5.46 ± 0.16
VAdD (KL) 4.16 ± 0.08 2.31 ± 0.01 11.68 ± 0.19 5.27 ± 0.10
VAdD (QE) 4.26 ± 0.14 2.37 ± 0.03 11.32 ± 0.11 5.24 ± 0.12

VAdD (KL) + VAT 3.55 ± 0.05 2.23 ± 0.03 10.07 ± 0.11 4.40 ± 0.12
VAdD (QE) + VAT 3.55 ± 0.07 2.34 ± 0.05 9.22 ± 0.10 4.73 ± 0.04

Figure 2: Features of one hidden layer autoencoders trained
on MNIST; a standard dropout (left) and an adversarial
dropout (right).

Effect on Features and Sparsity from Adversarial
Dropout

Dropout prevents the co-adaptation between the units in a
neural network, and the dropout decreases the dependency
between hidden units (Srivastava et al. 2014). To compare
the adversarial dropout and the standard dropout, we ana-
lyzed the co-adaptations by visualizing features of autoen-
coders on the MNIST dataset. The autoencoder consists with
one hidden layer, whose dimension is 256, with the ReLU
activation. When we trained the autoencoder, we set the
dropout with p = 0.5, and we calculated the reconstruc-
tion error between the input data and the output layer as a
loss function to update the weight values of the autoencoder
with the standard dropout. On the other hand, the adversarial
dropout error is also considered when we update the weight
values of the autoencoder with the parameters, λ = 0.2, and δ
= 0.3. The trained autoencoders showed similar reconstruc-
tion errors on the test dataset.

Figure 2 shows the visualized features from the autoen-
coders. There are two differences identified from the visu-
alization; 1) adversarial dropout prevents that the learned
weight matrix contains black boxes, or dead filters, which
may be all zero for many different inputs and 2) adversar-

ial dropout tends to standardize other features, except for
localized features viewed as black dots, while the standard
dropout tends to ignore the neighborhoods of the localized
features. These show that adversarial dropout standardizes
the other features while preserving the characteristics of lo-
calized features from the standard dropout . These could be
the main reason for the better generalization performance.

The important side-effect of the standard dropout is the
sparse activations of the hidden units (Hinton et al. 2012).
To analyze the sparse activations by adversarial dropout, we
compared the activation values of the auto-encoder models
with no-dropout, dropout, and adversarial dropout on the
MNIST test dataset. A sparse model should only have a few
highly activated units, and the average activation of any unit
across data instances should be low (Hinton et al. 2012). Fig-
ure 3 plot the distribution of the activation values and their
means across the test dataset. We found that the adversarial
dropout has fewer highly activated units compared to oth-
ers. Moreover, the mean activation values of the adversar-
ial dropout were the lowest. These indicate that adversarial
dropout improves the sparsity of the model than the standard
dropout does.

Disucssion

The previous studies proved that the adversarial noise injec-
tions were an effective regularizer (Goodfellow, Shlens, and
Szegedy 2014). In order to investigate the different proper-
ties of adversarial dropout, we explore a very simple case of
applying adversarial training and adversarial dropout to the
linear regression.

Linear Regression with Adversarial Training

Let xi ∈ R
D be a data point and yi ∈ R be a target where

i = {1, ..., N}. The objective of the linear regression is find-
ing w ∈ R

D that minimizes l(w) =
∑

i ‖yi − xT
i w‖2.

To express adversarial examples, we denote x̃i = xi +
radvi as the adversarial example of xi where radvi =
δsign(�xi

l(w)) utilizing the fast gradient sign method
(FGSM) (Goodfellow, Shlens, and Szegedy 2014), δ is a

3922

Figure 3: Histograms of the activation values and the mean
activation values from a hidden layer of autoencoders in
1,000 MNIST test images. All values are converted by the
log scale for the comparison.

control parameter representing the degree of adversarial
noises. With the adversarial examples, the objective function
of the adversarial training can be viewed as follows:

lAT (w) =
∑
i

‖yi − (xi + radvi)Tw‖2 (12)

The above equation is translated into the below formula by
isolating the terms with radvi as the additive noise.

l(w) +
∑
ij

|δ �xij
l(w)|+ δ2wTΓATw (13)

where ΓAT =
∑

i sign(�xi
l(w))T sign(�xi

l(w)). The
second term shows the L1 regularization by multiplying
the degree of the adversarial noise, δ, at each data point.
Additionally, the third term indicates the L2 regularization
with ΓAT , which form the scales of w by the gradient di-
rection differences over all data points. The penalty terms
are closely related with the hyper-parameter δ. When δ ap-
proaches to zero, the regularization term disappears because
the inputs become adversarial examples, not anymore. For
a large δ, the regularization constant grows larger than the
original loss function, and the learning becomes infeasible.
The previous studies proved that the adversarial objective
function based on the FGSM is an effective regularizer. This
paper investigated that training a linear regression with ad-
versarial examples provides two regularization terms of the
above equation.

Linear Regression with Adversarial Dropout

Now, we turn to the case of applying adversarial dropout to
a linear regression. To represent the adversarial dropout, we
denote x̃i = εadvi � xi as the adversarially dropped input of
xi where εadvi = argmaxε;‖εi−1‖2≤k‖yi − (εi � xi)

Tw‖2
with the hyper-parameter, k, controlling the degree of the
adversarial dropout. For simplification, we used one vector
as the sampled dropout, εs, of the adversarial dropout. If we

apply Algorithm 1, the adversarial dropout can be defined as
follows:

εadvij =

{
0 if xij �xij

l(w) ≤ min{sik, 0}
1 otherwise (14)

where sik is the kth lowest element of xi ��xi
l(w). This

solution satisfies the constraint, ‖εi − εs‖2 ≤ k. With this
adversarial dropout condition, the objective function of the
adversarial dropout can be defined as the belows:

lAdD(w) =
∑
i

‖yi − (εadvi � xi)
Tw‖2 (15)

When we isolate the terms with εadv , the above equation is
translated into the below formula.

l(w) +
∑
i

∑
j∈Si

|xij �xij
l(w)|+wTΓAdDw (16)

where Si = {j|εadvij = 0} and ΓAdD =
∑

i((1 − εadvi) �
xi)

T ((1 − εadvi) � xi). The second term is the L1 regu-
larization of the k largest loss changes from the features
of each data point. The third term is the L2 regularization
with ΓAdD. These two penalty terms are related with the
hyper-parameter k controlling the degree of the adversarial
dropout, because the k indicates the number of elements of
the set Si, ∀i. When k becomes zero, the two penalty terms
disappears because there will be no dropout by the constraint
on ε.

There are two differences between the adversarial dropout
and the adversarial training. First, the regularization terms of
the adversarial dropout are dependent on the scale of the fea-
tures of each data point. In L1 regularization, the gradients
of the loss function are re-scaled with the data points. In L2

regularization, the data points affect the scales of the weight
costs. In contrast, the penalty terms of adversarial training
are dependent on the degree of adversarial noise, δ, which is
a static term across the instances because δ is a single-valued
hyper parameter given in the training process. Second, the
penalty terms of the adversarial dropout are selectively ac-
tivated by the degree of the loss changes while the penalty
terms of the adversarial training are always activated.

Conclusion

The key point of our paper is combining the ideas from the
adversarial training and the dropout. The existing methods
of the adversarial training control a linear perturbation with
additive properties only on the input layer. In contrast, we
combined the concept of the perturbation with the dropout
properties on hidden layers. Adversarially dropped structure
becomes a poor ensemble model for the label assignment
even when very few nodes are changed. However, by learn-
ing the model with the poor structure, the model prevents
over-fitting using a few effective features. The experiments
showed that the generalization performances are improved
by applying our adversarial dropout. Additionally, our ap-
proach achieved the-state-of-the-art performances of 3.55%
on SVHN and 9.22% on CIFAR-10 by applying VAdD and
VAT together for the semi-supervised learning.

3923

Acknowledgments

This research was supported by Basic Science Re-
search Program through the National Research Founda-
tion of Korea(NRF) funded by the Ministry of Educa-
tion(2017R1D1A1A01058209)

References

Bachman, P.; Alsharif, O.; and Precup, D. 2014. Learn-
ing with pseudo-ensembles. In Ghahramani, Z.; Welling,
M.; Cortes, C.; Lawrence, N. D.; and Weinberger, K. Q.,
eds., Advances in Neural Information Processing Systems
27. Curran Associates, Inc. 3365–3373.
Baldi, P., and Sadowski, P. J. 2013. Understanding dropout.
In Advances in Neural Information Processing Systems.
2814–2822.
Bishop, C. M. 1995a. Training with noise is equivalent to
tikhonov regularization. Neural computation 7(1):108–116.
Bishop, C. M. 1995b. Regularization and complexity control
in feed-forward networks.
Chen, N.; Zhu, J.; Chen, J.; and Zhang, B. 2014. Dropout
training for support vector machines. arXiv preprint
arXiv:1404.4171.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Identity map-
pings in deep residual networks. In European Conference
on Computer Vision, 630–645. Springer.
Hemmecke, R.; Köppe, M.; Lee, J.; and Weismantel, R.
2010. Nonlinear integer programming. In 50 Years of In-
teger Programming 1958-2008. Springer. 561–618.
Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. R. 2012. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.
Huang, G.; Liu, Z.; Weinberger, K. Q.; and van der Maaten,
L. 2016. Densely connected convolutional networks. arXiv
preprint arXiv:1608.06993.
Jain, P.; Kulkarni, V.; Thakurta, A.; and Williams, O. 2015.
To drop or not to drop: Robustness, consistency and dif-
ferential privacy properties of dropout. arXiv preprint
arXiv:1503.02031.
Kellerer, H.; Pferschy, U.; and Pisinger, D. 2004. Introduc-
tion to np-completeness of knapsack problems. In Knapsack
problems. Springer. 483–493.
Krizhevsky, A., and Hinton, G. 2009. Learning multiple
layers of features from tiny images.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533.
Laine, S., and Aila, T. 2016. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242.
Lasserre, J. A.; Bishop, C. M.; and Minka, T. P. 2006. Prin-
cipled hybrids of generative and discriminative models. In

Computer Vision and Pattern Recognition, 2006 IEEE Com-
puter Society Conference on, volume 1, 87–94. IEEE.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Li, Z.; Gong, B.; and Yang, T. 2016. Improved dropout for
shallow and deep learning. In Advances in Neural Informa-
tion Processing Systems, 2523–2531.
Maaten, L.; Chen, M.; Tyree, S.; and Weinberger, K. Q.
2013. Learning with marginalized corrupted features. In
Proceedings of the 30th International Conference on Ma-
chine Learning (ICML-13), 410–418.
Miyato, T.; Maeda, S.-i.; Koyama, M.; Nakae, K.; and Ishii,
S. 2015. Distributional smoothing with virtual adversarial
training. arXiv preprint arXiv:1507.00677.
Miyato, T.; Maeda, S.-i.; Koyama, M.; and Ishii, S. 2017.
Virtual adversarial training: a regularization method for
supervised and semi-supervised learning. arXiv preprint
arXiv:1704.03976.
Miyato, T.; Dai, A. M.; and Goodfellow, I. 2016. Virtual
adversarial training for semi-supervised text classification.
stat 1050:25.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading digits in natural images with unsu-
pervised feature learning. In NIPS workshop on deep learn-
ing and unsupervised feature learning, volume 2011, 5.
Poole, B.; Sohl-Dickstein, J.; and Ganguli, S. 2014. Analyz-
ing noise in autoencoders and deep networks. arXiv preprint
arXiv:1406.1831.
Rasmus, A.; Berglund, M.; Honkala, M.; Valpola, H.; and
Raiko, T. 2015. Semi-supervised learning with ladder net-
works. In Advances in Neural Information Processing Sys-
tems, 3546–3554.
Sajjadi, M.; Javanmardi, M.; and Tasdizen, T. 2016. Regu-
larization with stochastic transformations and perturbations
for deep semi-supervised learning. In Advances in Neural
Information Processing Systems, 1163–1171.
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. 2014. Dropout: a simple way to pre-
vent neural networks from overfitting. Journal of Machine
Learning Research 15(1):1929–1958.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Wager, S.; Wang, S.; and Liang, P. S. 2013. Dropout training
as adaptive regularization. In Advances in Neural Informa-
tion Processing Systems, 351–359.
Wang, S., and Manning, C. 2013. Fast dropout training.
In Proceedings of the 30th International Conference on Ma-
chine Learning (ICML-13), 118–126.

3924

