
Learning with Single-Teacher Multi-Student

Shan You,† Chang Xu,‡ Chao Xu,† Dacheng Tao‡
†Key Lab. of Machine Perception (MOE), Cooperative Medianet Innovation Center,

School of EECS, Peking University, China
‡UBTECH Sydney AI Centre, SIT, FEIT, University of Sydney, Australia

youshan@pku.edu.cn, c.xu@sydney.edu.au
xuchao@cis.pku.edu.cn, dacheng.tao@sydney.edu.au

Abstract

In this paper we study a new learning problem defined as
“Single-Teacher Multi-Student” (STMS) problem, which in-
vestigates how to learn a series of student (simple and spe-
cific) models from a single teacher (complex and universal)
model. Taking the multiclass and binary classification for ex-
ample, we focus on learning multiple binary classifiers from
a single multiclass classifier, where each of binary classifier
is responsible for a certain class. This actually derives from
some realistic problems, such as identifying the suspect based
on a comprehensive face recognition system. By treating the
already-trained multiclass classifier as the teacher, and mul-
tiple binary classifiers as the students, we propose a gated
support vector machine (gSVM) as a solution. A series of
gSVMs are learned with the help of single teacher multiclass
classifier. The teacher’s help is two-fold; first, the teacher’s
score provides the gated values for students’ decision; second,
the teacher can guide the students to accommodate training
examples with different difficulty degrees. Extensive experi-
ments on real datasets validate its effectiveness.

Introduction
Multiclass classification (MC) (Aly 2005; Bishop 2006;
Nie, Wang, and Huang 2017) considers that an instance can
be affiliated to one of multiple (≥ 2) classes. Many real
applications can be cast into MC problem. Taking the face
recognition (He et al. 2017) for example, the task is required
to distinguish multiple people based on their face photos, e.g.
126 individuals in AR Face Database (Martinez 1998). Other
MC applications refer to image classification (Guo 2017),
text categorization (Xu et al. 2017), information retrieval
(Yang et al. 2017), multi-view classification (Xu, Tao, and
Xu 2013) et.al.

To accommodate multiple classes, the multiclass classifiers
usually adopt a score-based prediction mechanism. In detail,
they can generate a score vector in terms of all classes as the
output, then the class with the maximum score is regarded as
the prediction. Some of the widely-used multiclass classifiers
actually follow this mechanism, such as One-vs-All (Vap-
nik 2013), structural SVM (Tsochantaridis et al. 2004), rank
SVM (Joachims 2002), et.al. As a result, the multiclass classi-
fiers usually have larger model size than the binary classifiers,
and more expensive inference cost as well.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Suppose we have a multiclass classifier (e.g. structural
SVM) which has been already trained well. It allows us
to identify a class from multiple candidates. In some real
circumstances, however, the task in hand may only require
a binary classification task, i.e. identifying whether a test
instance belongs to one specific class instead of what class it
belongs to. For example, in news categorization a multiclass
classifier is implemented to recognize what category a news
item is related to, such as tech news, entertainment news,
economic news, et.al. However, when a user only requests
for the tech news, the system only needs to classify whether
the news items are tech-related or not. Another example
refers to the suspect tracking in criminal detection. Usually,
a face recognition system has already existed whose function
is to identify a person’s ID according to his/her face. This
system may be capable of distinguishing millions of people.
Nevertheless, for suspect tracking, we only concern whether
the testing faces belong to the suspect or not.

Of course, we can still use the multiclass classifier to di-
rectly recognize whether the instance is a tech news item (or
the suspect). If the instance is related to other news categories
(or persons), we think it is no tech news (or suspect). How-
ever, this practice will always involve the inference of all the
other classes; thus for a binary classification, the inference
cost is too expensive. Or just using the training data to learn
the binary classifiers is also an intuitive method. Neverthe-
less, this can not take advantage of the existing multiclass
classifier which may provide some useful information. There-
fore, it is of the need to learn a new binary classifier with
much faster inference speed than the multiclass classifier, and
higher classification accuracy than that of simple learning
with training data.

In our paper, we suggest learning the binary classifiers
by virtue of the existing multiclass classifier. In fact, this
can be likened vividly to the basketball team training by
a single teacher (or coach) (He, Eisner, and Daume 2012;
Hinton, Vinyals, and Dean 2015; You et al. 2017b; Zhu,
Liu, and Lopes 2017). An experienced teacher has extensive
knowledge about how to be a good forward, center and guard.
What the teacher wants is to train a team and each player has
his/her own speciality; some specialize in the forward while
others are more suitable for centers or guards. Our problem
can also be regarded as learning from a single teacher (i.e. the
multiclass classifier) to obtain multiple students (i.e. binary

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4390



classifiers), each of which is responsible for a certain class.
To the best of our knowledge, this is the first attempt to study
this type of problem, which we define as “Single-Teacher
Multi-Student” (STMS) problem.

Different from our prior work (You et al. 2017b) aim-
ing at “Multi-Teacher Single-Student” problem where mul-
tiple teachers have the same functions, our work highlights
multiple students and they possess different functions from
each other (i.e. covering different binary classes). To solve
the STMS problem, we propose a gated support vector ma-
chine (gSVM) to accomplish the learning of a series of bi-
nary classifiers with the help of a teacher multiclass clas-
sifier. Treating the teacher’s score as auxiliary information,
we formulate the students’ learning as a skiping out of the
gate game where the gate is set by the teacher. The gate
(i.e. teacher’s score) reflects how strongly the teacher has
confidence about an instance’s belonging to the target class.
If a student can not skip out of the gate, then he/she has to
stick to the teacher’s decision, and also thinks the instance
belongs to the target class. On the contrary, if the student
does skip out of the gate, then he/she can reject the opin-
ion of the teacher, and votes against belonging to the target
class. During the training, we encourage the magnitude or-
der between student’s prediction value and teacher’s gated
value match with the ground-truth class response. By further
studying the teacher’s score matrix on the training exam-
ples, we introduce a difficulty degree on each example to
measure how difficult the example is for the students. This
prior difficulty information given by the teacher is to fur-
ther guide and benefit the students during the learning. We
embed this privileged information (Du, Xu, and Tao 2017;
You et al. 2017a) by rescaling the slack variables, and for-
mulate the whole model in an SVM fashion, which we
name gated SVM. A majorization-minimization algorithm is
adopted to optimize the gSVM, with an iteratively-reweighted
least-squares method presented. Experimental results on ex-
tensive benchmark datasets validate the effectiveness of our
gated SVM.

Problem Formulation
In this section, we detail our solution to the Single-Teacher
Multi-Student problem. Focusing on classification problems,
we investigate how to use a multiclass classifier (teacher) to
develop a variety of binary classifiers (students) correspond-
ing to different classes. For simplicity, we take the structural
support vector machines (SSVMs) as our teacher model for
example, but our solution can be extended to other score-
based multiclass classification approaches.

Teacher Model: SSVM

Typical SVM is designed for binary classification problems
with the output being 1 or -1. In contrast, multiclass classi-
fication problems involve multiple classes (e.g. K classes),
the output space Y changes from {1,−1} to {1, 2, ...,K}.
To accomodate this output space or even more complicated
one, structual support vector machine (SSVM) is devel-
oped (Tsochantaridis et al. 2004; Yu and Joachims 2009;
Joachims, Finley, and Yu 2009). An SSVM is parameter-
ized as a function of a problem-specific joint feature map

ψ(x, y) : X × Y → R
M , where X is the feature space and

Y is the output space (e.g. Y = {1, 2, ...,K} for multi-class
classification). Then the SSVM can be learned from the fol-
lowing model with training data {(xi, yi)}ni=1:

min
w,ξ

1

2
‖w‖22 +

C

n

n∑
i=1

ξi

s.t. Δ(y, yi) + 〈w, ψ(xi, y)〉 − 〈w, ψ(xi, yi)〉 ≤ ξi
ξi ≥ 0, ∀y ∈ Y, i = 1, ..., n,

(1)

where 〈·, ·〉 is the Euclidean inner product of two vectors or
matrixes and Δ(·, ·) is a distance measure for two outputs. In
this way, for a new instance x, its prediction is determined to
be the class with highest score, i.e.

ŷ = arg max
y∈Y

〈w∗, ψ(x, y)〉 (2)

Note that this inference needs to traverse all classes for the
maximization operator over all socres.

Student Model: Gated SVM

Suppose we have a well-trained multiclass SSVM model T
as the teacher, the aim is to learn a series of binary classifiers
each of which is responsible for a certain class. Given the
training dataset X = [x1, ...,xn] of n examples and their
ground-truth labels y ∈ Yn, the prediction scores of all
examples on all classes can form a score matrix S ∈ R

n×K

given by the teacher model T , where (i, j)-th element Sij

refers to the i-th example’s prediction score on the j-th class.
For SSVM, the score is calculted as Eq.(2),

Sij = 〈w∗, ψ(xi, j)〉 . (3)

The score matrix reflects the teacher’s acceptance confi-
dence on each of classes the examples belong to. Without
the loss of generality, we focus on the learning for the y-th
class in Y . Then the y-th column sy of S indicates the teacher
T ’s confidence on the class y. Considering that the teacher
is well-trained and predict correctly in most times, then the
scores of those with positive labels are usually the maximum
values and vice versa. Then to identify the class y, an intu-
itive idea is to present the rejection confidence, namely, how
confidently we think an instance does not belong to this class.
Suppose the rejection confidence of class y on instance x is
parameterized as ϕ(x;θ) with parameter θ. The predicted
result ẑy on the class y follows

ẑy =

{
+1, if 〈w∗, ψ(x, y)〉 ≥ ϕ(x;θ)

−1, otherwise
(4)

where +1 indicates the instance x belongs to class y while −1
means the otherwise. Eq.(4) serves as the decision rule; what
a student has to learn is the rejection confidence function
ϕ(x;θ). Once the ϕ(x;θ) is learned, the inference (testing)
will go as following: given an example, a student estimates
the rejection confidence by calculating the function ϕ, then
the student will compare it to the acceptance confidence given
by the teacher. If the student has a larger value than that of
the teacher, then he/she will reject the teacher and predict the
label to be negative.

4391



Table 1: The difficulty of examples reflected by the differences of teacher’s scores. ↑ indicates that the larger the value is, the
more difficult the example is. ↓ means the smaller the value is, the more difficult the example is.

Case Relation Prediction Difference Fixed Difference
(i) zy = +1; ẑy = +1 correct Sy − S2 ≥ 0 ↓ zy(Sy − S2) ≥ 0 ↓
(ii) zy = +1; ẑy = −1 incorrect Sy − S1 ≤ 0 ↓ zy(Sy − S1) ≤ 0 ↓
(iii) zy = −1; ẑy = +1 incorrect Sy − S2 ≥ 0 ↑ zy(Sy − S2) ≤ 0 ↓
(iv) zy = −1; ẑy = −1 correct Sy − S1 ≤ 0 ↑ zy(Sy − S1) ≥ 0 ↓

This prediction process resembles the student’s skiping
out of the gate game where the gate is set by the teacher. The
gate (i.e. teacher’s score) reflects how strongly the teacher
has confidence about an instance’s belonging to the target
class. And this gate actually serves as a threshold for the
student’s judgement. This is different from the SVM models
where all examples have the same hard threshold 0, and it
is more adaptive than SVM since each example has own
different threshold given by the teacher. Besides, in SVM
scores larger than the threshold are predicted to be positive
while in Eq.(4) to cohere with the teacher’s maximization
prediction rule, scores smaller than the “gate” are considered
to be with positive responses (i.e. labels). In this way, the
prediction is mutually determined by the cooperation of the
teacher and the student.

Now we investigate how to learn a good rejection confi-
dence estimator for the students. Suppose the ground-truth
of all training examples on class y is zy ∈ {+1,−1}n,
then if y = ŷ in Eq.(2), zyi = +1; otherwise, zyi = −1,
∀ i = 1, ..., n. Assume the rejection confidence estimator is a
linear function, i.e. ϕ(x;θ) = 〈θ, φ(x)〉, where φ(x) ∈ R

m

is the feature vector of x. For each example xi, the rejection
confidence should observe the inequality

zyi 〈θ, φ(xi)〉 ≤ zyi 〈w∗, ψ(xi, y)〉 (5)

which means that if xi belongs to class y (zyi = +1), then
we should have 〈θ, φ(xi)〉 ≤ 〈w∗, ψ(xi, y)〉; otherwise,
〈θ, φ(xi)〉 ≥ 〈w∗, ψ(xi, y)〉. To expect a significant gap
(or margin) between the inequalities, we push the inequalies
harder a bit by introducing a constant ε,

ε+ zyi 〈θ, φ(xi)〉 ≤ zyi 〈w∗, ψ(xi, y)〉 (6)

This order inequality is consistent with the prediction rule
Eq.(4); however, Eq.(6) serves as a hard constraint and may
be easily destroyed by the outliers in examples or fatal errors
from teacher. To enhance the robustness, we introduce a
slack variable ξi ≥ 0 to control the tolerance for prediction
mistakes, i.e.

ε+ zyi 〈θ, φ(xi)〉 ≤ zyi 〈w∗, ψ(xi, y)〉+ ξi. (7)

Our goal is to minimize the prediction mistakes for the stu-
dent, then the leanring model can be formulated in SVM
style:

min
θ,ξ

1

2
‖θ‖22 +

C

n

n∑
i=1

ξi

s.t. ε+ zyi 〈θ, φ(xi)〉 ≤ zyi 〈w∗, ψ(xi, y)〉+ ξi.

ξi ≥ 0, ∀ i = 1, 2, ..., n.

(8)

Algorithm 1 Difficulty Coding with Single-Teacher

Input: Teacher model (SSVM) with classifier w∗ and joint
feature operator ψ(x, y), an example x with the gound-
truth response zy for class y.

1: Calculate the teacher’s prediction score vector S as
Eq.(3), with the maximum score and second maximum
score being S1 and S2, repectively.

2: Denote the score of class y as Sy, and calculate the
teacher’s prediction response ẑy .

3: Calculate the difference δ as Eq.(9).
4: Calculate the difficulty degree d as Eq.(11).

Output: Example x’s difficulty degree d in Eq.(10).

The first (1/2) ‖θ‖22 is a regularization term; the second
term is actually the �1 norm of slack variable vector ξ =
[ξ1, ..., ξn]

T to encourage the sparisity. A sparse ξ implies
that only a fraction of examples make predition mistakes.
C > 0 is a constant to balance both two terms.

Going Further: Difficulty among Examples

In Eq.(8) for each example, the teacher’s score on the target
class serves as the gated information for the student’s pre-
diction. In the following, we reveal that the teacher’s scores
on the other classes also have beneficial information for the
student’s learning the target class.

For other non-target classes, an intuition is that if their
score values are much closer to that of target class, then we
think the example is more difficult for the teacher to distin-
guish whether it belongs to the target class or not. Moreover,
since the teacher is not an Oracle, he/she also makes mistakes
in the prediction. Thus with the ground-truth label responses,
the incorrectly predicted examples are regarded more diffi-
cult than those corrected predicted for the teacher. We shall
measure the difficulty of examples from both two aspects in
the sequel, i.e. the correctness and closeness.

For target class y and an example x, its ground-truth re-
sponse and the prediction response of the teacher T are de-
noted as zy and ẑy , respectively. Denote the score vector on
all K classes as S , with the score of target class as Sy . There
are totally four cases for zy and ẑy .

(i) zy = +1; ẑy = +1. In this case, the teacher predicted
correctly, with the Sy being the maximum value of S . Then
the difference between Sy and the second largest score S2

reflects the closeness. The smaller (closer) the difference
Sy − S2 ≥ 0 is, the more difficult the example x is for the
teacher.

(ii) zy = +1; ẑy = −1. The teacher predicts incorrectly.

4392



Algorithm 2 Training for gated SVM (gSVM) with Majorization Minimization optimization

Input: Training data: for each example xi its feature vector φ(xi) and their labels y ∈ Yn. A teacher model T . Learning
parameters: C > 0.

1: Calculate the teacher T ’s prediction ŷ and the score matrix S.
2: for each y in Y do
3: For class y, calculate the ground-truth response zy , the teacher’s prediction ẑy and the each example xi’s score Sy

i in the
score matrix S.

4: Calculate the difficulty degree di of each example according to Algorithm 1.
5: Initialize the classifier θ for class y
6: while not convergence do
7: Calculate the residual ϑi = zyi φ

T
xi
θ − zyi S

y
i for each example xi.

8: Update the classifier θ ← C

2n
(I+

C

2n
ΦZyD−1|Υ|−1ZyΦT )−1ΦZyD−1|Υ|−1(μy − |ϑ|)

9: end while
10: Output the binary classifier θy ← θ for class y.
11: end for

The maximum score of S is not Sy. Then the difference
between Sy and the maximum score S1 mirrors the degree
of the incorrectness. The larger the absolute of the difference
Sy − S1 ≤ 0, the more difficult the example is.

(iii) zy = −1; ẑy = +1. The teacher predicts incorrectly.
The maximum score predicted by the teacher should not the
in the top position. A larger difference Sy −S2 ≥ 0 indicates
a more difficult example.

(iv) zy = −1; ẑy = −1. The teacher predicts correctly.
The difference Sy − S1 ≤ 0 corresponds to the closeness.
The larger its abosolute is, the more difficlut the example is.

All four cases have their own depiction of the difficulty of
examples. We clarify them in Table 1. In addition, it is our
consensus that incorrectly predicted examples are assumed
to be more difficult than those correctly predicted. To make
the differences consistent with this assumption, we introduce
a fixed difference in Table 1. As in Table 1, the correctly
predicted examples always have non-negative differences
while the incorrectly predicted examples have non-positive
ones. Thus the differences of incorrect examples are smaller
than those of correct examples. Moreover, the smaller the
differences are, the more difficult the examples are supposed
to be. To make the differences more compact, we rewrite
them into one expression,

δ(x; T ) =
Sy − ẑy min(ẑyS1, ẑ

yS2)

zy|Sy| . (9)

which is consistent with the Table 1, and the absolute of Sy

in the denominator serves as a normalization constant.
The difference δ is capable of reflecting the difficulty of

examples for the teacher. A student can use this difficulty
information to regularize his/her learning the target class.
In particular, the slack variable ξi in Eq.(7) indicates the
tolerance for the mistakes. Generally speaking, if an example
is more difficult, then we have more tolerance for the mistake;
otherwise, we have less tolerance. Thus we can embed the
difficulty degree into the student’s learning via rescaling the
slack variable,

zyi 〈θ, φ(xi)〉 ≤ zyi 〈w∗, ψ(xi, y)〉+ diξi. (10)

where the di is the difficulty degree presented by the teacher.
The difficult examples are expected to have large difficulty
degree d. However, the difference δ can be positive or nega-
tive, we propose to generate the difficulty degree d by directly
mapping the difference in the interval [0,1]. In detail, a mono-
tonically decreasing non-negative coding function f(·) is
needed, for example, a filpped clip function, i.e.

d = f(δ) =

⎧⎨
⎩
1 if δ < −1
ε−1
2 δ + ε+1

2 , if − 1 ≤ δ ≤ 1

ε, if δ > 1

(11)

where 0 ≤ ε ≤ 1 is a constant controlling the decay. We show
the coding function in Figure 1 and elobarate the difficulty
coding process in Algorithm 1.

Embedding the difficulty degree into Eq.(8), we obtain the
gated SVM, i.e.

min
θ,ξ

1

2
‖θ‖22 +

C

n

n∑
i=1

ξi

s.t. ε+ zyi 〈θ, φ(xi)〉 ≤ zyi 〈w∗, ψ(xi, y)〉+ diξi.

ξi ≥ 0, ∀ i = 1, 2, ..., n.

(12)

As in Eq.(12), the more difficult (lager di) examples will be
allowed for larger mistake errors. In this way, the student can
learn more adaptively with different examples. To distinguish
Eq.(12) from Eq.(8) which is with no difficulty coding, we
call Eq.(12) gSVM and Eq.(8) gSVM-0.

Remark 1. Substituing diξi with υi, the objective of

Eq.(12) will be rewritten as
1

2
‖θ‖22+

C

n

∑n
i=1 d

−1
i υi in term

of variables θ and υ. This formulation is similar with the idea
of weighted SVM (Lapin, Hein, and Schiele 2014), where
each of example is assigned an importance weight d−1

i .
Remark 2. Since the teacher model has k times as many

classifiers than a binary SVM, the computation cost is linear
with the class number k. Note that the teacher model can be
speeded up for its binary inference via a traverse technique:
as soon as any class with a larger value than that of the target
class is found, one can stop traversing the classes in Eq.(2).

4393



-1.5 -1 -0.5 0 0.5 1 1.5

Difference 

-2

-1

0

1

2

d
if
fi
c
u

lt
y
 d

e
g

re
e

 d

Figure 1: Difficulty coding function from the difference δ.
The blue line is the original difference values, and the red
line is the corresponding difficulty degrees. The green mark
indicates the constant ε in Eq.(11).

But this only works on those which are predicted to be -1 by
the teacher. For those +1 predicted examples, we still have
to traverse all classes to make sure the target class has the
largest score. Even for the -1 predicted examples. the worst
case still needs to traverse all classes. We will show this in
our experiments.

Optimization
In this section, we elaborate how to solve the proposed gated
SVM Eq.(12). gSVM is a convex problem, which can be
efficiently solved by many off-the-shelf toolboxes, such as
mosek (Mosek 2010) and cvx (Grant, Boyd, and Ye 2008).
By dint of Eq.(12), we rewrite it into an empirical risk mini-
mization problem,

min
θ

1

2
‖θ‖22+

C

n

n∑
i=1

d−1
i [ε+zyi 〈θ, φ(xi)〉−zyi S

y
i ]+ (13)

where Sy
i = 〈w∗, ψ(xi, y)〉 and [x]+ = max(x, 0) is

a rectified linear unit (ReLU) function. Eq.(13) is uncon-
strained; however, the loss function is not smooth and non-
differentiable. Majorization minimization (MM) algorithms
substitute a simple optimization problem for a difficult op-
timization problem (Hunter and Lange 2004; Mairal 2015;
Lange 2016). In the sequel, we present how to optimize
Eq.(13) with an MM algorithm. First, we throw light on the
basic paradigm of MM.

Majorization Minimization (MM)

MM liberates the optimization of a non-comvex or/and non-
smooth objective function by iteratively minimizing a ma-
jorization suggogate function. During the optimization, it
actively constructs a majorizer M(θ;θ(k)) at the corrent iter-
ate θ(k), which is assumed to be easy to manipulate. Suppose
the objective function is g(θ). The majorizer M is supposed
to satisfy two properties:

g(θ) ≤ M(θ;θ(k)), ∀ θ (14)

θ(k) = arg min
θ

M(θ;θ(k))− g(θ). (15)

Then the next iterate is presented by minimizing the majorizer
instead of the original objective:

θ(k+1) = arg min
θ

M(θ;θ(k)). (16)

As a result, we can have a sequence of iterates enabling the
previous objective g(θ) to keep non-increasing.

Iterative Update

The difficulty of optimizing Eq.(13) comes from the non-
smoothness of ReLU function. In our paper, we adopt a ma-
jorizer proposed in (Nguyen and McLachlan 2017), presented
in Lemma 1.
Lemma 1 ((Nguyen and McLachlan 2017)). If v = 0, then
the function [u]+ is majorized at v by

M(u; v) =
1

4|v| (u+ |v|)2. (17)

Besides, every function can be majorized by itself, including

the first term
1

2
‖θ‖22 in Eq.(13). Following Lemma 1 and

letting u = ε+zyi φ
T
xi
θ−zyi S

y
i , v = ε+zyi φ

T
xi
θ(k)−zyi S

y
i

1,
then the majorizer is as

M(θ;θ(k)) =
C

n

n∑

i=1

(ε+ zyi φ
T
xi
θ − zyi Sy

i + |ϑ(k)
i |)2

4di|ϑ(k)
i |

+
1

2
‖θ‖22
(18)

where ϑ(k)i = ε + zyi φ
T
xi
θ(k) − zyi S

y
i . Let ϑ(k) ∈ R

n =

[ϑ
(k)
1 , ..., ϑ

(k)
n ]T , zy = [zy1 , ..., z

y
n]

T , Zy = diag(zy), Φ =
[φ(x1), ..., φ(xn)] ∈ R

m×n, d = [d1, ..., dn]
T , D =

diag(d), Υ(k) = diag(ϑ(k)) and μy ∈ R
n with each element

μy
i = zyi S

y
i . Note that we usually add a small positive num-

ber (e.g. 10−6) to the |ϑ(k)i | in the denominator in Eq.(18)
for the numerical stability. Then Eq.(18) can be rewritten as

M(θ;θ(k)) =
1

2
‖θ‖22 +

C

4n
(η(k))TD−1|Υ(k)|−1η(k)

(19)

with
η(k)(θ) = ε+ ZyΦTθ − μy + |ϑ(k)| (20)

where | · | is element-wise absolute and ε is a vector with
elements being all ε. Eq.(19) is a positive quadratic form. To
minimize the M(θ;θ(k)), we zero the derivative of θ,

∂M
∂θ

= θ +
C

2n
ΦZyD−1|Υ(k)|−1(ε+ ZyΦTθ − μy + |ϑ(k)|)

= A(k)θ − b(k) = 0
(21)

where

A(k) = I+
C

2n
ΦZyD−1|Υ(k)|−1ZyΦT (22)

= I+
C

2n
ΦD−1|Υ(k)|−1ΦT (23)

b(k) =
C

2n
ΦZyD−1|Υ(k)|−1(μy − |ϑ(k)| − ε). (24)

1We use φxi to take place of φ(xi) for briefness.

4394



Table 2: Data statistics. #train is the number of training ex-
amples while #test is that of test ones. #features and #classes
are the number of features and classes, respectively.

Dataset #train #test #features #classes
letter 15000 5000 16 26
protein 17766 6621 357 3
satimage 4435 2000 36 6
shuttle 43500 14500 9 7
vowel 528 462 10 11
yeast 1185 299 8 10

class1 class2 class3 class4 class5 class6

0.9

0.95

1

a
c
c
u

ra
c
y

class1 class2 class3 class4 class5 class6
0.4

0.6

0.8

1

F
-m

e
a

s
u

re

class1 class2 class3 class4 class5 class6
0.94

0.96

0.98

1

A
U

C

teacher gSVM gSVM-0 SVM

Figure 2: Performance of binary classifiers with respect to
each class on satimage dataset. Note that for the visual clear-
ity, some results of SVM’s AUC are not shown since they are
smaller than 0.94.

Due to A(k)’s being positive definite, the next iterate θ(k+1)

can be easily obtained by

θ(k+1) = (A(k))−1b(k) (25)

The algorithm outline is presented in Algorithm 2. In addition,
the majorizer Eq.(19) is also a least-squares with varying
weight, and Algorithm 2 can also be regarded as an iteratively-
reweighted least-squares (IRLS) algorithm (Navia-Vazquez
et al. 2001). (Nguyen and McLachlan 2017) demonstrated it
is globally convergent to the minimum.

Experimental Results

In this part, we experimentally investigate the effectiveness
and efficiency of the proposed gated SVM in dealing with
the STMS problem.

Configuration

We first illustrate our experimental configuration, including
some preliminaries and the specific setting.

Datasets. We used 6 benchmark multi-class datasets in
our experiment, including letter (Hsu and Lin 2002), protein
(Wang 2002), satimage (Hsu and Lin 2002), shuttle (Hsu
and Lin 2002), vowel and yeast.2 The various statistics of all
datasets are presented in Tabel 2.

2Datasets can be downloaded in https://www.csie.ntu.edu.tw/
cjlin/libsvmtools/datasets/multiclass.html

0 0.5 1

False positive rate

0.4

0.6

0.8

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

teacher

gSVM

gSVM-0

SVM

(a)

0 0.5 1

False positive rate

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

teacher

gSVM

gSVM-0

SVM

(b)

Figure 3: ROC curves for two classes on satimage dataset.

satimage (6 classes) vowel (11 classes) letter (26 classes)
0

0.2

0.4

0.6

0.8

1

1.2

re
la

ti
v
e

 t
im

e

teacher teacher-speed up gSVM SVM

Figure 4: Relative inference time to the teacher model, i.e. the
specific time devided by the time of the teacher model. We
do not show the time of gSVM-0 since it is the same with
gSVM in inference stage.

Comparison methods. Since we first deal with the STMS
problem, there are few comparison methods, but the follow-
ing can serve as solutions.
1) Just using the teacher model (denoted as “teacher”). For
the target class, we can directly use the teacher’s prediction
results; if other classes are predicted by the teacher, then we
think the examples do not belong to the target class.
2) Directly training a binary classifier for the target class.
In our experiment, we use the widely-used SVM method (
denoted as “SVM”).
3)To verify the effectiveness of the proposed difficulty cod-
ing from the teacher, we chose gSVM-0 (Eq.(8)) as a natural
comparison method.

Evaluation metrics. We select four evaluation metrics
to comprehensively assess the classification performance of
the learned binary classifiers, including accuracy, F-measure,
receiver operating characteristic curve (ROC curve) and area
under the curve (AUC).

Teacher model. SSVM is used for obtaining the teacher
models. In particular, we use the joint feature map ψ(x, y)
to be (I(y = 1)φ(x), ..., I(y = K)φ(x))T , where I(·) is
an indicator function, and the distance measure is Hamming
distance, i.e. Δ(y, yi) = I(y = yi).3

Experimental setting. For each dataset, with the trained
teacher model (i.e. a multiclass classifier), we train a
binary classifier for each of its class. The parameters
C, ε and ε are tuned by 10-fold cross validation in

3Actually, this formulation also coheres with the form of
Crammer-Singer multiclass SVM (Crammer and Singer 2001).

4395



Table 3: The mean and median of classification performance of all binary classifiers in term of all classes for each dataset.

mean median
dataset method accuracy F-measure AUC accuracy F-measure AUC

letter

teacher 99.72% 96.35% 99.95% 99.73% 96.43% 99.97%
SVM 97.35% 43.47% 90.89% 96.90% 44.37% 93.40%

gSVM-0 98.41% 81.75% 98.64% 98.47% 80.19% 98.70%
gSVM 98.88% 82.26% 99.72% 99.16% 87.50% 99.81%

protein

teacher 80.50% 67.55% 84.91% 81.03% 71.86% 84.34%
SVM 78.31% 60.86% 81.41% 77.57% 64.26% 82.34%

gSVM-0 78.67% 63.23% 82.54% 78.15% 63.79% 82.88%
gSVM 81.01% 69.86% 85.03% 81.06% 68.47% 85.23%

satimage

teacher 97.05% 89.80% 98.76% 97.35% 92.13% 99.34%
SVM 94.00% 74.28% 91.46% 93.65% 81.31% 96.81%

gSVM-0 94.33% 81.95% 98.54% 94.12% 83.56% 98.95%
gSVM 96.28% 86.76% 98.55% 96.55% 89.29% 99.08%

shuttle

teacher 99.95% 82.20% 98.81% 99.96% 85.71% 98.99%
SVM 97.47% 42.83% 82.61% 98.91% 43.33% 88.01%

gSVM-0 98.13% 77.54% 94.86% 98.34% 73.66% 95.02%
gSVM 99.57% 80.42% 99.28% 99.61% 83.17% 99.85%

vowel

teacher 91.93% 53.69% 92.12% 93.29% 55.38% 93.10%
SVM 89.95% 22.01% 80.00% 89.91% 24.55% 85.11%

gSVM-0 86.19% 43.03% 91.05% 85.50% 42.00% 90.04%
gSVM 90.93% 52.49% 91.96% 92.21% 51.72% 91.92%

yeast

teacher 92.04% 63.59% 85.52% 96.49% 64.12% 83.28%
SVM 90.47% 35.37% 81.86% 95.82% 36.67% 81.37%

gSVM-0 91.44% 49.71% 83.00% 95.99% 53.08% 84.36%
gSVM 91.71% 51.67% 83.10% 96.55% 55.14% 85.40%

the sets {10−3, ..., 100, ..., 103}, {0, 0.1, 0.2, ..., 1.5} and
{0.1, 0.2, ..., 0.5}, respectively.

Results and Analysis

In Figures 2 and 3, we show the performance of accuracy,
F-measure, AUC and ROC curve on dataset satimage for
example. Since we trained binary classifiers for all classes
in terms of each dataset, to comprehensively investigate the
performance gap among all competing methods, we calculate
the mean and median of all classifiers on each dataset and
evaluation metric (Van Hasselt, Guez, and Silver 2016). All
obtained results are summarized in Tabel 3.

First, for verifying the effectiveness of the proposed diffi-
culty coding, we can see that gSVM is better than gSVM-0 in
most classes in Figure 2, and for the cases in Table 3, gSVM
wins gSVM-0 in all cases. This implies that the proposed
difficulty coding does play a positive role in enhancing the
performance of classifiers. Second, it can be seen that the
proposed gSVM is comparable to the teacher model in all
classes in Figure 2 and achieves near results with the teacher
in Tabel 3. Besides, their ROC curves are very close in Figure
3. The slight superiority of teacher model to a binary SVM
in a binary inference may result from the advantages of a
well-designed multiclass classifier over the simple One-vs-
All strategy. However, since the teacher model has the much
larger model size than gSVM, and its inference stage needs
to involve all classes, its inference time would be much more
than that of gSVM. We report the relative inference time to
the teacher on three datasets in Figure 4. We can see that
gSVM and SVM have the considerably less time than that

of teacher model (even with the speed-up technique). As the
number of classes increases, the gap could be much larger.
That implies that teacher model is not appropriate for the
binary prediction when the number of classes is large. Third,
gSVM and SVM have the competing inference time accord-
ing to Figure 4, however, SVM’s classification performance
is inferior to that of gSVM in Figures 2, Figure 3 and Table 3.
Thus gSVM enjoys the superiority to SVM in classification
performance.

To sum up, from empirical results gSVM has the compa-
rable classification performance with the teacher model, but
much faster inference speed than the teacher model. As for
SVM, it has the worse classification performance than gSVM,
though it has similar efficiency with gSVM.

Conclusion

In this paper, we illustrate a new problem that uses a pre-
trained teacher model to learn a series of student models.
We define this problem as “Single-Teacher Multi-Student”
(STMS) problem. By taking the multi-class and binary clas-
sification as an example, we investigate how to use a well-
trained multiclass classifier to learn a series of binary classi-
fiers with respect to each of its class. To solve this problem,
we propose a gated SVM as the model for learning binary
classifiers. In gated SVM, the students’ prediction is deter-
mined by both the teacher and themselves. Moreover, we
use the teacher’s score output to construct different difficulty
degrees for various training examples, so the students’ train-
ing is guided adaptively by the teacher. Experimental results
show the effectiveness of our method and validate our theory.

4396



Acknowledgments

We thank the constructive comments of all reviewers and
the support from the NSFC 61375026 and 2015BAF15B00,
and ARC Projects FL-170100117, DE-180101438, DP-
180103424, DP-140102164 and LP-150100671.

References

Aly, M. 2005. Survey on multiclass classification methods.
Neural Netw 19.
Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. springer.
Crammer, K., and Singer, Y. 2001. On the algorithmic
implementation of multiclass kernel-based vector machines.
Journal of machine learning research 2(Dec):265–292.
Du, Y.; Xu, C.; and Tao, D. 2017. Privileged matrix fac-
torization for collaborative filtering. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, 1610–1616.
Grant, M.; Boyd, S.; and Ye, Y. 2008. Cvx: Matlab software
for disciplined convex programming.
Guo, Y. 2017. Problems in large-scale image classification.
In AAAI, 5038–5039.
He, R.; Wu, X.; Sun, Z.; and Tan, T. 2017. Learning invariant
deep representation for nir-vis face recognition. In AAAI,
2000–2006.
He, H.; Eisner, J.; and Daume, H. 2012. Imitation learning
by coaching. In Advances in Neural Information Processing
Systems, 3149–3157.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.
Hsu, C.-W., and Lin, C.-J. 2002. A comparison of methods
for multiclass support vector machines. IEEE transactions
on Neural Networks 13(2):415–425.
Hunter, D. R., and Lange, K. 2004. A tutorial on mm
algorithms. The American Statistician 58(1):30–37.
Joachims, T.; Finley, T.; and Yu, C.-N. J. 2009. Cutting-plane
training of structural svms. Machine Learning 77(1):27–59.
Joachims, T. 2002. Optimizing search engines using click-
through data. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, 133–142. ACM.
Lange, K. 2016. MM Optimization Algorithms. SIAM.
Lapin, M.; Hein, M.; and Schiele, B. 2014. Learning using
privileged information: Svm+ and weighted svm. Neural
Networks 53:95–108.
Mairal, J. 2015. Incremental majorization-minimization
optimization with application to large-scale machine learning.
SIAM Journal on Optimization 25(2):829–855.
Martinez, A. M. 1998. The ar face database. CVC technical
report.
Mosek, A. 2010. The mosek optimization software. Online
at http://www. mosek. com 54.

Navia-Vazquez, A.; Perez-Cruz, F.; Artes-Rodriguez, A.; and
Figueiras-Vidal, A. R. 2001. Weighted least squares training
of support vector classifiers leading to compact and adaptive
schemes. IEEE Transactions on Neural Networks 12(5): 1047
– 1059.
Nguyen, H. D., and McLachlan, G. J. 2017. Iteratively-
reweighted least-squares fitting of support vector machines:
A majorization–minimization algorithm approach. arXiv
preprint arXiv:1705.04651.
Nie, F.; Wang, X.; and Huang, H. 2017. Multiclass capped
lp-norm svm for robust classifications.
Tsochantaridis, I.; Hofmann, T.; Joachims, T.; and Altun,
Y. 2004. Support vector machine learning for interdepen-
dent and structured output spaces. In Proceedings of the
twenty-first international conference on Machine learning,
104. ACM.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In AAAI, 2094–
2100.
Vapnik, V. 2013. The nature of statistical learning theory.
Springer science & business media.
Wang, J.-Y. 2002. Application of support vector machines
in bioinformatics. Taipei: Department of Computer Science
and Information Engineering, National Taiwan University.
Xu, W.; Sun, H.; Deng, C.; and Tan, Y. 2017. Variational
autoencoder for semi-supervised text classification. In AAAI,
3358–3364.
Xu, C.; Tao, D.; and Xu, C. 2013. A survey on multi-view
learning. arXiv preprint arXiv:1304.5634.
Yang, E.; Deng, C.; Liu, W.; Liu, X.; Tao, D.; and Gao, X.
2017. Pairwise relationship guided deep hashing for cross-
modal retrieval. In AAAI, 1618–1625.
You, S.; Xu, C.; Wang, Y.; Xu, C.; and Tao, D. 2017a. Priv-
ileged multi-label learning. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence,
3336–3342. IJCAI 2017, Melbourne, Australia, August 19-
25, 2017
You, S.; Xu, C.; Xu, C.; and Tao, D. 2017b. Learning from
multiple teacher networks. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 1285–1294. ACM.
Yu, C.-N. J., and Joachims, T. 2009. Learning structural
svms with latent variables. In Proceedings of the 26th annual
international conference on machine learning, 1169–1176.
ACM.
Zhu, X.; Liu, J.; and Lopes, M. 2017. No learner left behind:
On the complexity of teaching multiple learners simultane-
ously. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, 3588–3594.

4397


