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Abstract

In this paper, we are interested in designing small CNNs by
decoupling the convolution along the spatial and channel do-
mains. Most existing decoupling techniques focus on approx-
imating the filter matrix through decomposition. In contrast,
we provide a two-step interpretation of the standard convolu-
tion from the filter at a single location to all locations, which
is exactly equivalent to the standard convolution. Motivated
by the observations in our decoupling view, we propose an
effective approach to relax the sparsity of the filter in spa-
tial aggregation by learning a spatial configuration, and re-
duce the redundancy by reducing the number of intermedi-
ate channels. Our approach achieves comparable classifica-
tion performance with the standard uncoupled convolution,
but with a smaller model size over CIFAR-100, CIFAR-10
and ImageNet.

Introduction

Since AlexNet (Krizhevsky, Sutskever, and Hinton 2012)
successfully applied Convolutional Neural Network (CNN)
to ImageNet and won the challenge by a large margin in
2012, CNNs become the most widely used model for im-
age classification (He et al. 2016), object detection (Ren et
al. 2015; Redmon and Farhadi 2016) and image segmenta-
tion (Long, Shelhamer, and Darrell 2015; Kolesnikov and
Lampert 2016) and so on. CNNs have become deeper and
deeper (Simonyan and Zisserman 2014; Szegedy et al. 2015;
He et al. 2015; 2016; Huang et al. 2016), ranging from
tens of layers to thousands of layers to pursue better per-
formance, and have become wider and wider as well, such
as Wide Residual Networks (Zagoruyko and Komodakis
2016).

Another research direction is designing more effective fil-
ters. There have been many works on filter design, and most
of them can be categorized into two types. One is to decom-
pose the filter matrix into several low rank matrices (Ioan-
nou et al. 2015; Denton et al. 2014; Zhang et al. 2015; Kim
et al. 2015; Tai et al. 2015; Jaderberg, Vedaldi, and Zisser-
man 2014; Mamalet and Garcia 2012), the other is to view
the filter as a sparse matrix, where some works sparsify the
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channel extent, e.g., group convolution (Ioannou et al. 2016;
Zhang et al. 2017), channel-wise convolution or separable
filters (Chollet 2016) and other works sparsify the spatial ex-
tent with smaller filters, e.g., 3×3, 1×3 and 3×1 (Szegedy
et al. 2016). In this paper, in contrast to design the filters, we
are interested in decoupling the convolution along the spa-
tial and channel domains and propose an effective approach
based on the decoupled interpretation.

We start from analyzing the process of convolution on the
input, and decompose this process into two steps. First each
location in the input is projected across the channel domain.
In this way, the projection along channel domain is not re-
lated to the spatial information of the input. Second, we ac-
cumulate the projections of the locations across spatial do-
main, and this process is only related to the spatial relation-
ship. We reformulate the decoupled two steps in a convolu-
tion form, first conducting 1×1 across channel-domain con-
volution, and then conducting across spatial-domain convo-
lution with a spatial configuration. This process is denoted
as decoupling spatial convolution.

From this decoupling view, we found that the decoupled
structure of standard spatial convolution is unbalance, in
which the 1 × 1 across channel-domain convolution is in
a high dimensional space that might lead to redundancy,
whereas the across spatial-domain convolution is a struc-
tured sparse group convolution. To solve this problem, we
propose a balance decoupling spatial convolution (BDSC)
to relax the sparsity of across spatial-domain convolution
by learning a spatial configuration, and to reduce the redun-
dancy of across channel-domain convolution by reducing the
intermediate output channels. In this way, we found in our
experiments that, the performance of the models using our
decoupling convolution drops slightly comparing with the
standard spatial convolution, yet the model size is smaller
than models of standard spatial convolution.

Our contributions in this paper are:

1. We decouple the standard spatial convolution of CNN into
two parts, an across channel-domain convolution and an
across spatial-domain convolution.

2. We propose the balance decoupling spatial convolution to
relax the sparsity of the filter in spatial aggregation by
learning a spatial configuration, and to reduce the redun-
dancy of 1× 1 across channel-domain convolution by re-
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Figure 1: Illustrating the decoupled convolution by (a) decomposing filter and (b) decoupling convolution. In (a), an entry is
obtained by first the projection across channel-domain and then the aggregation across spatial-domain. In (b), the convolution
is decoupled into an across channel-domain convolution and an across spatial-domain convolution.

ducing the number of intermediate output channels.

3. Our experiments on CIFAR-100, CIFAR-10 and Ima-
geNet demonstrate that models using the proposed bal-
ance decoupling spatial convolution get slightly drop in
performance comparing with models using the standard
spatial convolution, but with a smaller model size.

Decoupling Spatial Convolution

A convolutional layer maps a three-dimensional tensor, de-
noted as input X ∈ RCin×H×W , to a three-dimensional ten-
sor, denoted as output Y ∈ RCout×H×W , where H ×W is
the spatial size of feature map in the tensor (the spatial size
of the input feature map and the output feature map are as-
sumed to be the same), Cin is the number of channels in
the input and Cout is the number of channels in the output.
The filters in a convolutional layer are parameterized by a
four dimensional tensor W ∈ RCout×Cin×Kh×Kw , where
Kh × Kw is the spatial size of the filter and W(o, ·, ·, ·)
is the oth filter, denoted as Wo ∈ RCin×Kh×Kw , o =
1, · · · , Cout. We will first show the process of filter decom-
position, and then reformulate this process into convolution
decoupling. All vectors in this paper are column vectors.

Decomposing Filter

Let Yo ∈ RH×W be the oth feature map of the output,
we have Yo = Wo � X, where � denotes the convolu-
tion operation. An entry y in Yo is obtained through first the
projection across channel-domain and then the aggregation
across spatial-domain. Let the corresponding input denoted
as Xcor ∈ RCin×Kh×Kw ,

1. Across channel-domain projection. Decom-
posing Wo along the spatial-domain and then
we obtain {wo

u,v}u=1,··· ,Kh,v=1,··· ,Kw
, where

wo
u,v = Wo(·, u, v) ∈ RCin is the column of Wo

at the position (u, v). Accordingly, decomposing Xcor

as {xcor
u,v} corresponding to {wo

u,v}u=1,··· ,Kh,v=1,··· ,Kw
.

Then the output of across channel-domain projection is
obtained as,

zo =

⎡
⎢⎢⎣

wo
1,1

T xcor
1,1

wo
1,2

T xcor
1,2

· · ·
wo

Kh,Kw

Txcor
Kh,Kw

⎤
⎥⎥⎦ . (1)

Here, S∗ = Kh ×Kw and zo ∈ RS∗
is the intermediate

output. This process is illustrated in Figure 1 (a) step 1.

2. Across spatial-domain aggregation. The spatial-domain
aggregation is performed on the intermediate outputs us-
ing a spatial mask M ∈ 1Kh×Kw , and we denote m =
vec(M),where vec(·) is a function to vectorize a tensor.
The output of the aggregation across spatial-domain is,

yo = mT zo, (2)

which is equivalent to the response of the oth filter on the
input Xcor. This process is shown in Figure 1 (a) step 2.

Figure 1 (a) shows an example of this decomposition pro-
cess, in which Cin = 2, and the spatial size of the filter Wo

is 3 × 3. The first step decomposes Wo along the spatial-
domain into 9 single columns, and each is multiplied with
the corresponding column of Xcor to get the intermediate
feature, which has 9 responses, corresponding to 9 = 3 × 3
different spatial locations. Then across spatial-domain ag-
gregation is conducted on the 9 responses, using the mask
m = [1 1 1 1 1 1 1 1 1]

T .
The above analysis is for one filter at a single location.

When there are Cout filters, the intermediate output of the
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first step becomes z = [zT1 , z
T
2 , · · · , zTCout

]T , and the final
output of the second step is,

y =M̂z (3)

=

⎡
⎢⎣
mT 0 · · · 0
0 mT · · · 0
· · · · · · · · · · · ·
0 0 · · · mT

⎤
⎥⎦

⎡
⎢⎣

z1
z2
· · ·

zCout

⎤
⎥⎦ , (4)

where z ∈ RS , M̂ ∈ {0, 1}Cout×S , S = Cout ×Kh ×Kw,
and y ∈ RCout .

Collecting all locations of output maps together, we show
that each step actually can be formed as a convolution. As a
result, the convolution is decoupled into an across channel-
domain convolution and an across spatial-domain convolu-
tion.

Decoupling Convolution

In this section, we will give mathematical formulation to
show that each step can be regarded as a convolution.
Across channel-domain convolution. It is easy to see that
the projection across channel-domain is equivalent to a
1 × 1 convolution with filters W being reshaped to W̃ ∈
RS×Cin×1×1, and

W̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
1,1

T

· · ·
w1

Kh,Kw

T

· · ·
w2

Kh,Kw

T

· · ·
wCout

Kh,Kw

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Therefore the across channel-domain convolution is given
as,

Z = W̃ �X, (6)

where Z is a three-dimensional tensor with size being S ×
H ×W .
Across spatial-domain convolution. We first expand the
spatial mask M into a mask tensor similar to the one shown
in Figure 1(b). The resulting mask tensor denoted as Me ∈
{0, 1}(Kh×Kw)×Kh×Kw satisfies that there is only one entry
valued as 1 in Me(k, ·, ·) (k = 1, · · · , (Kh ×Kw)) and all
the entries valued as 1 are at different locations of spatial
map of size Kh × Kw. As a result, we can see that across
spatial-domain aggregation is equivalent to a Kh×Kw con-
volution with filters M̃ ∈ {0, 1}Cout×S×Kh×Kw ,

Y = M̃� Z, (7)

where M̃ =

⎡
⎢⎣
m̃T 0 · · · 0
0 m̃T · · · 0
· · · · · · · · · · · ·
0 0 · · · m̃T

⎤
⎥⎦
Cout×Cout

, (8)

and m̃ = vec(Me). (9)

In summary, the convolution can be decoupled as,

Y = M̃� (W̃ �X), (10)

where the input is first fed into across channel-domain op-
eration which is a 1 × 1 convolution that maps the input
to a very high dimensional space, and then fed into across
spatial-domain operation which is a Kh × Kw convolution
that handles the spatial information and meanwhile performs
the dimension reduction.

Figure 1 (b) shows the decoupling convolution process
and the comparison with the standard convolution. We can
see that for each convolution Y = W � X, there exists a
1×1 convolution tensor W̃ and a Kh×Kw convolution ten-
sor M̃, such that Y = W �X = M̃ � (W̃ �X). That is,
the two-step interpretation is exactly equivalent to the stan-
dard convolution. After the decoupling, W̃ is not related to
spatial-domain any more. It maps the input in current fea-
ture space to another feature space. On the other hand, M̃
encodes the spatial relationship that if the entry of M̃ is 1,
meaning that the corresponding feature is related, otherwise
is 0. So we denote M̃ as the spatial configuration.

Balance Decoupling Spatial Convolution

From the decoupled spatial convolution shown in Equa-
tion (10), we observe that: (i) the spatial configuration M̃
is corresponding to a structured sparse group convolution;
and (ii) the 1 × 1 convolution of filters W̃ maps the fea-
tures from a low dimensional space into a high dimen-
sional space (from input with Cin dimensions to output with
S = Cout ×Kh ×Kw dimensions). This is an unbalance
structure, and we think that the intermediate representation
contains too many channels and the spatial configuration M̃
are too sparse. Motivated by these observations, we propose
the balance decoupling spatial convolution (BDSC), with a
learned spatial configuration and an unaggressive 1× 1 con-
volution by setting S = Cin.

Relax the Sparsity of Spatial Configuration

The across spatial-domain convolution is a 3×3 fixed sparse
group convolution. In fact, we can learn a spatial configu-
ration M̃l to relax the fixed sparse constraint. In the train-
ing of standard convolution neural network, it is not easy
to learn the spatial configuration directly. Instead, we add a
floating-point precision tensor Q corresponding to the spa-
tial configuration M̃l, and update this floating-point preci-
sion tensor Q. When performing forward propagation, we
constrain that M̃l = sign(Q). The approximated gradients,
however, are not so smooth. So we adopt the techniques of
XNOR (Rastegari et al. 2016) to learn M̃l by introducing a
vector α,

Q̃(o, ·, ·, ·) = α(o)M̃l(o, ·, ·, ·). (11)

According to XNOR net, the best M̃l and α to approximate
Q by Q̃ are,

M̃l = sign(Q),

α(o) =
1

n
‖Q(o, ·, ·, ·)‖1,

(12)

where n = S×Kh×Kw. More details about the derivation
can be found in the paper (Rastegari et al. 2016). Then we
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approximate the gradient w.r.t. Q gQ as gQ̃, i.e., we use gQ̃
to update Q. The training process of the spatial configuration
M̃l is shown in Algorithm 1.

Note that the spatial configuration M̃l learned using Al-
gorithm 1 are valued as −1 or 1, which can be easily trans-
fered to be valued as 0 or 1 by M̃ = 1

2 (M̃l + 1).

Data: Input X, float-type Q corresponding to the
spatial configuration, and gradients from
backward ∂L

∂Y
Result: Feature maps Y, Q after updating, spatial

configuration M̃l, α for approximation
clamp Q to range [-1,1]
M̃l = sign(Q)
for oth filter in this layer do

α(o) = 1
n‖Q(o, ·, ·, ·)‖1

Q̃(o, ·, ·, ·) = α(o)M̃l(o, ·, ·, ·)
end

Y=ConvolutionForward(X,Q̃);
∂L
∂Q̃

=ConvolutionBackward( ∂L
∂Y ,X,Q̃) ;

set ∂L
∂Q= ∂L

∂Q̃

Update(Q, ∂L∂Q )

Algorithm 1: The training process of M̃l

Reduce the Redundancy of 1× 1 Convolution

The filters W̃ ∈ RS×Cin×1×1 in the across channel-domain
projection map the features to a high dimensional space
(from the input channel number being Cin to the output
channel number being S = Cout × Kh × Kw). Usually,
we have S > Cin. For example, a convolution layer in
ResNet-18 with setting Cout = 512,Kh = Kw = 3 will
result in S = 512 × 3 × 3 > Cin = 512. That is, the
across channel-domain projection of standard convolution is
a mapping from a low dimensional space to a high dimen-
sional space, which may cause a redundancy. To reduce the
redundancy, we set S = Cin, which is the smallest projec-
tion dimension to provide lossless projection.

Analysis

We denote the proposed scheme as balance decoupling spa-
tial convolution (BDSC), with an unaggressive 1× 1 convo-
lution of W̃ ∈ RS×Cin×1×1 by setting S = Cin, followed
by a 3 × 3 convolution of a learned spatial configuration
M̃ ∈ {0, 1}Cout×S×Kh×Kw . In the following, we discuss
the number of parameters and FLOPs compared BDSC with
the standard convolution, where we assume the number of
the input channels and the output channels are the same, i.e.,
Cout = Cin = C.

#Params. The number of parameters in a convolution
layer with the filters being W ∈ RC×C×Kh×Kw is C ×
C ×Kh ×Kw with float type. The balance decoupling spa-
tial convolution layer in our network contains the projec-
tion filters W̃ ∈ RC×C×1×1 and the spatial configuration

M̃ ∈ {0, 1}C×C×Kh×Kw , where the number of parameters
in W̃ is C×C with float type and the number of parameters
in M̃ is C ×C ×Kh ×Kw with binary value {0, 1}, which
takes 1

32C ×C ×Kh ×Kw with respect to float type. Thus
the compression rate is,

rp =
C × C ×Kh ×Kw

1
32C × C ×Kh ×Kw + C × C

. (13)

With a typical setting that Kh = Kw = 3, the compression
rate is r = 1

1
32+

1
9

≈ 7.

FLOPs. For a standard convolution layer, the FLOPs is

H ×W × C × C ×Kh ×Kw

with H × W being the spatial size of the output. For our
network, M̃ is a tensor with value {0, 1}, and an entry
may be valued as 1 with a probability q. The convolution
of spatial configuration with value 0 and 1 contains only
additions and no multiplications. Therefore the FLOPs of
across spatial-domain convolution with spatial configuration
M̃ is q

2 FLOPs of the standard convolution. The FLOPs of
both across channel-domain convolution and across spatial-
domain convolution is

H ×W × (C × C +
q

2
C × C ×Kh ×Kw). (14)

In summary, the speed up rate is

rf =
H ×W × C × C ×Kh ×Kw

H ×W × (C × C + q
2C × C ×Kh ×Kw)

. (15)

With a typical setting that Kh = Kw = 3 and q = 1
2 (in the

experiments, usually q < 1
2 ), the speed up rate is 1

1
9+

1
4

≈
2.77.

Experiments

Datasets

We use three datasets to demonstrate our network. The first
is the benchmark ImageNet dataset (ILSVRC2012) (Rus-
sakovsky et al. 2015) that consists of 1, 000 classes. Ima-
geNet contains over 1.2 million training images and 50, 000
validation images. For testing, we report the top-1 accuracy
of center crop of the validation dataset of ImageNet. The
results reported are the best performance of model during
training. The other two are CIFAR-100 dataset, which con-
tains 50000 training images and 10000 test images, each la-
beled with 100 classes and CIFAR-10 dataset, which also
consists of 50000 training images and 10000 test images,
each labeled with 10 classes. We randomly resize the 32×32
image to scale within the range [32,40] and randomly crop
a 32 × 32 patch with randomly horizontal mirroring for
training. Then we test on the 10000 test images on the size
32× 32.

Setup

We implement our model based on Caffe (Jia et al. 2014).
For the classification task of 1000 classes of ImageNet, we
train all the models for 500, 000 iterations with batch size
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Model ResNet32-1× ResNet32-2× ResNet32-3× ResNet32-4×
Accuracy Model size Accuracy Model size Accuracy Model size Accuracy Model size

Standard convolution 0.6839 1.83MB 0.7283 7.17MB 0.7450 16.0MB 0.7568 28.4MB
BDSC-1 0.6648 0.36MB 0.7199 1.20MB 0.7392 2.58MB 0.7502 4.49MB
BDSC-2 0.6824 0.63MB 0.7326 2.25MB 0.7458 4.91MB 0.7566 8.61MB
BDSC-3 0.6969 0.90MB 0.7357 3.30MB 0.7499 7.24MB 0.7587 15.4MB

Table 1: Comparison between standard convolution and BDSC-p with S = pCin based on ResNet32-α× over CIFAR-100.
BDSC-p achieves better performance with a larger p. Compared with the standard convolution, BDSC-3 achieves better perfor-
mance with smaller model size.
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Figure 2: Illustrating the results of BDSC-p with S = pCin

on CIFAR-100. When p decreases, the curve of BDSC-p
moves to the left, which shows that we can reduce the re-
dundancy by decreasing p while maintain the same level of
accuracy.

256. For CIFAR-100 and CIFAR-10, we train 180, 000 iter-
ations with batch size 64. The weight decay is set as 0.0001
and the momentum is 0.9. we set the initial learning rate as
0.1 and divided the learning rate by 10 for each 150, 000
iterations on ImageNet and for each 50, 000 iterations on
CIFAR. On ImageNet, we use multi-scale (randomly resiz-
ing the image to scale within range [256,480]) and randomly
crop with randomly horizontal mirroring for data augmenta-
tion. We initialize the weights with the MSRA initialization
techniques introduced in (He et al. 2015) and train the model
from scratch. We train all models by SGD with Nesterov
momentum. We use a factor α to multiply the width of the
network, e.g., ResNet32-α×, where the α× means that we
widen the width of each layers in ResNet32 by multiplying
a factor α. In all models for ImangeNet and CIFAR, we keep
the first layer and the last layer unchanged.

Empirical study

The Effect of Intermediate Feature Width. In the across
channel-domain convolution, we set S = Cin to reduce the
redundancy and guarantee the lossless projection. In this ex-
periment, we explore how the dimension of S reflect the re-
dundancy of the standard convolution and use ResNet32-α×
on CIFAR-100 dataset. In addition, we view p of S = pCin

as a variable, and investigate when p becomes larger, how

model ResNet32-2× ResNet32-4×
Acc. Model size Acc. Model size

BDSC-float 0.7354 8.35MB 0.7597 33.0MB
BDSC 0.7199 1.20MB 0.7502 4.49MB

Table 2: Comparison between models using float-type spa-
tial filters (denoted as BDSC-float) and our proposed BDSC
which uses {0, 1}-type spatial filters. We use Acc. to repre-
sent accuracy. Our model achieves inferior performance, but
largely reduces the model size.

the accuracy-against-model-size curve changes. The results
are shown in Figure 2 with different width S = pCin where
p = 1, 2, 3. We denote those models as BDSC-p with setting
S = pCin, e.g., BDSC-1 is the ResNet32-α× by setting
p = 1, BDSC-2 is the ResNet32-α× by setting p = 2 and
so on. The previous analysis shows that ResNet32-α× with
the standard convolution is equivalent to a decoupled model
with a fixed sparse spatial configuration in the across spatial-
domain convolution and p = 9 in the across channel-domain
convolution. Thus ResNet32-α× with the standard convolu-
tion can be viewed as an extreme case of our BDSC model
with the most redundancy.

From Figure 2 where α changes from 1 to 4 (denoted
as from left to right on each line), we found that the accu-
racy of ResNet32-α× with the standard convolution grows
slowly when the model size increases, while the accuracy
of BDSC-p grows faster. For example, the curve of BDSC-
2 reaches the highest accuracy at the point (8.61, 0.756)
(these numbers are shown in Table 1), while the curve of the
standard convolution reaches to the highest accuracy at the
point (28.4, 0.7568), which indicates that about 28.4−8.6 =
19.8MB parameters of ResNet32-4× with the standard con-
volution are waste. This shows that there exist large redun-
dancy in the models using the standard convolution. When p
change from 3 to 1, the curve of BDSC-p gradually moves to
the left. This phenomena shows that the redundancy is grad-
ually reduced when p becomes smaller. It can be seen that
BDSC-1 shows a good trade-off between model size and ac-
curacy, and as a result, setting p = 1 is a suggested choice
to design a model to reduce the redundancy of the standard
convolution.

The Effect of the Type of Spatial Configuration. In
BDSC, the spatial configuration M̃l is forced to be a tensor
with value 0 or 1. To verify whether this setting is efficient,
we compare two types of M̃l, one is with float type (32bits),
and the other is with value {0, 1} (1bit). We do experiments

4288



Model ResNet18
Standard convolution Depthwise BDSC

Accuracy 0.6944 0.6570 0.6898
Model size 44.6MB 8.89MB 9.00MB

Model ResNet34
Standard convolution Depthwise BDSC

Accuracy 0.7294 0.6868 0.7219
Model size 83.2MB 13.4MB 14.6MB

Table 3: Comparison between standard convolution, depth-
wise separable convolution (denoted as Depthwise) and
BDSC over ImageNet. Our BDSC with smaller model size
performs slightly worse than standard convolution. Com-
pared with depthwise separable convolution, our model
achieves better performance with similar model size.

on ResNet32-2× and ResNet32-4× on CIFAR-100 and the
comparison over the model size and accuracy is given in Ta-
ble 2. We can see that models with {0, 1}-type spatial fil-
ters perform worse than models with float-type spatial fil-
ters, and the gaps are 1.55% and 0.95% on ResNet32-2×
and ResNet32-4× respectively. These gaps are acceptable
as models with {0, 1}-type spatial filters achieve smaller
model size, saving 7.15MB and 28.51MB respectively.
This shows that the spatial configuration in our network is
reasonable.

Results

The experiments are conducted on three aspects. First we
compare BDSC with the standard convolution based on
ResNet (He et al. 2016). Then we show the advantage
of BDSC over depthwise separable convolution (Chollet
2016). At last, we demonstrate the effectiveness of BDSC
on densely connected network (Huang et al. 2016).

Comparison with Standard Convolution We use
ResNet (He et al. 2016) as the baseline, and our models
replace all the convolution layers with BDSC except the
first convolution layer.
ImageNet. Table 3 shows the results of models with
the standard convolution and our models with BDSC.
We implement the baseline ResNet18 and ResNet34 by
ourselves, and the performance is comparable to the results
in the original paper (He et al. 2016). It can be seen that by
reducing the redundancy, our BDSC models can achieve 5×
compression rate. By learning flexible spatial configuration,
our model ResNet18-BDSC gets top-1 accuracy of 0.6898
and ResNet34-BDSC gets top-1 accuracy of 0.7219, which
is comparable to 0.6944 on ResNet18 and 0.7294 on
ResNet34. On both models, the top-1 accuracy drops less
than 0.75% but the model sizes are reduced about 5× rate.
This demonstrates that our models can better explore the
parameter effectiveness while maintain high accuracy.

The empirical rate number is about 5×, which is smaller
than the rate 7× in theoretical. This might be caused by
the size of classifier, the first convolution layer and possi-
bly other cost.
CIFAR. Similar to ImageNet, our models are formed by re-
placing the standard spatial convolution layer with BDSC on

the ResNet32-2× and ResNet74-2×. The results are shown
in Table 4. Compared with standard convolution, the top-1
accuracy of ResNet32-2× with BDSC-1 is close to the ac-
curacy of ResNet32-2× with standard convolution. For ex-
ample on CIFAR-100, ResNet32-2× of BDSC-1 has 0.7199
top-1 accuracy, while ResNet32-2× of standard convolution
has 0.7283 top-1 accuracy, about 0.8% drop of accuracy.
While the model size of our network is 1.20MB, achieves
6× less than the network with standard convolution.

We also show the accuracy-against-model-size curve on
CIFAR-100 by varying α in ResNet32-α× in Figure 3. It
can be seen that our model with BDSC can largely boost the
accuracy with the increasing model size. Note that the ac-
curacy of ResNet32-1× with BDSC is 0.6648, which gets
about 1.9% drop in performance compared to 0.6839 in
ResNet32-1× with the standard convolution. The reason
might be that the intermediate output dimension of 1×1 con-
volution of BDSC is too small here given the output chan-
nels of ResNet32-1× are [16, 32, 64] for each stage respec-
tively, which leads to that the intermediate representation
is not sufficient to express enough information. In this case
where the number of intermediate input channel of a model
is small, we suggest to set p in S = pCin to be a bit larger,
e.g., p > 1. From Table 1, we can see that setting p = 2
on ResNet32-1× leads to nearly no drop in top-1 accuracy,
while the model size of BDSC is still smaller than the stan-
dard convolution model (0.63MB for BDSC, vs 1.83MB
for the standard convolution model).

Comparison with Depthwise Separable Convolution.
Depthwise separable convolution (Chollet 2016) decouples
the standard convolution into 3 × 3 depthwise convolution
followed by a 1× 1 convolution. Here we do experiments to
compare BDSC with depthwise convolution.
ImageNet. We replace the standard convolution layer in
ResNet with the corresponding depthwise separable convo-
lution and set the decay on the depthwise 3× 3 convolution
to 0 during training. The comparison results are shown in Ta-
ble 3, from which we can see that BDSC model has similar
model size as model with depthwise separable convolution,
but achieves higher accuracy higher, about 3% better on both
ResNet18 and ResNet34.
CIFAR. The comparison on CIFAR datasets are shown in
Table 4 and Figure 3. We can see that our model achieves
higher accuracy than depthwise separable convolution in
Table 4. Figure 3 shows the accuracy-against-model-size
curve of BDSC and depthwise separable convolution on
ResNet32-α×. Our model with BDSC, achieves higher ac-
curacy compared with depthwise separable convolution at
the same level of models size. For example, top-1 accuracy
of ResNet32-1× of BDSC is about 1.8% higher than that
of depthswise separable convolution, which shows the ad-
vantage of BDSC over depthwise separable convolution. We
think that the superior performance of BDSC than depthwise
separable convolution stems from the differences of the spa-
tial relationship encoding ability. The 3 × 3 depthwise con-
volution is a channel-wise convolution, encoding the spatial
relationship within one channel. BDSC uses the learned spa-
tial configuration, which encodes the spatial relationship not
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Model
CIFAR-100 CIFAR-10

ResNet32-2× ResNet74-2× ResNet32-2× ResNet74-2×
Accuracy Model size Accuracy Model size Accuracy Model size Accuracy Model size

Standard convolution 0.7283 7.17MB 0.7476 17.5MB 0.9369 7.12MB 0.9430 17.5MB
BDSC-3 0.7357 3.30MB 0.7515 7.96MB 0.9379 3.25MB 0.9394 7.91MB
Depthwise 0.6937 1.08MB 0.7201 2.48MB 0.9225 1.04MB 0.9309 2.44MB
BDSC-1 0.7199 1.20MB 0.7332 2.83MB 0.9334 1.16MB 0.9380 2.78MB

Table 4: Comparison between standard convolution, depthwise separable convolution (denoted as Depthwise) and BDSC over
CIFAR. BDSC-3 with smaller model size achieves comparable performance to standard convolution. BDSC-1 achieves better
performance at similar level of model size compared with depthwise separable convolution.
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Figure 3: Comparison between standard convolution, depth-
wise separable convolution (denoted as depthwise) and
BDSC based on ResNet32-α× over CIFAR-100. Our model
achieves better performance than both standard convolution
and depthwise separable convolution with the same model
size.

only within one channel, but also across channels.
Analysis. We compare the number of parameters and FLOPs
between our BDSC and depthwise separable convolution.
For depthwise separable convolution with input and output
channels being C, the number of parameters is,

C ×Kh ×Kw + C × C, (16)

and the FLOPs is,

H ×W (C ×Kh ×Kw + C × C). (17)

Therefore, the compression rates of #params and FLOPs
comparing BDSC with depthwise separable convolution,
which are denoted as rp and rf respectively, are,

rp =
1
32C × C ×Kh ×Kw + C × C

C ×Kh ×Kw + C × C
=

1
32 + 1

9
1
C + 1

9

,

rf =
H ×W ( 14C × C ×Kh ×Kw + C × C)

H ×W (C ×Kh ×Kw + C × C)
=

1
4 + 1

9
1
C + 1

9

.

(18)

When C is in range [32, 2048], rp is in range [1, 1.27], and
rf is in range [2.54, 3.22]. This suggests that depthwise sep-
arable convolution is faster than BDSC with the number

Model CIFAR-10 CIFAR-100
Acc. Model size Acc. Model size

DenseNet 0.9476 3.98MB 0.7558 4.13MB
DenseNet* 0.9433 3.98MB 0.7450 4.13MB
BDSC-6 0.9494 2.95MB 0.7629 3.10MB

Table 5: Comparison between standard convolution and
BDSC based on DenseNet. We implement DenseNet by our-
selves and report the results denoted as DenseNet*. We also
report the results from the paper denoted as DenseNet. We
set S = 6Cout in BDSC-6. Acc. in the table means accuracy.

of parameters at a similar level. However, from Figure 3,
one can see that at the same level of model size, our model
BDSC achieves better performance. Accuracy, model size
and speed are three things we consider to balance. So our
BDSC achieves an alternative balance among speed, model
size and accuracy, and it’s a good choice in the case where
accuracy is mostly considered as well as small model size
and moderately speedup.

Comparison over Densely Connected Networks We
also show the effectiveness of our BDSC over densely con-
nected networks (Huang et al. 2016). DenseNet-40(k =
12) is adopted to conduct experiments on CIFAR-100 and
CIFAR-10. We use the same data augmentation as (Huang
et al. 2016) and train for 400 epochs, and the results are
shown in table 5. We also report the results number from the
paper, which are denoted as DenseNet. We can see that al-
though the results of DenseNet* implemented by ourselves
performs worse than the numbers from the paper, our mod-
els with BDSC blocks still achieve better performance than
DenseNet with a smaller model size.

Conclusion

In this paper, we present a novel two-step interpretation
of convolution by decoupling it into an across channel-
domain convolution and an across spatial-domain convolu-
tion. Based on the interpretation, we propose an effective
approach by relaxing the sparsity of the fixed sparse filter in
across spatial-domain convolution and by reducing the re-
dundancy of 1 × 1 convolution. Empirical results on Ima-
geNet and CIFAR datasets demonstrate that our proposed
balance decoupling spatial convolution can achieve a model
with small size but still performs comparable to standard
convolution.
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