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Abstract

Weakly supervised data is an important machine learning data
to help improve learning performance. However, recent re-
sults indicate that machine learning techniques with the usage
of weakly supervised data may sometimes cause performance
degradation. Safely leveraging weakly supervised data is im-
portant, whereas there is only very limited effort, especially
on a general formulation to help provide insight to guide
safe weakly supervised learning. In this paper we present a
scheme that builds the final prediction results by integrating
several weakly supervised learners. Our resultant formulation
brings two advantages. i) For the commonly used convex loss
functions in both regression and classification tasks, safeness
guarantees exist under a mild condition; ii) Prior knowledge
related to the weights of base learners can be embedded in a
flexible manner. Moreover, the formulation can be addressed
globally by simple convex quadratic or linear program ef-
ficiently. Experiments on multiple weakly supervised learn-
ing tasks such as label noise learning, domain adaptation and
semi-supervised learning validate the effectiveness.

Introduction

Weakly supervised data is commonly appear in real appli-
cations (Zhou 2017). Compared to the data in traditional
supervised learning, weakly supervised data does not re-
quire a large amount of precise label information. Exam-
ples includes label noise learning (Frénay and Verleysen
2014) where label information contains noise; domain adap-
tation (Pan and Yang 2010) where label information in tar-
get domain is not sufficient and one needs to exploit fur-
ther label information from other domains; semi-supervised
learning (Chapelle et al. 2006) where label information is
scarce and one needs to leverage a number of additional
unlabeled data. Because weakly supervised data loosens
the constraint for the label information in learning tasks,
it has a broad application prospect, such as image clas-
sification (Krishna et al. 2017), natural language process-
ing (Alfonseca et al. 2012) and so on. Taking advantage of
weakly supervised data to help build effective learning meth-
ods has gained extensive attention and obtained a lot of re-
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search progresses (Chapelle et al. 2006; Pan and Yang 2010;
Frénay and Verleysen 2014; Zhou 2017).

It is often expected that, machine learning techniques ex-
ploiting weakly supervised data are able to improve learn-
ing performance. However, recent studies show that machine
learning techniques with the use of weakly supervised data
may sometimes lead to performance degradation. That is,
the learning performance is even worse than that of baseline
method without using weakly supervised data. For exam-
ple, label noise learning may be worse than learning from
only a small number of high-quality labeled data (Frénay
and Verleysen 2014); domain adaptation methods may have
the phenomenon of negative transfer (Pan and Yang 2010)
that the source domain data contribute to the reduced per-
formance of learning in the target domain; semi-supervised
learning using unlabeled data may degenerate learning per-
formance, which has been reported in a number of stud-
ies (Chapelle et al. 2006; Chawla and Karakoulas 2005;
Li and Zhou 2015). How to safely exploit weakly super-
vised data so that machine learning technology often out-
performs and never be worse than the simple baseline, has
become an important yet unsolved problem. Recently there
is a few effort, but they typically work on a specific sce-
nario of weakly supervised learning (Li and Zhou 2015;
Balsubramani and Freund 2015; Li, Zha, and Zhou 2017;
Wei et al. 2017). The proposal on generic formulation for
various weakly supervised data, to our best knowledge, has
not been thoroughly studied.

In this paper, we present a scheme that builds the final
prediction results by integrating several weakly supervised
learners. The resultant formulation brings some advantages.
Firstly, for multiple commonly used convex loss functions
(e.g., square loss, hinge loss) in both regression and classi-
fication tasks of weakly supervised learning, it has safeness
guarantees under a mild condition. Secondly, it can flexi-
bly embed uncertain prior knowledge about the weights of
weakly supervised learners in regression and classification
tasks. Moreover, our formulation can be addressed globally
via simple convex quadratic program or linear program in
an efficient manner. Experiments on multiple weakly super-
vised learning tasks such as label noise learning, domain
adaptation and semi-supervised learning validate the effec-
tiveness of our proposed algorithms.

This paper is organized as follows. We first review related
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works and then present the proposed formulation. Next we
show the experiments. Finally we conclude this work.

Related Work

Effectively exploiting weakly supervised data to improve
learning performance has been attracted much attention.
In the aspect of label noise learning, quite many studies
have indicated that without careful consideration, label noise
may seriously affect the learning performance (Frénay and
Verleysen 2014). Considerable efforts have been made to
build models that are robust to the presence of label noise.
For example, from the theoretical aspect, Manwani and
Satry (2013) studied the robustness of loss functions in the
empirical risk minimization framework and disclosed that 0-
1 loss function is noise tolerant while the other loss functions
are not naturally noise tolerant. From the practical aspect,
ensemble methods, e.g., bagging and boosting are regarded
to be robust to label noise (Frénay and Verleysen 2014) and
bagging often achieves a better result than boosting in the
presence of label noise (Dietterich 2000).

In the aspect of domain adaptation, there is little dis-
cussion on how to avoid negative transfer though it is re-
garded as an important issue in domain adaptation (Pan
and Yang 2010). Bakker and Heskes (2003) presented a
Bayesian method for a joint prior distribution of multiple
domains and considered that some of the model parameters
should be loosely connected among domains. Rosenstein et
al. (2005) empirically showed that if two tasks are dissim-
ilar, then brute-force transfer may hurt the performance of
the target task. Argyriou et al. (2008) considered situations
that the representations should be different among differ-
ent groups of tasks and tasks with different group are hard
to perform domain adaptation. Ge et al., (2014) proposed
to weight source domains corresponding to the relatedness
to the target domain and constructed the final target learner
with the weights to attenuate the effects of negative transfer.

In the aspect of semi-supervised learning, most efforts on
safely exploiting unlabeled data are raised in very recent.
In terms of classification tasks, Li and Zhou (2015) aimed
to build safe semi-supervised SVMs by assuming that the
ground-truth decision boundary is realized by one of multi-
ple diverse large-margin separations. Balsubramani and Fre-
und (2015) proposed to learn a robust prediction with the
highest accuracy given that the ground-truth label assign-
ment is restricted to specific candidate set. In terms of re-
gression tasks, it is indicated that safe semi-supervised re-
gression is realized as an intuitive geometric projection issue
and has an efficient solution (Li, Zha, and Zhou 2017).

Generally, safely exploiting weakly supervised data has
become a crucial yet unsolved issue. Most of the previous
studies were carried out for one specific scenario. In this
work we propose to present a general formulation for safe
weakly supervised learning and would like to provide some
insight to understand safe weakly supervised learning.

Proposed Formulation

In this section, we first present the problem setting and de-
rive our formulation, then study the safeness, next we dis-

cuss the incorporation of prior knowledge, finally we present
the optimization algorithms.

Problem Setting and Formulation

In weakly supervised learning, due to the lack of sufficient
and accurate label information, ensemble learning (Zhou
2012) was recognized as a popular learning technology to
derive robust performance. Many ways can be employed
to generate multiple weakly supervised learners, such as
through different learning models, different sampling strate-
gies, different model parameters, etc. Although previous
studies typically work on deriving good performance from
multiple learners, they may suffer from unsafeness. One un-
derlying reason is that the good performance derived by pre-
vious studies is not explicitly compared with the baseline
method, and may sometimes mislead the learning process.
These motivate us to derive a new formulation.

Formally, suppose we have obtained n predictive results
{y1, . . . ,yn} of unlabeled instances from multiple weakly
supervised learners {f1, . . . , fn}, where yi ∈ H

u, i =
1, . . . , n and u is the number of unlabeled instances. We let
H = R for regression task and H = {+1,−1} for classifi-
cation task. Meanwhile, we let y0 ∈ H

u denote the baseline
result, e.g., obtained by training a supervised model with
only limited labeled data. Our goal is to derive a safe pre-
diction y = g({y1, . . . ,yn},y0), which often outperforms,
meanwhile would not be worse than y0.

We first consider a simpler case that the ground-truth label
assignment on unlabeled instances, denoted by y∗, is known.
In this case, one can easily have the objective function that
maximizes the performance gain against the baseline y0, as

max
y∈Hu

�(y0,y
∗)− �(y,y∗)

Here �(·, ·) is a loss function, e.g., mean square loss, hinge
loss, etc. The smaller the value of the loss function, the bet-
ter the performance. Table 1 summarizes some commonly
used loss functions for regression and classification. Obvi-
ously y∗ is unknown and otherwise the solution is trivial.
To alleviate it, we consider that y∗ is a convex combina-
tion of base learners. Specifically, y∗ =

∑n
i=1 αiyi where

α = [α1;α2; . . . ;αn] ≥ 0 be the non-negative weights of
base learners and

∑n
i=1 αi = 1. We then have the following

objective by replacing the definition of y∗,

max
y∈Hu

�(y0,
n∑

i=1

αiyi)− �(y,
n∑

i=1

αiyi)

In practice, however, one may still be hard to know the
precise weights of base learners. We further consider that α
is from a convex set M and make our proposal more prac-
tical, where M reflects the prior knowledge for the impor-
tance of base learners. The setup of M will be discussed in
the later section. Without further information, we aim to op-
timize the worst-case performance gain. We then can have
a general formulation with respect to regression as well as
classification task as,

max
y∈Hu

min
α∈M

�(y0,
n∑

i=1

αiyi)− �(y,
n∑

i=1

αiyi) (1)
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Table 1: Some commonly used loss functions �(p,q) for regression and classification tasks. The prediction q = [q1; . . . ; qu] ∈
R

u and the label p = [p1; . . . ; pu] ∈ H
u where H

u = R
u is for regression and H

u = {+1,−1}u is for classification.

Loss function Definition Task
Mean square loss �(p,q) = 1

u

∑u
i=1(pi − qi)

2 = 1
u‖p− q‖22 Regression & Classification

Mean absolute loss �(p,q) = 1
u

∑u
i=1 |pi − qi| = 1

u‖p− q‖1 Regression
Mean ε-insensitive loss �(p,q) = 1

u

∑u
i=1 max{|pi − qi| − ε, 0} Regression

Hinge loss �(p,q) = 1
u

∑u
i=1 max{1− piqi, 0} Classification

Study the Safeness

We show that for the commonly used convex loss func-
tions as listed in Table 1 in both regression and classifica-
tion tasks, safeness guarantees exist for Eq.(1) under a mild
condition. We first introduce a result as follows.
Theorem 1. Suppose that the ground-truth y∗ can be con-
structed by the base learners, i.e., y∗ ∈ {y|∑b

i=1 αiyi,α ∈
M}. Let ŷ and α̂ be the optimal solution to Eq.(1), we then
have �(ŷ,y∗) ≤ �(y0,y

∗) and ŷ has already achieved the
maximal performance gain against y0.

Proof. We define

L(y,α) = �(y0,

n∑

i=1

αiyi)− �(y,

n∑

i=1

αiyi).

The following inequality holds for any feasible y and α:
L(y, α̂) ≤ L(ŷ, α̂) ≤ L(ŷ,α)

According to the assumption, y∗ ∈ {y|∑b
i=1 αiyi,α ∈

M} and let α∗ makes y∗ =
∑n

i=1 α
∗
iyi. By setting y and

α to be y0 and α∗, then we can deduce that,
�(y0,y

∗) ≥ �(ŷ,y∗)
Moreover, since we already maximize the performance gain
in the worst case, ŷ has already achieved the maximal per-
formance gain against y0.

Theorem 1 indicates that Eq.(1) is reasonable for our pur-
pose, that is, the derived optimal solution ŷ from Eq.(1) of-
ten outperforms and won’t be worse than y0. In compari-
son to previous studies (Li and Zhou 2015; Balsubramani
and Freund 2015; Li, Zha, and Zhou 2017), the formula-
tion in Eq.(1) brings some advantages. In contrast to (Li and
Zhou 2015) which requires the ground-truth is from one of
the learners, the condition required in Theorem 1 is looser
and more practical. We explicitly consider to maximize the
performance gain in Eq.(1), which is not taken into account
in (Balsubramani and Freund 2015). In contrast to (Li, Zha,
and Zhou 2017) that focuses on regression, our work is read-
ily applicable for both regression and classification tasks.

One question unclear in Theorem 1 is how to derive the
optimal solution of Eq.(1). Eq.(1) is the subtraction of two
loss functions, which is known to be non-convex and non-
trivial to derive the global optima (Yuille and Rangarajan
2003). Fortunately, we find that for a class of commonly
used convex loss functions, Eq.(1) could be equivalently
rewritten as a convex optimization problem and thus the
global optimal solution is achievable. First, we present the
result for regression task.

Lemma 1. When �(·,∑n
i=1 αiyi) is convex to α and there

exists y ∈ R
u such that �(y,

∑n
i=1 αiyi) = 0, for any α. In

optimality, the optimal solution ŷ and α̂ have the following
relation, i.e., �(ŷ,

∑n
i=1 α̂iyi) = 0.

Proof. Assume, to the contrary, �(ŷ,
∑n

i=1 α̂iyi) �= 0.
According to the assumption, there exist ỹ such that
�(ỹ,

∑n
i=1 α̂iyi) = 0. Obviously, 0 = �(ỹ,

∑n
i=1 α̂iyi) <

�(ŷ,
∑n

i=1 α̂iyi). Hence, ŷ is not optimal, a contradic-
tion.

Theorem 2. Under the same condition in Lemma 1, Eq.(1)
is a convex optimization.

Proof. With Lemma 1, the form of Eq.(1) for regression task
can be rewritten as,

min
α∈M

�(y0,
n∑

i=1

αiyi) (2)

Remind that �(·,∑n
i=1 αiyi) is convex to α, obviously,

Eq.(1) is a convex optimization.

The condition in Theorem 2 is rather mild. Many regres-
sion loss functions, for example, mean square loss, mean
absolute loss (Willmott and Matsuura 2005) and mean ε-
insensitive loss (Smola and Schölkopf 2004), satisfy such
a mild condition in Theorem 2.

Due to the noncontinuous feasible field of y, Lemma 1
does not hold for most of the classification loss functions. It
could not simply apply or extend the result in regression task
to classification. Fortunately, we find that for some particular
classification loss function like the hinge loss, the optimal
solution of Eq.(1) is still possible.
Lemma 2. When �(·, ·) is realized as the hinge loss, in
optimality, the optimal ŷ and α̂ meet a relation ŷ =
sign(

∑n
i=1 α̂iyi)) where sign(s) is the sign of value s.

The proof is in the supplementary material. We then have,
Theorem 3. Suppose yi ∈ {+1,−1}u, ∀i = 1, . . . , n,
Eq.(1) is a convex optimization when �(·, ·) is realized as
the hinge loss.

Proof. With Lemma 2, Eq.(1) is thus rewritten as,

min
α∈M

�(y0,
n∑

i=1

αiyi)− �(sign(
n∑

i=1

αiyi),
n∑

i=1

αiyi) (3)

Since yi ∈ {+1,−1}u, ∀i = 1, . . . , n and �(·,∑n
i=1 αiyi)

is the hinge loss, the form �(sign(
∑n

i=1 αiyi),
∑n

i=1 αiyi)
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can be equivalently rewritten as 1− 1
u‖

∑n
i=1 αiyi‖1 using∑n

i=1 αi = 1. Therefore, Eq.(3) is equal to,

min
α∈M

�(y0,
n∑

i=1

αiyi) +
1

u
‖

n∑

i=1

αiyi‖1 − 1 (4)

Evidently, Eq.(4) is a convex optimization.

Though hinge loss is the only loss function to help de-
rive a global solution of Eq.(1) for classification task, hinge
loss is well-known as one powerful loss function in clas-
sification. The reason for the particularity of hinge loss
mainly lies in its linearity to the predictive results (the term
1
u‖

∑n
i=1 αiyi‖1). Such a property, unfortunately, does not

hold for other loss functions such as logistic loss, exponen-
tial loss, cross-entropy loss, etc.

Weight the Base Learners

One question remained is that how to setup M. Obviously,
the setup of M can be easily embedded with a variety of
prior knowledge. For example, suppose base learner fi is
more reliable than fj and the set of all such indexes (i, j) is
denoted as S , M could be set to {α|αi − αj ≥ 0, (i, j) ∈
S;α�1 = 1;α ≥ 0} where 1 and 0 refer to the all-one and
all-zero vectors respectively; suppose the importance values
of base learners are known and let {r1, . . . , rn} denote the
importance values, one could set up M as {α| − γ ≤ αi −
ri ≤ γ, ∀i = 1, . . . , n;α�1 = 1;α ≥ 0} where γ is a small
constant, and so on and so forth.

In practice, one may be hard to obtain the precise prior
knowledge of base learners, for example, the importance
values. In this case we present to learn the weights of base
learners. Before presenting the algorithms, we first inves-
tigate how the performance of our formulation is affected
with the setup of M. Assume that the loss function �(·, ·) is
η-Lipschitz, i.e., ‖�(y1,y2) − �(y1,y3)‖ ≤ η‖y2 − y3‖1
for any y1, y2,y3 ∈ [−1, 1]. Most of commonly used loss
functions including the ones in Table 1 satisfy such prop-
erty (Rosasco et al. 2004). Let β∗ = [β∗

1 , · · · , β∗
n] ∈ M be

the optimal solution to the objective,

β∗ = argmin
β∈M

�(
n∑

i=1

βiyi,y
∗)

and ε be the residual, i.e., ε = y∗ − ∑n
i=1 β

∗
i yi. We have

the following result,

Theorem 4. The performance gain of ŷ against y0, i.e.,
�(y0,y

∗)− �(ŷ,y∗), has a lower-bound −2η||ε||1.

The proof is in the supplementary material. Theorem 4
discloses that the worst-case of performance gain is lower-
bounded by the norm of the residual. This motivates us to
learn the weights of base learners such that the residual is
minimized. We then present the learning approach for re-
gression and classification through the idea of covariance
matrix analysis (Bates and Granger 1969).

Regression Let Creg be the n × n covariance matrix of
the n base learners {f1, · · · , fn} with elements

Creg
ij = E[(fi(X)− μi)

�(fj(X)− μj)]

where X refers to the set of unlabeled instances and μi =
E[fi(X)]. Let ρreg = [ρreg1 ; · · · ; ρregn ] be the vector of co-
variances between the base learners and the ground-truth la-
bel assignment f∗(X),

ρregi = E[(f∗(X)− θ)�(fi(X)− μi)]

where θ = E[f∗(X)]. We minimize the residual for α as,

α∗ = argmin
α

E[MSE(
n∑

i=1

αifi(X), f∗(X))] (5)

where MSE refers to the Mean Squared Error. Eq.(5) has a
closed-form solution (Bates and Granger 1969).
Theorem 5. (Bates and Granger, 1969) The optimal weights
α∗ satisfies that

ρreg = Cregα∗.
With Theorem 5, one need to estimate Creg and ρ. For

Creg , it is evident that (yi − μi)
�(yj − μj) is an unbiased

estimation of Creg
ij . Therefore, one could easily have Ĉreg

with elements
Ĉreg

ij = (yi − μi)
�(yj − μj)

be the unbiased estimation of Creg . For ρ, the following
proposition shows that it is closely related to the perfor-
mance of base learners.
Proposition 1. Suppose {fi(X)}i=n

i=1 is normalized to the
mean μi = 0, ∀i = 1, . . . n and the standard deviation equal
to 1. Consider mean squared error as the measurement, the
bigger the value ρregi , the smaller the loss of fi.

Therefore, we can setup M as {α|Ĉregα ≥ 1δ,α�1 =
1,α ≥ 0}, where δ is a constant, indicating that the base
learners have a low-bound performance (e.g., are better than
random-guess) (Balsubramani and Freund 2015). It is easy
to verify that M is a convex set.

Classification Similar to regression tasks, let Cclf be the
n × n matrix represents the agreement between base learn-
ers with elements Cclf

ij = E[fi(X)�fj(X)]. Let ρclf =

[ρclf1 ; ρclf2 ; · · · ; ρclfn ] be the vector represents the agreement
between base learner and the ground truth,

ρclfi = E[f∗(X)�fi(X)]

With classification accuracy to be the performance measure,
it can be shown that,
Theorem 6. The optimal weights α∗ in classification satis-
fies that ρclf = Cclfα∗.

We can setup M as {α|Ĉclfα ≥ 1δ,α�1 = 1,α ≥ 0}
where Ĉclf is the unbiased estimation of Cclf , with ele-
ments Ĉclf

ij = y�
i yj . M is also a convex set.

In summary, our formulation is able to directly absorb the
precise prior knowledge about the importance of learners if
available. It is also capable of incorporating with the estima-
tion results obtained by covariance matrix analysis on both
regression and classification tasks, when the precise prior
knowledge is unavailable.
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Efficient Optimization Algorithms

The formulation in Eq. (1) can be globally and efficiently
addressed. For regression, we adopt mean square loss as the
implementation. According to Lemma 1 and Theorem 2 ,
Eq.(1) can be rewritten as,

min
Ĉregα≥1δ,α�1=1,α≥0

||∑n
i=1 αiyi − y0||2

which is equivalent to the following form,

min
Ĉregα≥1δ,α�1=1,α≥0

α�Fα− v�α (6)

where F ∈ R
n×n is a linear kernel matrix of yi’s, i.e,

Fij = y�
i yj and v = [2y�

1 y0; · · · ; 2y�
n y0]. Obviously,

Eq.(6) is a simple convex quadratic program (Boyd and Van-
denberghe 2004) and can be efficiently addressed by off-the-
shelf optimization package, such as MOSEK.

For classification, we adopt the hinge loss as the imple-
mentation. According to Lemma 2 and Theorem 3, Eq.(1)
can be rewritten as

min
Ĉclfα≥1δ,α�1=1,α≥0

�(y0,
n∑

i=1

αiyi)+
1

u
‖

n∑

i=1

αiyi‖1 (7)

which is a simple linear program. The detail derivation is
in the supplementary material. Eq. (7) can be globally ad-
dressed in an efficient manner via MOSEK as well.

Experiments

In this section, we conduct experiments on three weakly su-
pervised learning tasks, i.e., label noise learning, domain
adaptation and semi-supervised learning so as to evaluate
the effectiveness of our proposed algorithms. We call our
proposal as SAFEW (SAFE Weakly supervised learning)1.

Label Noise Learning Task

We conduct experimental comparison for label noise learn-
ing tasks on a number of frequently-used classification
datasets2, i.e., Australian, Breast-Cancer, Diabetes, Digit1,
Heart, Ionosphere, USPS and Splice. For each data set, 80%
of instances are used for training and the rest ones are used
for testing. In the training set, 70% of instances are ran-
domly selected as the noisy or low-quality labeled data and
the rest ones are high-quality labeled data. For the noisy la-
beled data, their labels are randomly reversed with a proba-
bility p% where p ranges from 10% to 40% with an interval
10%. Experiments are repeated for 30 times, and the average
classification accuracy is reported.

Our proposed algorithm is compared with the following
methods, including 1 baseline method Sup-SVM that trains
a supervised SVM only on the high-quality labeled data;
2 state-of-the-art label noise learning methods: i) Bagging
which is regarded as to be robust with label noisy (Frénay
and Verleysen 2014); ii) rLR (Robust Logistic Regres-
sion) (Bootkrajang and Kabán 2012) that enhances the lo-
gistic regression model to handle label noise; 3 traditional

1http://lamda.nju.edu.cn/code SAFEW.ashx
2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

classification methods (i.e., SVM, LR (Logistic Regression),
k-NN (k-Nearest Neighbor)) with regardless of label noise.
For LR, the glmfit function in Matlab is used. For k-NN
method, k is set to 3. For Sup-SVM and SVM method, Lib-
svm package (Chang and Lin 2011) is adopted and the ker-
nel is set to RBF kernel. For Bagging method, we adopt deci-
sion tree as the base learner. For rLR method, the parameter
is set to the recommended one. For SAFEW, LR, SVM and
k-NN are used as base learners and parameter δ is set by
5-fold cross validation from the range [0.5u, 0.7u].

The results are shown in Figure 1 and we can have the fol-
lowing observations. i) As the noise ratio increases, the ac-
curacies of compared methods generally decrease; ii) Com-
pared with the baseline method, all the compared methods
performs worse than Sup-SVM in many cases, especially
when the noise ratio becomes larger, while our proposed
SAFEW does not suffer from such deficiency. Moreover,
SAFEW achieves best average performance (see detail re-
sults in the supplementary material). These demonstrate the
effectiveness of SAFEW method.

Domain Adaptation Task

We conduct compared experiments for domain adaptation
on two benchmark datasets3, i.e., 20newsgroup and Land-
mine. The 20Newsgroups dataset (Lang 1995) contains
19,997 documents and is partitioned into 20 different news-
groups. Following the setup in (Dai et al. 2007; Li, Jin, and
Long 2012), we generate six different cross-domain data
sets by utilizing its hierarchical structure. Specifically, the
learning task is defined as the top-category binary classifi-
cation, where our goal is to classify documents into one of
the top-categories. For each data set, two top categories are
chosen, one as positive and another as negative. Then we se-
lect sub-categories under the positive and negative classes
respectively to form a domain.

The Landmine dataset is a detection dataset which con-
tains 29 domains and 9 features. The data from domain 1 to
domain 5 are collected from a leafy area; the data from Do-
main 20 to domain 24 are collected from a sand area. We use
the whole data from domain 1 to domain 5 as the source do-
main and the data from domain 20 to domain 24 as five target
domains. For 20newsgroup, following (Xue et al. 2008), we
randomly select 10% instances in target domain as the la-
beled data and use 300 most important features as the repre-
sentation. For Landmine, 5% instances in the target domain
are used as the labeled data. Experiments are repeated for 30
times and the average accuracies on the unlabeled instances
are reported.

Our method is compared with one baseline supervised
method LR that trains a supervised logistic regression model
for the labeled data in target domain, one naive domain
adaptation method called as Original method that com-
bines the data in source and target domain to train a su-
pervised model, and three state-of-the-art domain adaptation
methods, i) Maximum Independence Domain Adaptation
(MIDA) method (Yan, Kou, and Zhang 2016); ii) Transfer
Component Analysis (TCA) method (Pan et al. 2011); iii)

3http://www.cse.ust.hk/TL/

3130



Figure 1: Classification accuracy of compared methods with different numbers of noise ratio.

TrAdaBoost method (Dai et al. 2007). MIDA and TCA are
two feature-level learning algorithms that learns a domain-
invariant subspace between source domain and target do-
main. TrAdaBoost method is a transfer learner based on Ad-
aBoost. For MIDA and TCA, the kernel type is set to linear
kernel and the dimension of the subspace is set to 30. For
MIDA, TCA and the Original method, Logistic Regression
model is employed as the supervised model on the feature
space. For TrAdaBoost, SVM is adopted as the base learner
and the number of iterations is set to 20. MIDA, TCA and the
Original method are used as our base learners. Parameter δ
is set by 5-fold cross validation from the range [0.5u, 0.7u].

Results are shown in Tables 2 and 3. Original, MIDA and
TCA methods degenerate the performance in many cases.
SAFEW does not suffer such a deficiency. Moreover, in
terms of average performance, SAFEW achieves the best
result. Therefore, our proposal achieves highly competitive
performance with compared methods while more impor-
tantly, unlike previous methods that will hurt performance
in some cases, it does not degenerate the performance.

Semi-Supervised Learning Task

For semi-supervised learning, we do experiments on regres-
sion tasks with a broad range of datasets4 that cover diverse
domains including physical measurements (abalone), health
(bodyfat), economics (cadata), activity recognition (mpg),
etc. The sample size ranges from around 100 (pyrim) to
more than 20,000 (cadata). All the features and labels are
normalized into [0, 1]. For each dataset, we randomly se-
lect 10 data as the labeled instances. Experiment for each
dataset is repeated for 30 times, and the average performance

4https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

(mean±std) on the unlabeled data is reported.
The compared methods include 1NN method which is a

direct supervised nearest neighbor algorithm with only la-
beled data, Self-kNN method which is a semi-supervised
extension of the supervised kNN method based on self-
training (Yarowsky 1995), Self-LS method which is a
semi-supervised extension of the supervised least square
method (Hastie, Tibshirani, and Friedman 2001), Aver-
age method which is a simple ensemble method, Safer
method (Li, Zha, and Zhou 2017) which is a method pro-
posed for semi-supervised regression. For Self-kNN, we use
two distance measures: Euclidean and Cosine, and k is set
to 3, the maximum number of iterations is set to 5. For Self-
LS method, the parameters related to the importance for the
labeled and unlabeled instances are set to 1 and 0.1. For
SAFEW, Average and Safer methods, Self-kNN(Euclidean),
Self-kNN(Cosine) and Self-LS are adopted as base learners.
Parameter δ is set by 5-fold cross validation from the range
[0.5u, 0.7u].

According to the results in Table 4, we can see that
SAFEW and Safer are always better than the baseline, while
the other compared methods will be outperformed by the
baseline method in many cases. Moreover, in terms of aver-
age performance, SAFEW performs better than Safer. The
reason owes to a tight set M learned for base learners.
Again, the results validate the effectiveness of SAFEW.

Conclusion

In this paper, we study to safely exploit weakly supervised
data. That is, learning methods with the usage of weakly
supervised data could often improve learning performance,
meanwhile in the worst case it wont be worse than the base-
line method without using weakly supervised data. This
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Table 2: Classification Accuracy of domain adaptation on 20newsgroup. For the compared methods, if the performance is
significantly better/worse than the baseline method, the corresponding entries are then bolded/boxed (paired t-tests at 95%
significance level). The average performance is listed for comparison. The win/tie/loss counts against the baseline method are
summarized, and the method with the smallest number of losses is bolded.

Dataset Logistic Regression Original MIDA TCA TrAdaBoost SAFEW
Comp vs Rec .7028 ± .0091 .7492 ± .0135 .7961 ± .0197 .7940 ± .0162 .8077 ± .0155 .7956 ± .0170

Comp vs Sci .8225 ± .0662 .7985 ± .0194 .8946 ± .0188 .8255 ± .0172 .8583 ± .0201 .8925 ± .0212

Comp vs Talk .8423 ± .0685 .8022 ± .0182 .8231 ± .0164 .8434 ± .0110 .8247 ± .0143 .8451 ± .0158

Sci vs Talk .7294 ± .1045 .7100 ± .0121 .7456 ± .0164 .7022 ± .0092 .7166 ± .0213 .7468 ± .0153

Rec vs Sci .8006 ± .0758 .7754 ± .0161 .8033 ± .0151 .8440 ± .0118 .8016 ± .0151 .8435 ± .0157

Rec vs Talk .8278 ± .0446 .8276 ± .0115 .8566 ± .0105 .8580 ± .0128 .8415 ± .0113 .8579 ± .0105

Average .7876 .7805 .8199 .8112 .8084 .8302
Win/Tie/Loss against LR 1/2/3 4/1/1 3/2/1 3/2/1 5/1/0

Table 3: Classification Accuracy of domain adaptation on Landmine data.

Dataset Logistic Regression Original MIDA TCA TrAdaBoost SAFEW
Domain 20 .9215 ± .0173 .9237 ± .0034 .9265 ± .0039 .9255 ± .0045 .9183 ± .0029 .9271 ± .0035

Domain 21 .9360 ± .0095 .9310 ± .0047 .9384 ± .0045 .9304 ± .0051 .9261 ± .0033 .9396 ± .0038

Domain 22 .9594 ± .0051 .9555 ± .0038 .9506 ± .0065 .9650 ± .0017 .9095 ± .0026 .9648 ± .0016

Domain 23 .9361 ± .0095 .9310 ± .0041 .9424 ± .0045 .9314 ± .0051 .9627 ± .0043 .9426 ± .0038

Domain 24 .9535 ± .0052 .9524 ± .0029 .9447 ± .0025 .9432 ± .0029 .9535 ± .0034 .9550 ± .0024
Average .9413 .9387 .9405 .9391 .9340 .9458
Win/Tie/Loss against LR 0/3/2 2/1/2 1/1/3 1/2/2 3/2/0

Table 4: Mean Square Error (mean±std) for the compared methods and SAFEW on a number of regression data sets.

Dataset 1NN Self-kNN(Euclidean) Self-kNN(Cosine) Self-LS Average Safer SAFEW
abalone .020 ± .010 .014 ± .005 .014 ± .003 .013 ± .004 .012 ± .003 .013 ± .005 .013 ± .005

bodyfat .019 ± .005 .018 ± .006 .019 ± .005 .041 ± .013 .023 ± .009 .018 ± .007 .017 ± .005
cadata .083 ± .029 .063 ± .012 .058 ± .009 .056 ± .007 .057 ± .009 .060 ± .013 .057 ± .005

cpusmall .024 ± .012 .027 ± .011 .028 ± .009 .025 ± .010 .024 ± .005 .025 ± .011 .024 ± .009
housing .039 ± .010 .036 ± .009 .033 ± .006 .036 ± .009 .034 ± .008 .034 ± .009 .033 ± .005
mg .051 ± .009 .039 ± .006 .038 ± .006 .035 ± .015 .038 ± .014 .038 ± .006 .038 ± .006
mpg .022 ± .007 .020 ± .006 .018 ± .006 .021 ± .008 .020 ± .006 .019 ± .004 .018 ± .004

pyrim .023 ± .006 .021 ± .005 .022 ± .005 .052 ± .014 .020 ± .007 .020 ± .006 .020 ± .006

Ave. Mse. .035 .030 .029 .035 .029 .030 .028
Win/Tie/Loss against 1NN 4/3/1 3/4/1 3/3/2 5/2/1 6/2/0 6/2/0

problem is important whereas no general formulation has
been proposed to guide safe weakly supervised learning. In
this paper we present a scheme that builds the final predic-
tion result by integrating multiple weakly supervised learn-
ers. The resultant formulation has safeness guarantees for
many commonly used convex loss functions for both regres-
sion and classification tasks. Besides, it is capable of em-
bedding prior knowledge on the weights of base learners.
The resultant formulation is globally solved by simple con-
vex optimization efficiently. Experiments on three weakly
supervised learning tasks including label noise learning, do-
main adaptation and semi-supervised learning validate the
effectiveness of our proposed algorithms.

There are many interesting future works. For example, our

method is a two-stage method and may loss some informa-
tion, whereas directly one-stage method that takes the gener-
ation of base learners into account, would be worth studying.
Moreover, the study of other weakly supervised setting such
as new class detection (Mu, Ming, and Zhou 2017), is an
interesting issue in future.
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