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Abstract

Networked data, in which every training example involves
two objects and may share some common objects with oth-
ers, is used in many machine learning tasks such as learning
to rank and link prediction. A challenge of learning from net-
worked examples is that target values are not known for some
pairs of objects. In this case, neither the classical i.i.d. as-
sumption nor techniques based on complete U-statistics can
be used. Most existing theoretical results of this problem only
deal with the classical empirical risk minimization (ERM)
principle that always weights every example equally, but this
strategy leads to unsatisfactory bounds. We consider general
weighted ERM and show new universal risk bounds for this
problem. These new bounds naturally define an optimization
problem which leads to appropriate weights for networked
examples. Though this optimization problem is not convex in
general, we devise a new fully polynomial-time approxima-
tion scheme (FPTAS) to solve it.

1 Introduction

“No man is an island, entire of itself ...”, the beginning
of a well-known poem by the 17th century English poet
John Donne, might be able to explain why social network-
ing websites are so popular. These social media not only
make communications convenient and enrich our lives but
also bring us data, of an unimaginable amount, that is intrin-
sically networked. Social network data nowadays is widely
used in research on social science, network dynamics, and as
an inevitable fate, data mining and machine learning (Scott
2017). Similar examples of networked data such as traffic
networks (Min and Wynter 2011), chemical interaction net-
works (Szklarczyk et al. 2014), citation networks (Dawson
et al. 2014) also abound throughout the machine learning
world.

Admittedly, many efforts have been made to design prac-
tical algorithms for learning from networked data, e.g.,
(Liben-Nowell and Kleinberg 2007, Macskassy and Provost
2007, Li et al. 2016, Garcia-Duran et al. 2016). However,
not many theoretical guarantees of these methods have been
established, which is the main concern of this paper. More
specifically, this paper deals with risk bounds of classifiers
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trained with networked data (CLANET) whose goal is to
train a classifier with examples in a data graph G. Every
vertex of G is an object and described by a feature vector
X ∈ X that is drawn independently and identically (i.i.d.)
from an unknown distribution, while every edge corresponds
to a training example whose input is a pair of feature vectors
(X,X ′) of the two ends of this edge and whose target value
Y is in {0, 1}.

A widely used principle to select a proper model from
a hypothesis set is Empirical Risk Minimization (ERM).
Papa, Bellet, and Clémençon (2016) establish risk bounds
for ERM on complete data graphs, and the bounds are inde-
pendent of the distribution of the data. These bounds are of
the order O(log(n)/n), where n is the number of vertices in
the complete graph. However, in practice it is very likely that
one cannot collect examples for all pairs of vertices and then
G is usually incomplete, thus techniques based on complete
U -processes in (Papa, Bellet, and Clémençon 2016) cannot
be applied and the risk bounds of the order O(log(n)/n) are
no longer valid in this setting. By generalizing the moment
inequality for U -processes to the case of incomplete graphs,
we prove novel risk bounds for the incomplete graph.

Usually, every training example is equally weighted (or
unweighted) in ERM, which seems much less persuasive
when the examples are networked, in particular when the
graph is incomplete. But, most existing theoretical results
of learning from networked examples are based on the
unweighted ERM (Usunier, Amini, and Gallinari 2006,
Ralaivola, Szafranski, and Stempfel 2009), and their bounds
are of the order O(

√
χ∗(DG)/m) where DG is the line

graph of G and χ∗ is the fractional chromatic number of DG

(see Section A in the online appendix1) and m is the number
of training examples. In order to improve this bound, Wang,
Guo, and Ramon (2017) propose weighted ERM which adds
weights to training examples according to the data graph,
and show that the risk bound for weighted ERM can be of the
order O(1/

√
ν∗(G)) where ν∗(G) is the fractional match-

ing number of G, so using weighted ERM networked data
can be more effectively exploited than the equal weighting
method, as basic graph theory tells us ν∗G ≥ m/χ∗(DG).
However, Wang, Guo, and Ramon (2017) (in fact, Usunier,
Amini, and Gallinari (2006) and Ralaivola, Szafranski, and
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Stempfel (2009) also) assume that any two examples can
be arbitrarily correlated if they share a vertex, which cannot
lead to an O(log(n)/n) bound when the graph is complete.

We show that the “low-noise” condition, also called
the Mammen-Tsybakov noise condition (Mammen and Tsy-
bakov 1998), which is commonly assumed in many typ-
ical learning problems with networked data, e.g., ranking
(Clémençon, Lugosi, and Vayatis 2008) and graph recon-
struction (Papa, Bellet, and Clémençon 2016), can be used
to reasonably bound the dependencies of two examples that
share a common vertex and then leads to tighter risk bounds.

In summary, in this paper we mainly
• prove new universal risk bounds for CLANET which

– can be applied to learning from networked data even if
the data graph is incomplete;

– exploit the property of the “low-noise” condition, and
then become tighter than previous results;

– allow non-identical weights on different examples, so
it is possible to achieve better learning guarantee by
choosing these weights.

• formulate a non-convex optimization problem inspired by
our new risk bounds (because our risk bounds depend on
the weights added to every training example, and a bet-
ter weighting scheme leads to a tighter bound), and then
we also design a new efficient algorithm to obtain an ap-
proximate optimal weighting vector and show that this al-
gorithm is a fully polynomial-time approximation scheme
for this non-convex program.

2 Intuitions

We now have a look at previous works that are closely re-
lated to our work, as shown in Table 1, and present the merits
of our method. Biau and Bleakley (2006), Clémençon, Lu-
gosi, and Vayatis (2008) and Papa, Bellet, and Clémençon
(2016) deal with the case when the graph is complete, i.e.,
the target value of every pair of vertices is known. In this
case, Clémençon, Lugosi, and Vayatis (2008) formulate the
“low-noise” condition for the ranking problem and demon-
strate that this condition can lead to tighter risk bounds by
the moment inequality for U -processes. Papa, Bellet, and
Clémençon (2016) further consider the graph reconstruction
problem introduced by Biau and Bleakley (2006) and show
this problem always satisfies the “low-noise” condition.

If the graph is incomplete, one can use either Janson’s
decomposition (Janson 2004, Usunier, Amini, and Gallinari
2006, Ralaivola, Szafranski, and Stempfel 2009, Ralaivola
and Amini 2015) or the fractional matching approach by
Wang, Guo, and Ramon (2017) to derive risk bounds. The
main differences between these two approaches are:
• Wang, Guo, and Ramon (2017) consider the data graph

G while Janson’s decomposition uses only the line graph
DG.

• The fractional matching approach considers weighted
ERM while Janson (2004), Usunier, Amini, and Gallinari
(2006), Ralaivola, Szafranski, and Stempfel (2009) and
Ralaivola and Amini (2015) only prove bounds for un-
weighted ERM.

Though Wang, Guo, and Ramon (2017) show improved
risk bounds, as far as we know, there is no known tight
risk bound on incomplete graphs for tasks such as pair-
wise ranking and graph reconstruction that satisfy the “low-
noise” condition. Under this condition, the method proposed
in (Wang, Guo, and Ramon 2017) does not work (see Sec-
tion 6.1).

Before we show new risk bounds and new weighting
methods, we present the following three aspects to convey
some intuitions.

Line Graphs Compared to Janson’s decomposition which
is based on line graphs, our method utilizes the additional
dependency information in the data graph G. For example,
the complete line graph with three vertices (i.e., triangle)
corresponds to two different data graphs, as illuminated in
Figure 1. Hence, line graph based methods ignore some im-
portant information in the data graph. This negligence makes
it unable to improve bounds, no matter whether consider-
ing weighted ERM or not (see Section A.1 in the online ap-
pendix). In Section 6.2, we show that our bounds are tighter
than that of line graph based methods.

Asymptotic Risk As mentioned by Wang, Guo, and Ra-
mon (2017), if several examples share a vertex, then we are
likely to put less weight on them because the influence of
this vertex to the empirical risk should be bounded. Other-
wise, if we treat every example equally, then these dependent
examples may dominate the training process and lead to the
risk bounds that do not converge to 0 (see the example in
Section 6.2).

Uniform Bounds Ralaivola and Amini (2015) prove an
entropy-base concentration inequality for networked data
using Janson’s decomposition, but the assumption there is
usually too restrictive to be satisfied (see Section A.2 in the
online appendix). To circumvent this problem, our method
uses the “low-noise” condition (also used in (Papa, Bellet,
and Clémençon 2016)) to establish uniform bounds, in ab-
sence of any restrictive condition imposed on the data distri-
bution.

3 Preliminaries

In this section, we begin with the detailed probabilistic
framework for CLANET, and then give the definition of
weighted ERM on networked examples.

3.1 Problem Statement

Consider a graph G = (V,E) with a vertex set V =
{1, . . . , n} and a set of edges E ⊆ {{i, j} : 1 ≤ i �= j ≤
n}. For each i ∈ V , a continuous random variable (r.v.) Xi,
taking its values in a measurable space X , describes features
of vertex i. The Xi’s are i.i.d. r.v.’s following some unknown
distribution PX . Each pair of vertices (i, j) ∈ E corresponds
to a networked example whose input is a pair (Xi, Xj) and
target value is Yi,j ∈ Y. We focus on binary classification
in this paper, i.e., Y = {0, 1}. Moreover, the distribution of
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Table 1: Summary of methods for CLANET.

Principles Graph type
With “low-noise”

condition
Without “low-noise”

condition

Unweighted ERM
(equally weighted)

Complete
graphs

Clémençon, Lugosi, and
Vayatis (Ann. Stat. 2008),
Papa, Bellet, and
Clémençon (NIPS 2016)

Biau and Bleakley
(Statistics and Decisions

2006)

General
graphs

Ralaivola and Amini (ICML
2015)

Usunier, Amini, and Galli-
nari (NIPS 2006),
Ralaivola, Szafranski, and
Stempfel (AISTATS 2009)

Weighted ERM
General
graphs

This paper Wang, Guo, and Ramon
(ALT 2017)

target values only depends on the features of the vertices it
contains but does not depend on features of other vertices,
that is, there is a probability distribution PY|X 2 such that for
every pair (i, j) ∈ E, the conditional probability

P [Yi,j = y | x1, . . . , xn] = PY|X 2 [y, xi, xj ] .

Example 1 (pairwise ranking). (Liu 2009) categorize rank-
ing problems into three groups by their input representations
and loss functions. One of these categories is pairwise rank-
ing that learns a binary classifier telling which document
is better in a given pair of documents. A document can be
described by a feature vector from the X describing title,
volume, . . . The target value (rank) between two documents,
that only depends on features of these two documents, is 1 if
the first document is considered better than the second, and
0 otherwise.

The training set S := {(Xi, Xj , Yi,j)}(i,j)∈E is de-
pendent copies of a generic random vector (X1, X2, Y1,2)
whose distribution P = PX ⊗ PX ⊗ PY|X 2 is fully deter-
mined by the pair (PX , PY|X 2). Let R be the set of all mea-
surable functions from X 2 to Y and for all r ∈ R, the loss
function �(r, (x1, x2, y1,2)) = 1y1,2 �=r(x1,x2).

Given a graph G with training examples S and a hypoth-
esis set R ⊆ R, the CLANET problem is to find a function
r ∈ R, with risk

L(r) := E[�(r, (X1, X2, Y1,2))] (1)

that achieves a comparable performance to the Bayes rule
r∗ = arg infr∈R L(r) = 1η(x1,x2)≥1/2, whose risk is de-
noted by L∗, where η(x1, x2) = PY|X 2 [1, x1, x2] is the re-
gression function.

The main purpose of this paper is to devise a principle to
select a classifier r̂ from the hypothesis set R and establish
bounds for its excess risk L(r̂)− L∗.

Definition 1 (“low-noise” condition). Let us consider a
learning problem, in which the hypothesis set is F and
the Bayes rule is f∗. With slightly abusing the notation,
this problem satisfies the “low-noise” condition if ∀f ∈
F , L(f) − L∗ ≥ Cθ(E[|f − f∗|])θ where C is a positive
constant.

As mentioned, the “low-noise” condition can lead to
tighter risk bounds. For this problem, we show that the “low-
noise” condition for the i.i.d. part of the Hoeffding decom-
position (Hoeffding 1948) of its excess risk can be always
obtained if the problem is symmetric (see Lemma 2).

Definition 2 (symmetry). A learning problem is symmet-
ric if for every xi, xj ∈ X , yi,j ∈ Y and r ∈ R,
�(r, (xi, xj , yi,j)) = �(r, (xj , xi, yj,i)).

Many typical learning problems are symmetric. For ex-
ample, pairwise ranking problem with symmetric functions
r in the sense that r(X1, X2) = 1− r(X2, X1) satisfies the
symmetric condition.

3.2 Weighted ERM

ERM aims to find the function from a hypothesis set that
minimizes the empirical estimator of (1) on the training ex-
amples S = {(Xi, Xj , Yi,j)}(i,j)∈E :

Lm(r) :=
1

m

∑
(i,j)∈E

�(r, (Xi, Xj , Yi,j)). (2)

where m is the number of training examples. In this paper,
we consider its weighted version, in which we put weights
on the examples and select the minimizer rw of the weighted
empirical risk

Lw(r) :=
1

‖w‖1
∑

(i,,j)∈E

wi,j�(r, (Xi, Xj , Yi,j)) (3)

where w is a fractional matching of G and ‖w‖1> 0.

Definition 3 (fractional matching). Given a graph G =
(V,E), a fractional matching w is a non-negative vector
(wi,j)(i,j)∈E that for every vertex i ∈ V,

∑
j:(i,j)∈E wi,j ≤

1.

4 Universal Risk Bounds

In this section, we use covering numbers as the complexity
measurement of hypothesis sets to prove that tighter univer-
sal risk bounds are always attained by the minimizers of the
weighted empirical risk (3).
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4.1 Covering Numbers

The excess risk L(rw) − L∗ depends on the hypothesis set
R whose complexity can be measured by covering number
(Cucker and Zhou 2007). A similar but looser result using
VC-dimension (Vapnik and Chervonenkis 1971) can be ob-
tained as well.

Definition 4 (covering numbers). Let (F ,Lp) be a metric
space with Lp-pseudometric. We define the covering number
N(F ,Lp, ε) be the minimal l ∈ N such that there exist l
disks in F with radius ε covering F . If the context is clear,
we simply denote N(F ,Lp, ε) by Np(F , ε).

In this paper, we focus on the L∞ covering number
N∞(F , ε) and suppose that it satisfies the following assump-
tion.

Assumption 1. There exists a nonnegative number β < 1
and a constant K such that logN∞(F , ε) ≤ Kε−β for all
ε ∈ (0, 1].

Similar to (Massart and Nédélec 2006) and (Rejchel
2012), we restrict to β < 1, whereas in the empirical process
theory this exponent usually belongs to [0, 2). This restric-
tion is needed to prove Lemma 1, which involves the integral
of logN∞(F , ε) through 0. Dudley (1974), Korostelev and
Tsybakov (1993) and Mammen and Tsybakov (1995) pre-
sented various examples of classes F satisfying Assumption
1. We also refer interested readers to (Mammen and Tsy-
bakov 1998, p. 1813) for more concrete examples of hy-
pothesis classes with smooth boundaries satisfying Assump-
tion 1.

4.2 Risk Bounds

Now we are ready to show the tighter risk bounds for
weighted empirical risk by the following theorem.

Theorem 1 (risk bounds). Let rw be a minimizer of the
weighted empirical risk Lw over a class R that satisfies As-
sumption 1. There exists a constant C > 0 such that for all
δ ∈ (0, 1], with probability at least 1 − δ, the excess risk of
rw satisfies

L(rw)− L∗ ≤ 2( inf
r∈R

L(r)− L∗) +
K ′C log(1/δ)

(1− β)2/(β+1)‖w‖1(
‖w‖β/(1+β)

1 +max
(
‖w‖2, ‖w‖max(log(1/δ))

1/2,

‖w‖∞(log(1/δ))
))

(4)
where ‖w‖max= maxi

√∑
j:(i,j)∈E w2

i,j and K ′ =

max(K,
√
K,K1/(1+β)).

According to Theorem 1, if the parameter δ is greater than
the value exp

(−min(‖w‖2/‖w‖∞, ‖w‖22/‖w‖2max)
)
,

then the risk bounds above are of the order
O
(
(1/‖w‖1)1/(1+β) + ‖w‖2/‖w‖1

)
. In this case,

our bounds are tighter than O(1/
√‖w‖1) as

‖w‖2/‖w‖1≤ 1/
√‖w‖1 (recall that w must be a

fractional matching and 0 < β < 1). If G is complete

and every example is equally weighted, the bounds of the
order O((1/n)1/(1+β)) achieve the same results as in (Papa,
Bellet, and Clémençon 2016)2

Remark. Theorem 1 provides universal risk bounds no mat-
ter what the distribution of the data is. The factor of 2 in front
of the approximation error infr∈R L(r)−L∗ has no special
meaning and can be replaced by any constant larger than
1 with a cost of increasing the constant C. Wang, Guo, and
Ramon (2017) obtain risk bounds that has a factor 1 in front
of the approximation error part, but in their result the bound
is O(1/

√‖w‖1). Hence, Theorem 1 improves their results if
the approximation error does not dominate the other terms
in the bounds.

In the rest of this section, we outline the main ideas to
obtain this result. We first define

qr(x1, x2, y1,2) := �(r, x1, x2, y1,2)− �(r∗, x1, x2, y1,2)

for every (x1, x2, y1,2) ∈ X×X×Y and let Λ(r) := L(r)−
L∗ = E[qr(X1, X2, Y1,2)] be the excess risk with respect to
the Bayes rule. Its empirical estimate by weighted ERM is

Λw(r) = Lw(r)− Lw(r∗)

=
1

‖w‖1
∑

(i,j)∈E

wi,jqr(Xi, Xj , Yi,j).

By Hoeffding’s decomposition (Hoeffding 1948), for all
r ∈ R, one can write

Λw(r) = Tw(r) + Uw(r) + Ũw(r), (5)

where

Tw(r) = Λ(r) +
2

‖w‖1
n∑

i=1

∑
j:(i,j)∈E

wi,jhr(Xi)

is a weighted average of i.i.d. random variables with
hr(Xi) = E[qr(Xi, Xj , Yi,j) | Xi]− Λ(r),

Uw(r) =
1

‖w‖1
∑

(i,j)∈E

wi,j(ĥr(Xi, Xj)

is a weighted degenerated (i.e., the symmetric kernel
ĥr(x1, x2) such that E[ĥr(X1, X2) | X1 = x1] = 0 for
all x1 ∈ X ) U -statistic ĥr(Xi, Xj) = E[qr(Xi, Xj , Yi,j) |
Xi, Xj ]− Λ(r)− hr(Xi)− hr(Xj) and

Ũw(r) =
1

‖w‖1
∑

(i,j)∈E

wi,j h̃r(Xi, Xj , Yi,j)

with a degenerated kernel h̃r(Xi, Xj , Yi,j) = qr(Xi, Xj

, Yi,j) − E[qr(Xi, Xj , Yi,j) | Xi, Xj ]. In the following, we
bound the three terms Tw, Uw and Ũw in (5) respectively.
Lemma 1 (uniform approximation). Under the same as-
sumptions as in Theorem 1, for any δ ∈ (0, 1/e), we have
with probability at least 1− δ,

sup
r∈R

|Uw(r)|≤ max(K,
√
K)C1

1− β
max

(‖w‖2log(1/δ)
‖w‖1 ,

2They consider the same range of δ.
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‖w‖max(log(1/δ))
3/2

‖w‖1 ,
‖w‖∞(log(1/δ))2

‖w‖1
)

and

sup
r∈R

|Ũw(r)|≤ max(K,
√
K)C2

1− β

(‖w‖2
‖w‖1

+max
(‖w‖max(log(1/δ))

3/2

‖w‖1 ,
‖w‖∞(log(1/δ))2

‖w‖1
))

where C1, C2 < +∞ are constants.

To prove Lemma 1, we show that Uw(r) and Ũw(r)
can be bounded by Rademacher chaos using classical sym-
metrization and randomization tricks combined with the
decoupling method. We handle these Rademacher chaos
by generalizing the moment inequality for U -statistics in
(Clémençon, Lugosi, and Vayatis 2008). Specifically, we uti-
lize the moment inequalities from (Boucheron et al. 2005)
to convert them into a sum of simpler processes, which can
be bounded by the metric entropy inequality for Khinchine-
type processes (see Arcones and Gine 1993, Proposition 2.6)
and Assumption 1. The detailed proofs can be found in Sec-
tion C in the online appendix.

Lemma 1 shows that the contribution of the degenerated
parts Uw(r) and Ũw(r) to the excess risk can be bounded.
This implies that minimizing Λw(r) is approximately equiv-
alent to minimizing Tw(r) and thus rw is a ρ-minimizer of
Tw(r) in the sense that Tw(rw) ≤ ρ + infr∈R Tw(r). In
order to analyze Tw(r), which can be treated as a weighted
empirical risk on i.i.d. examples, we generalize the results in
(Massart and Nédélec 2006) (see Section B in the online ap-
pendix). Based on this result, tight bounds for the excess risk
with respect to Tw(r) can be obtained if the variance of the
excess risk is controlled by its expected value. By Lemma 2,
Tw(r) fulfills this condition, which leads to Lemma 3.
Lemma 2 (condition leads to “low-noise”, (Papa, Bellet,
and Clémençon 2016, Lemma 2)). If the learning problem
CLANET is symmetric, then

Var [E[qr(X1, X2, Y1,2) | X1]] ≤ Λ(r) (6)

holds for any distribution P and any function r ∈ R.
Lemma 3 (risk bounds for i.i.d. examples). Suppose that r′
is a ρ-minimizer of Tw(r) in the sense that Tw(r′) ≤ ρ +
infr∈R Tw(r) and R satisfies Assumption 1, then there exists
a constant C such that for all δ ∈ (0, 1], with probability at
least 1− δ, the risk of r′ satisfies

Λ(r′) ≤ 2 inf
r∈R

Λ(r) + 2ρ+
CK1/(1+β) log(1/δ)

(‖w‖1(1− β)2)1/(1+β)
.

With Lemma 1 Lemma 3, now we are ready to prove The-
orem 1.

Proof of Theorem 1. Let us consider the Hoeffding decom-
position (5) of Λw(r) that is minimized over r ∈ R. The
idea of this proof is that the degenerate parts Uw(r) and
Ũw(r) can be bounded by Lemma 1. Therefore, rw is an
approximate minimizer of Tw(r), which can be handled by
Lemma 3.

Let A be the event that

sup
r∈R

|Uw(r)|≤ κ1,

where

κ1 =
C1

1− β
max

(‖w‖2log(1/δ)
‖w‖1 ,

‖w‖max(log(1/δ))
3/2

‖w‖1 ,

‖w‖∞(log(1/δ))2

‖w‖1
)

for an appropriate constant C1. Then by Lemma 1, P [A] ≥
1− δ/4. Similarly, let B be the event that

sup
r∈R

|Ũw(r)|≤ κ2.

where

κ2 =
C2

1− β

(‖w‖2
‖w‖1 +max

(‖w‖max(log(1/δ))
3/2

‖w‖1 ,

‖w‖∞(log(1/δ))2

‖w‖1
))

for an appropriate constant C2. Then P [B] ≥ 1− δ/4.
By (5), it is clear that, if both A and B happen, rw is a

ρ-minimizer of Tw(r) over r ∈ R in the sense that the dif-
ference between the value of this latter quantity at its min-
imum and rw is at most (κ1 + κ2). Then, from Lemma 3,
with probability at least 1−δ/2, rw is a (κ1+κ2)-minimizer
of Tw(r), which the result follows.

An intuition obtained from our result is how to choose
weights for networked data. By Theorem 1, to obtain tight
risk bounds, we need to maximize ‖w‖1 (under the con-
straint that this weight vector is a fractional matching),
which resembles the result of (Wang, Guo, and Ramon
2017) (but they only need to maximize ‖w‖1 and this is
why they end in the O(1/

√
ν∗(G)) bound), while mak-

ing ‖w‖2, ‖w‖max, ‖w‖∞ as small as possible, which ap-
pears to suggest putting nearly average weights on examples
and vertices respectively. These two objectives, maximizing
‖w‖1 and minimizing ‖w‖2, ‖w‖max, ‖w‖∞, seem to con-
tradict each other. In the next section, we discuss how to
solve this problem.

5 Weighting Vector Optimization

In this section, we first formulate the optimization problem
that minimizes the risk bounds in Theorem 1. Although this
optimization problem is not convex unless β = 0, which
usually means that there is no general efficient way to solve
it, we devise a fully polynomial-time approximation scheme
(FPTAS) to solve it.

Definition 5 (FPTAS). An algorithm A is a FPTAS for a
minimization problem Π, if for any input I of Π and ε > 0,
A finds a solution s in time polynomial in both the size of I
and 1/ε that satisfies fΠ(s) ≤ (1 + ε) · fΠ(s∗), where fΠ
is the (positive) objective function of Π and s∗ is an optimal
solution for I.

4248



5.1 Optimization Problem

According to Theorem 1, given a graph G, β ∈ (0, 1) and
δ ∈ (0, 1], one can find a good weighting vector with tight
risk bounds by solving the following program:

min
w

1

‖w‖1

(
‖w‖β/(1+β)

1 +max
(
‖w‖2,

‖w‖max(log(1/δ))
1/2, ‖w‖∞(log(1/δ))

))
s.t. ∀(i, j) ∈ E,wi,j ≥ 0 and ∀i,

∑
j:(i,j)∈E

wi,j ≤ 1

(7)
To get rid of the fraction of norms in the program above,

we consider a distribution p on edges pi,j := wi,j/‖w‖1
and then ‖w‖1≤ 1/maxi=1,...,n

∑
j:(i,j)∈E pi,j . Every dis-

tribution p corresponds to a valid weighting vector w. By
introducing two auxiliary variables a and b, solving the orig-
inal program (7) is equivalent to solving

min
a,b,p

a1/(1+β) + b

s.t. ∀(i, j) ∈ E, pi,j ≥ 0

∀(i, j) ∈ E, pi,j log(1/δ)− b ≤ 0

∀i,
∑

j:(i,j)∈E

pi,j − a ≤ 0

∀i,
⎛
⎝ ∑

j:(i,j)∈E

p2i,j log(1/δ)

⎞
⎠

1/2

− b ≤ 0

‖p‖2−b ≤ 0 and
∑

(i,j)∈E

pi,j = 1

(8)

Note that the constraints are all convex. If β = 0, e.g., the
hypothesis set is finite, then the objective function becomes
linear and thus (8) is a convex optimization problem that
can be solved by some convex optimization method (see
e.g., (Boyd and Vandenberghe 2004)) such as interior-point
method.

If β > 0, the objective function is not convex any more.
In fact, the program (8) becomes a concave problem that
may be optimized globally by some complex algorithms
(Benson 1995, Hoffman 1981) that often need tremendous
computation. Instead, one may only need to approximate it
using some efficient methods, e.g., Concave-Convex Proce-
dure (Yuille 2001) and Coordinate Descent (Wright 2015).
However, these methods lack in complexity analysis and
may lead to a local optimum.

5.2 A Fully Polynomial-time Approximation
Scheme

To solve the program (8) efficiently, we propose Algorithm
1 and show that it is a fully polynomial-time approximation
scheme for (8).
Theorem 2. Algorithm 1 is a FPTAS for the program (8).

3For example, some interior-point method.

Algorithm 1 FPTAS for weighting vector optimization.
Input: ε, β, δ and a graph G that contains n vertices and m

edges.
Output: An approximate optimal weighting vector p̄ for

the program (8).
1: Solve the following linear program (LP) efficiently3,

and obtain an ε-approximation amin;

min
a,p

a

s.t. ∀(i, j) ∈ E, pi,j ≥ 0

∀i,
∑

j:(i,j)∈E

pi,j − a ≤ 0

∑
(i,j)∈E

pi,j = 1

(9)

2: Let Grid := {amin + i · ε(1 + β)/n | i ∈ N and i ≤
n(1− amin)/ε(1 + β)} and Solutions := ∅.

3: for a ∈ Grid do
4: Use some efficient interior-point method to obtain

an ε-approximation of the following program and add
the solution (a, b,p) into Solutions.

min
b,p

b

s.t. ∀(i, j) ∈ E, pi,j ≥ 0

∀(i, j) ∈ E, pi,j log(1/δ)− b ≤ 0

∀i,
∑

j:(i,j)∈E

pi,j − a ≤ 0

∀i,
⎛
⎝ ∑

j:(i,j)∈E

p2i,j log(1/δ)

⎞
⎠

1/2

− b ≤ 0

‖p‖2−b ≤ 0 and
∑

(i,j)∈E

pi,j = 1

(10)

5: return the vector p̄ which makes a1/(1+β) + b smallest
from Solutions.

Proof. We first analyze the running time of this algorithm.
Note that 1/n ≤ a ≤ 1 if the graph is not empty. In

Algorithm 1, we first divide the problem into at most

1− 1/n

ε(1 + β)/n
=

n− 1

ε(1 + β)

convex programs, each of which produces an ε-approximate
solution by some interior-point method. Since interior-point
method is FPTAS for convex problems (Boyd and Vanden-
berghe 2004), solving each of these programs needs poly-
nomial time in the problem size m + n and 1/ε. Thus, the
complexity of Algorithm 1 is also polynomial in m+ n and
1/ε.

Now we show that this algorithm indeed results in an ε-
approximation of this optimal solution.

For any optimal solution (a∗, b∗,p∗), if a∗ achieves min-
imum for the program (9), we can find a′ in Grid (actually
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amin) such that

(a′)1/(1+β) ≤ (1 + ε)1/(1+β)(a∗)1/(1+β)

≤ (1 + ε)(a∗)1/(1+β).
(11)

Otherwise, we can also find a′ in Grid such that a∗ ≤ a′ <
a∗ + ε(1 + β)/n and thus

(a′)1/(1+β) ≤ (a∗ + ε(1 + β)/n)1/(1+β)

≤ (a∗)1/(1+β) + ε(1 + β)/n

1

1 + β
(a∗)−β/(1+β)

≤ (1 + ε)(a∗)1/(1+β)

(12)

The third inequality follows from the fact that 1/n ≤ a∗.
We assume that the optimal solution for the program (10)
is b = b′ when we fix a = a′. Because (a∗, b∗) is feasible
and a′ > a∗, (a′, b∗) is always a feasible solution for the
program (10), which leads to b′ ≤ b∗. Besides, interior-point
method can produce an ε-approximate solution b′′ such that

b′′ ≤ (1 + ε)b′ ≤ (1 + ε)b∗. (13)

Finally, we select the best approximate weighting vector p̄
from all solutions in Solutions. Combining (11), (12) and
(13), we have the objective value for p̄

(ap̄)
1/(1+β) + bp̄ ≤ (a′)1/(1+β) + b′′

≤ (1 + ε)((a∗)1/(1+β) + b∗).

6 Discussion

In this section, we first show that, according to our bounds,
equal weighting is indeed the best weighting scheme for
complete graphs. Then, we discuss the performance of this
equal weighting scheme when the graph is incomplete.

6.1 Complete Graphs

When graph G is complete, weighting all examples
equally gives the best risk bound, as all the terms
maxi=1,...,n

∑
j:(i,j)∈E pi,j , ‖p‖2, ‖p‖max and ‖p‖∞

achieve minimum. Compared to the results in (Wang, Guo,
and Ramon 2017), our theory puts additional constrains on
‖p‖2, ‖p‖max and ‖p‖∞ which encourages weighting ex-
amples fairly in this case, as illustrated in Figure 1. Besides,
this scheme, which coincides with U -statistics that average
the basic estimator applied to all sub-samples, produces the
smallest variance among all unbiased estimators (Hoeffding
1948).

6.2 Equal Weighting

Let us discuss further the equal weighting scheme that gives
every example the same weight. Denote by Δ(G) the maxi-
mum degree of G (note that this is not the maximum degree
of DG) and let pi,j = 1/m (recall that m is the number of
examples) for all (i, j) ∈ E. According to program (8), us-
ing equal weighting scheme, the risk bounds are of the order

O

(
(
Δ(G)

m
)1/(1+β) +

1√
m

)
, (14)

X1

X2 X3

(a)

X1

X2

X3

X4

(b)

X1 X2

X3 X4

(c)

X1 X2

X3 X4

(d)

Figure 1: (a) and (b) are two different data graphs, but both
of them correspond to the same line graph (a triangle). (c)
and (d) are two weighting schemes for a complete graph
formed by points X1, X2, X3, X4. Solid line means its
weight p > 0 while dash line means p = 0. (c): Weight every
example equally. (d): Only the two examples in an indepen-
dent subset get equally non-zero weights and other weights
are 0 (dashed line). Note that maxi=1,...,n

∑
j:(i,j)∈E pi,j of

these two weighting schemes are the same, but (c) has the
tighter risk bounds, as ‖p‖2, ‖p‖max and ‖p‖∞ of (c) are
smaller than that of (d) respectively.

if δ ∈ (exp(−m/Δ(G)), 1]. In some cases, such as bounded
degree graphs and complete graphs, this scheme provides
reasonable risk bounds. Note that Δ(G) is smaller than the
maximum size of cliques in its corresponding line graph DG

and χ∗(DG) is larger than the maximum size of cliques in
DG, these bounds above are always better than the bounds
of the order O(

√
χ∗(DG)/m) built by Janson’s decomposi-

tion.
However, as argued in Section 2, one can construct exam-

ples to illustrate that if we use the equal weighting strategy
when Δ(G) is large (e.g., if it is linear to m), the risk bounds
(14) are very large and do not converge to 0, while this prob-
lem can be solved by simply using a better weighting strat-
egy.
Example 2. Consider a data graph with |E|= m  1
and E consists of m/2 disjoint edges and m/2 edges shar-
ing a common vertex, then Δ(G) = m/2. Using the equal
weighting scheme, the risk bounds are of the order O(1)
that is meaningless. A much better weighting scheme of
this case is to weight the examples of disjoint edges with
2/(m + 2) while weight the examples of adjacent edges
with 4/m(m + 2), which provides risk bounds of the order

O
(
(1/m)1/(1+β) +

√
1/m

)
.

7 Conclusion

In this paper, we consider weighted ERM of the symmetric
CLANET problem and establish new universal risk bounds
under the “low-noise” condition. These new bounds are
tighter in the case of incomplete graphs and can be degener-
ate to the known tightest bound when graphs are complete.
Based on this result, one can train a classifier with a better
risk bound by putting proper weights on training examples.
We propose an efficient algorithm to obtain the approximate
optimal weighting vector and prove that the algorithm is a
FPTAS for the weighting vector optimization problem. Fi-
nally, we discuss two cases to show the merits of our new
risk bounds.
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