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Abstract

In Reinforcement Learning, an intelligent agent has to make
a sequence of decisions to accomplish a goal. If this sequence
is long, then the agent has to plan over a long horizon. While
learning the optimal policy and its value function is a well
studied problem in Reinforcement Learning, this paper fo-
cuses on the structure of the optimal value function and how
hard it is to represent the optimal value function. We show
that the generalized Rademacher complexity of the hypoth-
esis space of all optimal value functions is dependent on
the planning horizon and independent of the state and action
space size. Further, we present bounds on the action-gaps of
action value functions and show that they can collapse if a
long planning horizon is used. The theoretical results are ver-
ified empirically on randomly generated MDPs and on a grid-
world fruit collection task using deep value function approx-
imation. Our theoretical results highlight a connection be-
tween value function approximation and the Options frame-
work and suggest that value functions should be decomposed
along bottlenecks of the MDP’s transition dynamics.

1 Introduction

Reinforcement Learning (RL) (Kaelbling, Littman, and
Moore 1996; Sutton and Barto 1998) studies how to com-
pute an optimal control strategy for interacting with an en-
vironment. This interaction consists of the agent making a
decision by choosing an action, observing a reward for se-
lecting these actions, and observing a change in the envi-
ronment’s state. The goal of the agent is to find an action-
selection strategy, also called policy, which maximizes the
overall received rewards.

Typically, an optimal policy is learned by incrementally
improving an intermediate policy. To improve a policy, the
agent has to estimate its utility, which is expressed by a value
function mapping a state to the return of a specific policy.
For example, recent algorithms such as DQN (Mnih et al.
2015) learn how to play Atari 2600 games (Bellemare et al.
2013) by using a deep neural network architecture to approx-
imate the value function.

In this paper we consider Long Horizon Problems (LHPs)
where the agent is required to plan over many time steps
into the future. While recent work focused on the benefits
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of using a shorter than specified planning horizon (Jiang
et al. 2015), we focus on the case where using a shorter
planning horizon is not possible because the policy’s perfor-
mance would degrade too much. In this case, we show that
representing the optimal value function can become chal-
lenging, even if the agent was given the optimal state and
action values. Previous work focuses on mistake or sample
complexity bounds and characterizes how well state and ac-
tion values can be approximated given a certain amount of
data (Strehl et al. 2006; Strehl, Li, and Littman 2009). In
contrast to these results, this paper focuses on the structure
of the solution and considers how difficult representing the
optimal value function is.

We present two results. The first result characterizes the
value function space given a fixed finite state and action
space. We express the complexity of this solution space us-
ing the generalized Rademacher complexity (Balcan 2011;
Shalev-Shwartz and Ben-David 2014), which is defined on
subsets of Rn. This complexity measure of the optimal value
function space increases with the planning horizon, and is
independent of the state and action space size. Our result
suggests that large state spaces only make learning more dif-
ficult and do not have an effect on the complexity of the
solution space the agent has to search over. Subsequently
we present bounds on the action-gaps of the value function.
If action-gaps are large, value function approximation be-
comes easier (Bellemare et al. 2016b). However, if action-
gaps collapse, then function approximation methods may
not be able to recover the optimal action, because it lacks the
necessary “resolution” to distinguish the optimal action from
sub-optimal actions. We show that action-gaps can collapse
if the planning horizon is long. Further, our analysis sug-
gests that the state space should be partitioned along Bottle-
necks (Bacon 2013; Stolle and Precup 2002), and for each
partition a separate shorter planning horizon should be used.
To support our results we present two sets of experiments.
The first set is on randomly generated MDPs showing that
action-gaps can collapse depending on the transition struc-
ture of the MDP. The second set shows a fruit collection task
and compares approximations, made with neural networks,
of the optimal value function for different planning horizons.
We find that predicting long planning horizons is more chal-
lenging, despite the fact that ground truth state values were
used for training.
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Our results motivate the importance of studying different
value function representations in RL and we hope to pro-
vide guidance for the design of new algorithms. Even if the
learning problem in RL was solved, our results show that
representing the optimal value function for a long planning
horizon can be challenging. We present theoretical evidence
that frameworks such as Options (Sutton, Precup, and Singh
1999) or a Hierarchical decomposition (Dietterich 2000) are
beneficial when used with value function approximation.

2 Background

In RL the interaction between the agent and its environ-
ment is formalized as a Markov Decision Process (MDP)
M = 〈S,A, p, r, γ〉, where S is the state space and A is
the action space. State transitions follow a transition func-
tion p, where p(s, a, s′) = P{s′|s, a}, the probability of
reaching state s′ given that action a was selected at state
s. Rewards are specified by the expected reward function
r : S × A → R, and the discount factor γ ∈ [0, 1) favours
immediate rewards over long-term rewards. The value of a
policy π : S → A is defined by the value function

V π(s) = Eπ

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣∣s1 = s

]
, (1)

where the expectation is over all infinite length trajectories
that start at state s and select actions according to π. While
policies are typically evaluated for infinite-length trajecto-
ries, the discount factor γ ∈ [0, 1) is understood as a form
of finite horizon because short term rewards are weighted
exponentially stronger than long term rewards.

The action-value function, also called Q-function, evalu-
ates choosing a particular action at a given state and then
using the policy π afterwards:

Qπ(s, a) = Eπ

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣∣s1 = s, a1 = a

]
. (2)

The only difference between the action-value function Qπ

and the value function V π is that the expectation in Eq. (2)
considers trajectories that start with a particular action, while
Eq. (1) considers trajectories where actions are chosen ac-
cording to π.

Typically the value function V π is treated as the perfor-
mance objective and the agent tries to recover the optimal
policy π∗ that maximizes V π at every state. This objective
also depends on the discount factor γ which controls how
far the agent looks ahead for making a decision. If the dis-
count factor γ is increased, then the planning horizon also in-
creases. Hence the agent considers longer trajectories which
could generate more reward (because a trajectory can tran-
sition through positive reward transitions more often). Jiang
et al. (2015) formalize this intuition by considering a lower
discount factor for learning only. In this case, the algorithm
ignores the discount factor γ of the problem specification
and instead searches for a policy optimal for a discount fac-
tor γLEARN ≤ γ. However, using a lower discount factor for
planning incurs a loss because

∀s ∈ S, V π∗
γLEARN

γ (s) ≤ V
π∗
γ

γ (s), (3)

sl sm sr
a, r = 0 b, r = 0

p = ε

p = 1− ε
r = 1 r = 2

(a) Three State LHP MDP. The arrows indicate the possible tran-
sitions and are labelled with the action they correspond to (either
action a or b), the transition probability p, and the reward r. If
transitions are deterministic, or if both actions trigger the same
transition, the transition probability of action label is omitted. For
low values of ε the optimal action at the middle state sm is b, but
if ε is high it becomes unlikely to transition to sr and choosing
action a becomes optimal.
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(b) Q-values of the optimal
policy for the middle state
sm. The transition probabilities
were set using ε = 0.1. One can
see how the discount factor in-
fluences the optimal policy.
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(c) Value loss due to using
a shorter horizon for training.
The plot shows V π∗

LEARN (sm) for
different learning discount fac-
tors γLEARN.

Figure 1: Three State LHP Example.

where values V π
γ are computed using the discount factor γ

specified by the problem. In the remainder of this paper we
omit the discount factor subscript if only one discount factor
γ is used.

Using a learning objective different than the performance
objective to make a certain problem more tractable is com-
mon practice in machine learning and RL. Often this is
viewed as a form of regularization (e.g. Jiang et al. (2015)).
Decomposing the reward function and learning each com-
ponent independently (van Seijen et al. 2017; Laroche et al.
2017) is another approach to using a more tractable learning
objective. Intrinsic motivation (Barto, Singh, and Chentanez
2004) also uses a different learning objective by augment-
ing the reward function to encourage a certain behaviour,
for example efficient exploration (Strehl and Littman 2008;
Bellemare et al. 2016a).

3 Long Horizon Problems

For some control problems, a very long planning horizon is
needed to find a well performing policy. Figure 1 shows an
MDP where the discount factor γ has a direct effect on the
performance of the optimal policy. In this three state MDP
a reward of 2 can be received by selecting action b at the
middle state sm. However, if ε is low, then with high prob-
ability action b will transition back to state sm. To obtain
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the reward of 2, the agent has to repeatedly select action b
and incur many zero-reward steps before state sr is reached.
Alternatively, action a could be selected to receive a re-
ward of 1 within two steps. This trade-off between receiv-
ing a lower reward quickly versus receiving a higher reward
within many time steps can be controlled by the discount
factor. Figure 1 shows how changing the discount factor can
also change the optimal policy of the MDP and can cause a
sudden drop in the value of a policy: if a policy π∗

γLEARN
is op-

timal for a lower discount factor γLEARN but evaluated using a
discount factor γ > γLEARN, then a significantly lower value
can be observed, depending on γLEARN. Figure 1(b) shows
that values of the two actions at state sm are not far apart,
which highlights the importance of action-gaps. If action-
gaps are small, then an approximation of the Q-values may
not be accurate enough to determine the highest value ac-
tion and result in a sub-optimal policy of significantly lower
value, as shown in Figure 1(c). We call MDPs where learn-
ing with a smaller discount factor is not possible Long Hori-
zon Problems (LHPs).
Definition 1 (Long Horizon Problem (LHP)). An MDP
M = 〈S,A, p, r, γ〉 is a Long Horizon Problem (LHP) if
1. the discount factor γ is close to one, and
2. a lower discount factor cannot be used for learning with-

out incurring a significant performance loss, i.e. for all
states s, V

π∗
γLEARN

γ (s) � V
π∗
γ

γ (s).
The following sections show that using a high discount

factor can make representing the optimal value function dif-
ficult. Our analysis suggests that value functions should be
decomposed along bottle-necks in the MDP.

3.1 Increased Value Function Complexity

Existing literature on the sample complexity of different RL
algorithms shows that learning the optimal policy and value
function becomes more difficult as the discount factor γ is
increased (Strehl et al. 2006; Strehl, Li, and Littman 2009;
Jiang et al. 2015). In contrast to these learning bounds, this
section characterizes how difficult it is to represent the opti-
mal value function. First, we formally define the hypothesis
space of all possible optimal value functions given a fixed
state and action space, discount factor, and reward range,
and then we use the generalized Rademacher complexity to
quantify the complexity of this hypothesis space.

For finite state and action spaces the value function V π

can be expressed as a vector vvvπ of dimension |S|, where
each entry corresponds to the value of each state. Similarly,
we define a reward vector rrra where each entry is equal to
r(s, a) in expectation. The transition function p is written as
a state-to-state transition matrix PPP a for action a. Using this
vector notation the Q-values corresponding to action a can
be expressed as

qqqπa = rrra + γPPP avvv
π. (4)

If we say that a policy π is greedy with respect to some value
function vector vvv, then we mean that π selects actions greed-
ily using Q-values that are constructed using Eq. (4). Hence,
all arguments that apply to state conditioned value functions
also apply to Q-functions.

We make the following assumption.

Assumption 1 (Bounded Non-negative Rewards). For any
MDP M = 〈S,A, p, r, γ〉, the reward function satisfies

r(s, a) ∈ [0, Rmax], ∀(s, a) ∈ S ×A. (5)

This assumption is not restrictive because an MDP with
negative rewards can always be converted to an MDP with
non-negative rewards by shifting the reward function1 (Ng,
Harada, and Russell 1999; Von Neumann and Morgenstern
1945). Further, we consider Rmax as a known fixed constant.
Note that if negative rewards are present, then an MDP with
terminal states can be converted into an MDP satisfying As-
sumption 1 by also shifting the value of the terminal states.

Definition 2 (Value Function Space). For a finite state space
S , a finite action space A, and a discount factor γ ∈ [0, 1),

V∗
γ

def.
=

{
vvv ∈ R

|S|
≥0

∣∣∣∃p, r : vvv = vvvπ
∗

〈S,A,p,r,γ〉
}
, (6)

where vvvπ
∗

〈S,A,p,r,γ〉 is the value function vector of the optimal
policy of the MDP 〈S,A, p, r, γ〉.

Typically value functions can be upper bounded with

Vmax,γ = max
s

Eπ∗

[ ∞∑
t=1

γt−1rt

∣∣∣∣∣s1 = s

]
≤ Rmax

1− γ
, (7)

because at time step t the reward rt ≤ Rmax. Interestingly,
given a fixed state and action space, the space of all possi-
ble state values is dense and equals exactly the space of all
possible real valued vectors with entries that lie in

[
0, Rmax

1−γ

]
.

Lemma 1. For a fixed state space S , an action space A,
discount factor γ ∈ [0, 1), and reward functions satisfying
Assumption 1, the space of optimal value functions

V∗
γ =

{
vvv ∈ R

|S|
≥0

∣∣∣∣||vvv||∞ ≤ Rmax

1− γ

}
. (8)

The proof is listed in Appendix A. Lemma 1 highlights
an interesting connection between the planning horizon and
the complexity of value functions, and shows how the dis-
count factor γ controls the hypothesis space the algorithm
needs to be able to express and search over. If we pick two
different discount factors γ̃ and γ such that γ̃ < γ, then
V∗
γ̃ ⊂ V∗

γ . Intuitively, this can be understood as a hypothesis
space that becomes more complex as the planning horizon
becomes longer, because the hypothesis space of higher γ
contains the hypothesis space of smaller γ̃.

To formalize this intuition, we use the generalized
Rademacher complexity (Balcan 2011; Shalev-Shwartz and
Ben-David 2014) defined on sub-spaces of Rn. Let X ⊆ R

n,
then the generalized Rademacher complexity is defined as

R(X ) =
1

n
Eσσσ

[
sup
xxx∈X

n∑
i=1

σσσixxxi

]
, (9)

1Shifting the reward function by a constant results in a constant
shift of any value function.
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whereσσσ is the random Rademacher vector with entries being
either +1 or -1 with equal probability. We denote the ith en-
try of a vector xxx with xxxi. Similar to Zhang et al. (2016), we
interpret the generalized Rademacher complexity as a mea-
sure of how well vectors in a set X can represent a random
noise vector. If this complexity measure is high, then the set
X is expressive enough to capture a random noise vector
well and the entries within the vector xxx are only weakly cor-
related. Thus, the generalized Rademacher complexity also
increases if elements of X have a high maximum norm.

For fixed finite state and action spaces, a fixed discount
factor γ, and a fixed reward upper bound Rmax (Assump-
tion 1), an RL algorithm has to be able to represent any value
function in the space V∗

γ . We quantify the complexity of this
hypothesis space with the following theorem.
Theorem 1 (Value Function Hypothesis Space Complexity).
The generalized Rademacher complexity of V∗

γ is

R(V∗
γ ) =

Rmax

2(1− γ)
. (10)

The proof is listed in Appendix A. For a given Rmax (As-
sumption 1), Theorem 1 shows that the Rademacher com-
plexity of the hypothesis space V∗

γ increases with the plan-
ning horizon and tends to infinity as γ tends to one. This
result shows that the complexity of the hypothesis space an
algorithm has to represent increases as the planning horizon
increases. Further, the generalized Rademacher complexity
of V∗

γ is independent of state and action space sizes. The size
of the state and action space becomes relevant if one consid-
ers the learning problem, where an algorithm receives a cer-
tain amount of training data and then has to estimate the op-
timal value function. In this case, generalization bounds can
be derived (Jiang et al. 2015). Instead, we focus on the com-
plexity of the hypothesis space an algorithm has to represent.
Intuitively, this result shows that the state and action space
size only makes learning harder, and the planning horizon as
well as the reward range make both learning harder as well
as representing an optimal solution.

The generalized Rademacher complexity of V∗
γ depends

on the reward range because R(·) only measures the corre-
lation of the different entries of a vector vvv ∈ V∗

γ . If a vector
vvv ∈ V∗

γ is re-scaled by two, for example, then the correlation
between the vector entries decreases, and thus the general-
ized Rademacher complexity increases. Hence, if the reward
range increases, then an algorithm also has to represent a
much wider range of value functions. This effect is reflected
by the Rmax factor in Theorem 1.

3.2 Collapsing Action-Gaps

The planning horizon can have a significant impact on
the action-gaps of the optimal policy and in some cases
can cause action-gaps to collapse completely. At a state
s ∈ S the action-gap is at most maxa∈A Qπ∗

(s, a) −
mina∈A Qπ∗

(s, a), and the maximal action-gap over the
state space S is defined as

MAG(S) = max
s∈S

[
max
a∈A

Qπ∗
(s, a)−min

a∈A
Qπ∗

(s, a)

]
.

(11)

To bound the range of all action-gaps we focus on the maxi-
mal action-gap in an MDP, because depending on the MDPs
structure the minimal action-gap can always be zero.

If the value function is approximated, for example with a
deep neural network, then a large action-gap is important for
being able to reliably choose the action of highest value and
being able to reconstruct the optimal policy. If the maximal
action-gap is too low, then any approximation method may
not have the necessary “resolution” to distinguish optimal
from sub-optimal actions. In this case, the algorithm cannot
recover the optimal policy.

If the state space is fully connected then there always ex-
ists some policy π which can navigate from any arbitrary
start state s to any other state s′. The maximum number of
time steps needed to transition between any pairs of states
is called the stochastic diameter. We consider a variation of
the stochastic diameter that only considers any pairs of states
that lie in a fully connected subset SC ⊆ S . Note that if a
state subset is not fully connected, then the diameter is not
well defined, because the walking time between states need
not be finite if they are not reachable.

Definition 3 (Subset Stochastic Diameter). The subset
stochastic diameter of an MDP M = 〈S,A, p, r, γ〉 with
a fully connected state subset SC ⊆ S is defined as

DSC
= max

s,s̃∈SC×SC

min
π:S→A

Eπ [inf{t ∈ N, st = s̃}|s0 = s] .

Note that DS is equivalent to the usual definition of a
stochastic diameter, and we omit the subscript in this case.
Generalizing the definition of diameter to fully connected
subsets allows us to consider MDPs whose entire state space
is not fully connected (and contains terminal states), but
there still exist fully connected subsets SC ⊂ S . If an MDP
has a fully connected state subset SC with diameter DSC

,
we can prove an upper bound on the maximal action-gap.

Lemma 2 (Action-gap). Consider an MDP M =
〈S,A, p, r, γ〉 and a fully connected subset SC ⊆ S with
diameter DSC

. Then,

MAG(SC) ≤ (1− γDSC
+1)Vmax,γ , (12)

where Vmax,γ = maxs∈SC
V π∗

(s).

The proof is listed in Appendix B. Lemma 2 shows that
the maximal action-gap depends on the diameter and the up-
per bound of the value function. This means that if Vmax,γ
remains bounded as γ tends to one, then all action-gaps in
the MDP collapse. Using the value function bound Eq. (7)
the maximal action-gap of a fully connected MDP with di-
ameter D is bounded by

MAG(S) ≤ (1− γD+1)
Rmax

1− γ
. (13)

Depending on the transition dynamics of the MDP, action-
gaps can become independent of the discount factor γ if the
state space is not fully connected. Figure 2 shows one such
example. This MDP is not fully connected and the two outer
states sl and sr are terminal states. Because the agent can
only transition out of the middle state sm once and collect
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sl sm sr
a

r = Rmax
b

r = 0

r = 0 r = 0

(a) Disconnected Three State
MDP.
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(b) Action-gap at sm.

Figure 2: Disconnected Three State MDP Example. In this
MDP, the maximal action-gap does not depend on the dis-
count factor γ. Instead, it depends on the reward function
only. One can also come up with counter examples showing
the dependency on the transition function.

the one step return once, the planning horizon becomes in-
dependent of the action-gap at the middle state sm.

For not fully connected state spaces the maximum state
value Vmax,γ may remain bounded. Consider the three state
chain MDP in Figure 3(a), which is fully connected if ε > 0.
If ε = 0, then the subset SC = {sl, sm} ⊂ S is a fully con-
nected component with diameter DSC

, and Lemma 2 can
be applied for SC . However, the optimal policy may take
a trajectory started in SC outside the connected subset to a
state in S \ SC . In this case trajectories spend only a finite
amount of time in SC which allows us to find a much tighter
bound on the value function. This bound explains the van-
ishing action-gap shown in Figure 3(b).

Let N be the random variable indicating the number of
time steps a trajectory started in SC spends in the subset SC .
Further, assume that E[N ] < ∞2. Then the return generated
by a trajectory started at s ∈ SC can be split into two terms:

V π(s) = Eπ

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣∣s1 = s

]

= Eπ

[
N∑
t=1

γt−1r(st, at)

+
∞∑

t=N+1

γt−1r(st, at)

︸ ︷︷ ︸
≤Fmax

∣∣∣∣∣s1 = s

]
. (14)

If the return a trajectory generates outside of SC is upper
bounded with Fmax, then a tighter upper bound on the action-
gap can be derived.

2This assumption is not restrictive if transitions are stochastic
and if the probability of leaving the fully connected subset SC is
greater than zero. If E[N ] were unbounded, then one could equiv-
alently consider a smaller MDP with a fully connected state space
SC .

sl sm sra

b

a

b

a

p = ε
p = 1− ε

b, r = 1

(a) Three State Chain MDP. All transitions are indicated with an
arrow and labelled with their corresponding action and reward. The
only stochastic transition occurs when action b is selected at state
s2, where transition probabilities are indicated with p.
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(b) Action-gap of the Three State Chain MDP at state s0 for dif-
ferent ε settings. In the fully connected case (ε > 0) the action-gap
is strictly increasing, as predicted by before. For the disconnected
case (ε = 0) the action-gap decreases for very high γ values.

Figure 3: Three State Chain MDP

Lemma 3 (Finite Trajectory Value Bound). Let M =
〈S,A, p, r, γ〉 be an MDP with a fully connected subset of
the state space SC ⊂ S , and let N be a random variable in-
dicating the number of time steps a trajectory spends in SC

until a state outside of SC is reached. If E[N ] < ∞, then

max
s∈SC

V π∗
(s) = Vmax,γ ≤ 1− γE[N ]

1− γ
Rmax + Fmax. (15)

The proof of Lemma 3 is listed in Appendix B. For a tra-
jectory leaving a fully connected subset SC , the first state in
S \ SC can be understood as reaching a terminal state (from
the perspective of the subset SC). In this sense, the random
variable N can be also thought of as the termination time or
length of a trajectory in SC . Hence, a tighter value function
upper bound can be found, because rewards can only be col-
lected for a finite number of time steps in SC . The following
theorem summarizes our results.

Theorem 2 (Action-gap Bounds). Let M = 〈S,A, p, r, γ〉
be a fully connected MDP with diameter D. Then,

MAG(S) ≤ (1− γD+1)
Rmax

1− γ
. (16)

Let M = 〈S,A, p, r, γ〉 be an MDP with a fully connected
state subset SC ⊂ S . Further, assume that SC has a diameter
DSC

, and that for the optimal policy π∗ the expected number
of time steps spent in S is bounded, i.e. E[N ] < ∞. Then,

MAG(SC) ≤ (1− γDSC
+1)

(
1− γE[N ]

1− γ
Rmax + Fmax

)
,

(17)
where Fmax is the maximum value of the states outside SC

but reachable from SC in one step.
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Proof. The first bound restates Eq. (13). The second bound
follows by first applying Lemma 2 for a subset SC and then
bounding the maximum value using Lemma 3. In this case
we can also only upper bound the action-gaps for SC .

Figure 4 plots the bounds of Theorem 2 for different pa-
rameter settings. If the optimal policy takes any trajectory
out of a state sub-set SC , the value function across SC can
be bounded by a constant and we observe a reduced action-
gap for high γ values. Our bound suggests a discount factor
setting that allows for the largest possible action-gaps.

Vanishing action-gaps can become problematic if Q-
values are only approximated, especially when using func-
tion approximation methods such as deep neural networks.
Given some amount of data, suppose the function approxi-
mation method used can only capture an ε-close approxima-
tion to the true Q-function. If a high discount factor setting is
used, then the maximal action-gap may fall below ε and the
used algorithm cannot recover the optimal policy anymore.
Depending on the connectivity of the state space, value func-
tion approximation methods can become very difficult to use
if the discount factor γ is set too high.

4 Empirical Results

We conduct two sets of experiments: The first experiment
verifies the dependence of the discount factor γ on the max-
imal action-gap on randomly sampled MDPs. The second
experiment approximates the ground truth value function of
a grid-world fruit collection task with a deep neural network.

4.1 Randomly Generated MDPs

In this experiment, transition functions are randomly sam-
pled such that the state space is partitioned into four subsets
S1, S2, S3, and S4, and transitions occur within the same
subset with 1 − δ probability. We consider two cases: (1)
transitioning between different components are possible (ex-
cept for the terminal state), (2) only transitions to compo-
nents with a higher index are possible. Further, one state in
component S4 is terminal and transitioning into it results in
a +1 reward. All other rewards are set to zero.

Figure 5(a) shows the maximal action-gap for the first
three components (the reward state is in S4) in the partially
connected case. For components S1 and S2 the maximal
action-gap has a shape similarly to the predicted bound in
Figure 4. For component S3 no optimal discount factor less
than one is observed because high value states in S4 are
reached with higher probability. If the Fmax term from Theo-
rem 2 is high enough, then this term has a stronger effect on
the action-gap bound and can cause the maximal action-gap
to be monotonically increasing. These empirical results ver-
ify our analysis. For the fully connected case, Figure 5(b)
shows the same maximal action-gaps for all three compo-
nents. This is due to the fact that all three components S1,
S2, S3 can reach component S4 equally quickly. Interest-
ingly, the same drop in the maximal action-gap can be ob-
served even though the state space is fully connected (ex-
cluding the terminal state). The fact that transitions between
components occur with very low probability is enough to
cause the maximal action-gap to drop for high γ settings.

4.2 Value Function Approximation

We consider a fruit collection task where the agent navigates
through a 5× 5 grid and receives a +1 reward when visiting
a fruit cell. To support our theoretical results, a deep neural
network (DNN) is fitted to the ground-truth value function
V π∗
γ for various γ values. This learning problem is fully su-

pervised allowing us to show how well a DNN can capture
V π∗
γ while ignoring the problem of finding the optimal pol-

icy and estimating its value function.
Similar to the Taxi Domain (Dietterich 2000), we incor-

porate the location of the fruits into the state representation
using a bit vector, where the first 25 entries are used for
fruit positions, and the last 25 entries are used for the agent’s
position. The small (resp. large) DNN feeds this bit-vector
as the input layer into one (resp. two) dense hidden layers
with 50 (resp. 100 and then 50) units. The output is a single
state-value estimate. In order to assess the value function
complexity, we train for each discount factor setting a DNN
of fixed size on all the 1,386,375 possible states with their
ground truth values. Each DNN is trained over 500 epochs
using the Adam optimizer (Kingma and Ba 2014) with de-
fault parameters. To evaluate the DNN’s performance, ac-
tions are selected greedily by moving the agent up, down,
left, or right to the neighbouring grid cell of highest value.

Figure 6 compares the performance of the trained DNNs
with the ground truth solution. We also included the Trav-
elling Salesman Problem (TSP) solution, which is the min-
imum number of steps needed to collect all fruits. The per-
formance curves of the policies greedy with respect to the
trained DNNs present a pronounced U-shape. For small γ
values, the range of the value function (and thus the action-
gap) collapses quickly as one moves away from fruit loca-
tions. In this case, both models cannot reach a high enough
precision and hence perform worse for low γ values. Fur-
ther, for very high γ values action-gaps collapse, because
the Fruit Collection Task contains terminal states, which we
believe also results in reduced performance of both DNNs.
This effect on action-gaps aligns with our predictions pre-
sented in Section 3.2. The larger network performs better
for a much wider range of γ values than the smaller net-
work, whose performance degrades much more quickly for
γ ≥ 0.8. If larger DNNs have greater representational power
than smaller ones, this can be explained by the fact that a
larger DNN can better capture the more complex structure of
a value function with a high discount factor. This pattern in
Figure 6 corresponds to our complexity results presented in
Section 3.1. The poor performance for low and high γ values
can be explained by various other factors, such as requiring
a high precision approximation for all inputs, or a difficult
to optimize loss function where only poor local optima are
found. Increasing the number of training epochs or adjusting
the learning rate did not significantly improve performance.

5 Discussion

This paper presents a new approach to understanding the
representational complexity of value functions. Previous
work analyzed the learning problem in RL and provides mis-
take or sample bounds when an algorithm learns through in-
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Figure 4: Plot of the Maximal action-gap bounds presented
in Theorem 2. For both plots Rmax = 1. The right plot uses
a subset diameter of 10 and E[N ] = 10.
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Figure 5: Four Component MDP. The MDPs have four fully
connected state components of size 5 each, and two actions.
The plots show averages over 100 MDPs, using δ = 0.01.

Figure 6: Value function approximation performance for dif-
ferent γ values. The optimal policy solution is greedy with
respect to the ground-truth discounted return, which only
improves for γ ≥ 0.7.

teractions with its environment (Strehl et al. 2006; Strehl, Li,
and Littman 2009; Jiang et al. 2015). While these bounds all
depend on the discount factor and show that learning be-
comes harder for longer planning horizons, we show that
representing the optimal solution also becomes more diffi-
cult for longer planning horizons.

Current algorithms mostly focus on learning efficiently,
either through efficient exploration (Strehl and Littman
2008; Bellemare et al. 2016a), by using options (Sutton, Pre-
cup, and Singh 1999; Bacon, Harb, and Precup 2017), hier-
archies (Dietterich 2000; Kulkarni et al. 2016; Gopalan et al.
2017), or by decomposing the learning problem into a multi-
agent setting (van Seijen et al. 2017; Sunehag et al. 2017;
Russell and Zimdars 2003). We focus on how difficult rep-
resenting or approximating the optimal value function is.
In this context, action-gaps play an important role, be-
cause when action-gaps are small accurately approximat-
ing action-values and recovering the highest valued action
can become intractable. Approximating the value function

becomes easier if action-gaps are large (Bellemare et al.
2016b). However, Bellemare et al. present new Bellman op-
erators to increase the action-gap. In contrast to their work,
we analyze the dependency of an MDP’s action-gaps on the
planning horizon and look at the structure of the transition
dynamics. Our results indicate that the state space should
be partitioned into fully connected subsets along bottle-
necks (Şimşek and Barto 2004; Stolle and Precup 2002;
Bacon 2013) and for each partition a separate lower discount
factor should be used to allow for the largest possible action-
gaps. This aligns well with our value function complexity
result: If such a partitioning would be present, then the op-
timal policy for each state partition could be solved with a
separate value function that has a lower complexity than a
single value function that solves the entire problem.

While well chosen options can make planning easier and
reduce the sample complexity of a learning algorithm (Brun-
skill and Li 2014), we present theoretical evidence suggest-
ing the benefits of options or value function decomposition
methods in terms of representing the solution to a Long
Horizon Problem. Further, we present first results indicating
how options can be beneficial for value function approxima-
tion, which to our knowledge is an open question (Bacon
and Precup 2015; Bacon, Harb, and Precup 2017).

6 Conclusion

We presented a novel perspective on why LHPs can be hard
learning problems by only considering the complexity of
representing the optimal solution and isolating the repre-
sentation problem from the learning problem. Our analysis
indicates that in order to allow the highest possible action-
gaps (to make value function approximation easier), the state
space should be partitioned along bottle-necks and each par-
tition should use its own reduced discount factor. We hope
that our results can guide the design of novel options and
value function decomposition algorithms.

A Value Function Complexity Theorem

Proof of Lemma 1. The set equality is proven by first show-
ing vvv ∈ V∗

γ =⇒ vvv ∈
{
vvv ∈ R

|S|
≥0

∣∣∣||vvv||∞ ≤ Rmax
1−γ

}
and then
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vvv ∈
{
vvv ∈ R

|S|
≥0

∣∣∣||vvv||∞ ≤ Rmax
1−γ

}
=⇒ vvv ∈ V∗

γ .
For the first direction, we observe that the value of each

state lies in
[
0, Rmax

1−γ

]
. The bound Rmax

1−γ is also tight because
we can choose a reward function that always returns Rmax.
Further, if only zero rewards are given, then vvv = 000.

For the reverse direction, we choose an arbitrary vvv ∈ R
|S|
≥0

with ||vvv||∞ ≤ Rmax
1−γ and construct an MDP M such that vvv

is the value function of the optimal policy in M . We assume
that M only contains self transitions and that for every action
a the state-to-state transition matrix PPP a equals the identity
matrix. The reward function is set to

r(s, a) =

{
(1− γ)vvvs if a = a∗

0 otherwise,
(18)

where vvvs is the entry of the vector vvv corresponding to state
s and a∗ ∈ A is fixed but arbitrary. By construction, the
optimal policy π∗ for M is to select action a∗ at every state.
Because all transitions are deterministic self-loops, we have
that V π∗

(s) =
∑∞

t=1 γ
t−1(1− γ)vvvs = vvvs, and vvv ∈ V∗

γ .

Theorem 1 presents an identity for the Rademacher com-
plexity of the value function hypothesis space V∗

γ . The em-
pirical Rademacher complexity (Shalev-Shwartz and Ben-
David 2014) can be generalized to vector spaces X ⊆
R

n (Balcan 2011) and is then defined as

R(X ) =
1

n
Eσσσ

[
sup
xxx∈X

n∑
i=1

σixi

]
, (19)

which measures the ability of X to fit a random Rademacher
noise vector σσσ whose entries σi either equal +1 or -1. In-
tuitively, the generalized Rademacher complexity measures
the correlation between entries in the same vector for some
subspace of R

n. The generalized Rademacher complexity
decreases as the entries of a vector become more correlated.

Proof of Theorem 1. The generalized Rademacher com-
plexity of V∗

γ can be computed by simplifying defini-
tion (19). By Lemma 1 we can assume that the entries of
every vector vvv ∈ V∗

γ lies in the interval
[
0, Rmax

1−γ

]
, hence

R(V∗
γ ) =

1

|S|Eσσσ

⎡
⎣ sup
vvv∈V∗

γ

|S|∑
i=1

σivi

⎤
⎦

=
1

|S|Eσσσ

⎡
⎣ |S|∑

i=1

1[σi=1]
Rmax

1− γ

⎤
⎦ (20)

=
1

|S| Eσσσ

⎡
⎣ |S|∑

i=1

1[σi=1]

⎤
⎦

︸ ︷︷ ︸
=|S|/2

Rmax

1− γ
=

Rmax

2(1− γ)
. (21)

Line (20) follows by vi ∈
[
0, Rmax

1−γ

]
and

∑|S|
i=1 σivi can only

be maximized by setting all vi = Rmax
1−γ where σi = 1 and

vi = 0 where σi = 0. Line (21) follows by σi being +1 or -1
with equal probability, so in expectation half of the entries
of the vector σσσ will be +1 and the other half -1.

B Action-gap Theorem

Proof of Lemma 2. First, we observe that

MAG(SC) = max
s∈SC

[
max
a∈A

Qπ∗
(s, a)−min

a∈A
Qπ∗

(s, a)

]

= max
s∈SC

[
V π∗

(s)−min
a∈A

Qπ∗
(s, a)

]
≤ Vmax,γ − min

sC∈SC ,a∈A
Qπ∗

(sC , a), (22)

where Vmax,γ = maxs∈SC
V π∗

(s). Using the non-negative
reward assumption, the second term can be bounded with

min
sC ,a

Qπ∗
(sC , a) = min

sC ,a

[
r(sC , a) + γEs′

[
V π∗

(s′)
]]

≥ γmin
sC ,a

Es′
[
V π∗

(s′)
]
= γ min

sC∈SC

V π∗
(sC) (23)

To lower bound the minimal state value, we repeat a similar
argument presented in the proof of (Jiang, Singh, and Tewari
2016, Proposition 4): Since V π∗

evaluates the optimal pol-
icy, we can lower bound V π∗

with the value function of the
policy πto-V-max which minimizes the distance to the state of
value Vmax,γ . Then,

min
s∈SC

V π∗
(s) ≥ Eπto-V-max

[
γTVmax,γ

]
≥ γE[T ]Vmax,γ (by Jensen’s Ineq.)

≥ γDSC Vmax,γ . (24)

The last step follows by the Diameter Definition 3, because
E[T ] ≤ DSC

. Substituting (24) into (23) and the result
into (22) results in MAG(SC) ≤ (1− γDSC

+1)Vmax,γ .

Proof of Lemma 3. It suffices to show a bound on V π∗
(s)

for arbitrary s ∈ SC . Let N be a random variable describing
the number of time steps a trajectory started in SC spends in
SC and assume that E[N ] < ∞. For any state s ∈ SC ,

V π∗
(s) = Eπ∗

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣∣s1 = s

]

≤ Eπ∗

[
N∑
t=1

γt−1Rmax + γNFmax

∣∣∣∣∣s1 = s

]

≤ Eπ∗

[
1− γN

1− γ
Rmax + γNFmax

∣∣∣∣s1 = s

]

≤ 1− γE[N ]

1− γ
Rmax + Eπ∗

[
γNFmax

∣∣s1 = s
]

(25)

≤ 1− γE[N ]

1− γ
Rmax + Fmax, (Using γ < 1)

where (25) follows using Jensen’s Inequality and Fmax is an
upper bound on the value of all states outside of SC that are
reachable within one time step.
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