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Abstract

A classic approach toward zero-shot learning (ZSL) is to
map the input domain to a set of semantically meaningful at-
tributes that could be used later on to classify unseen classes
of data (e.g. visual data). In this paper, we propose to learn
a visual feature dictionary that has semantically meaningful
atoms. Such a dictionary is learned via joint dictionary learn-
ing for the visual domain and the attribute domain, while
enforcing the same sparse coding for both dictionaries. Our
novel attribute aware formulation provides an algorithmic so-
lution to the domain shift/hubness problem in ZSL. Upon
learning the joint dictionaries, images from unseen classes
can be mapped into the attribute space by finding the attribute
aware joint sparse representation using solely the visual data.
We demonstrate that our approach provides superior or com-
parable performance to that of the state of the art on bench-
mark datasets.

Introduction

Most classification algorithms require a large pool of man-
ually labeled data to learn the optimal parameters of a clas-
sifier. The recent exponential growth of visual data, grow-
ing need for fine-grained multi-label annotations, and con-
sistent emergence of new classes (e.g. new products), how-
ever, has rendered manual labeling of data practically in-
feasible. Transfer learning has been proposed as a remedy
to deal with this issue (Lampert, Nickisch, and Harmeling
2014). The idea is to learn on a limited number of classes
and then through knowledge transfer, learn how to classify
images from the new classes either using only few labeled
data points, i.e. few- or one-shot learning (Fei-Fei, Fergus,
and Perona 2006), or in the extreme case without any la-
beled data, i.e. zero-shot learning (ZSL) (Lampert, Nickisch,
and Harmeling 2014). These transfer learning approaches
address the challenge of annotated data unavailability and
open the door towards lifelong learning machines.

To learn target classes with no labeled data, one needs
to be able to generalize the relationship between the source
data and its labels to the target classes. To address this chal-
lenge in ZSL, an intermediate shared space (i.e. the space
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of semantic attributes) is exploited, which allows for knowl-
edge transfer from labeled classes to the unlabeled classes.
The overarching idea in ZSL is that the source and the tar-
get classes share common attributes. The semantic attributes
(e.g., can fly, is green) are often provided as accessible
side information (e.g. verbal description of a class), which
uniquely describe classes of data. To achieve ZSL the rela-
tionship between seen data and its corresponding attributes
are first learned in the training phase. In testing stage, this
allows for parsing a target image from an unseen class into
its semantic attributes to predict corresponding label.

To clarify the ZSL core idea and the required steps to
perform ZSL, consider the following sentence: ‘Tardigrades
(also known as water bears or moss piglets) are water-
dwelling, eight-legged, segmented micro animals’1. Given
this textual description, one can easily identify the crea-
ture in Figure 1, Left as a Tardigrade even though she may
have never seen one before. Performing this task requires
three capabilities: 1) parsing the textual information into se-
mantic features, so we can describe the class Tardigrade
as ‘bear-like’, ‘piglet-like’, ‘water-dwelling’, ‘eight-legged’,
‘segmented’, and ‘microscopic animal’, 2) parsing the im-
age into its visual attributes (See Figure 1), and 3) match-
ing the parsed visual features to the parsed textual informa-
tion which often requires extensive prior knowledge. Recent
textual features extracted from large unlabeled text corpora;
including word2vec (Mikolov et al. 2013) and glove (Pen-
nington, Socher, and Manning 2014) enable a learner to effi-
ciently parse textual information. Deep convolutional neural
networks (CNNs) (Krizhevsky, Sutskever, and Hinton 2012;
Simonyan and Zisserman 2014; He et al. 2016; Huang et al.
2017) have revolutionized the field of computer vision and
they enable a learner to extract rich visual features from im-
ages. An extensive body of work in the field of ZSL is con-
centrated on modeling the relationship between visual fea-
tures and semantic attributes (Palatucci et al. 2009; Akata et
al. 2013; Socher et al. 2013; Norouzi et al. 2014; Lampert,
Nickisch, and Harmeling 2009; Zhang and Saligrama 2015;
Ding, Shao, and Fu 2017).

In this paper, we provide a novel approach to model the
relationship between the visual features and the textual in-
formation. Our specific contributions are:

1Source: Wikipedia
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Figure 1: High-level overview of our approach. Left & right:
visual and attribute feature extraction and representation us-
ing union of subspaces. Middle: constraining the dictionary
atoms to be coupled.

1. New formulation of ZSL via joint dictionary learning

2. Extending the classic joint dictionary learning formula-
tion to an attribute aware formulation that addresses the
domain shift/adaptation problem (Kodirov et al. 2015)

3. Demonstrating the benefit of a transductive learning
scheme to reduce the hubness phenomenon (Dinu, Lazari-
dou, and Baroni 2014; Shigeto et al. 2015)

Related Work

ZSL methods often focus on learning the relationship be-
tween the visual space and the semantic attribute space.
Palatucci et al. (Palatucci et al. 2009) proposed to learn a
linear compatibility between the visual space and the seman-
tic attribute space. Lampert et al. (Lampert, Nickisch, and
Harmeling 2014) posed the problem as an attribute classifi-
cation problem and learned individual binary attribute clas-
sifiers in the training stage and used the ensemble of classi-
fiers to map visual features to their semantic attributes. Yu
and Aloimonos (Yu and Aloimonos 2010) approached the
problem from a probabilistic point of view and proposed to
use generative models to learn prior distributions for image
features with respect to each attribute. Li et al. (Li, Guo,
and Schuurmans 2015) considered multi-class classification
over all classes (observed and unseen) and tackled the ZSL
problem directly, and without introducing intermediate pre-
diction steps. Deutsch et al. (Deutsch et al. 2017) used a
multi-scale manifold regularization scheme in a transductive
setting to address the ZSL problem.

Recently, various authors have proposed to embed im-
age features and semantic attributes in a shared metric space
(i.e. a latent embedding) (Akata et al. 2013; Romera-Paredes
and Torr 2015; Zhang and Saligrama 2015) while forcing
the embedded representations for image features and their
corresponding semantic attributes to be similar. Akata et al.
(Akata et al. 2013), for instance, proposed a model that em-
beds the image features and the semantic attributes in a com-
mon space (i.e. a latent embedding) where the compatibility
between them is measured via a bilinear function. Similarly,

Romera-Paredes and Torr (Romera-Paredes and Torr 2015)
utilized a principled choice of regularizers that enable the
authors to derive a simple closed form solution to learn a lin-
ear mapping that embeds the image features and the seman-
tic attributes in a low dimensional shared linear subspace.
Others have identified the major problems and challenges in
ZSL to be the domain shift problem (Kodirov et al. 2015)
and the hubness phenomena (Dinu, Lazaridou, and Baroni
2014; Shigeto et al. 2015). In short, the domain shift prob-
lem raises from the fact that the distribution of features cor-
responding to the same attribute for seen and unseen images
could be very different (e.g. stripes of tigers versus zebras).
The hubness problem, on the other hand, states that there
will often be attributes that are similar (have small distance)
to vastly different visual features in the embedding space.
Various transductive approaches are presented to overcome
the hubness problem (Fu et al. 2015).

The use of sparse dictionaries to model the space of vi-
sual features and semantic attributes as union of linear sub-
spaces has been shown to be an effective modeling scheme
in recent ZSL papers (Isele, Rostami, and Eaton 2016;
Kodirov et al. 2015; Zhang and Saligrama 2015). Zhang
et al. (Zhang and Saligrama 2015) showed that modeling
the test image features as sparse linear combination of train
image features is beneficial and formulated a ZSL method
based on this principal. Using similar ideas, Isele et. al.
(Isele, Rostami, and Eaton 2016) used joint dictionary learn-
ing to learn a dynamical control system using high level
task descriptors in an online lifelong zero-shot reinforce-
ment learning setting. Our JD-ZSL build on similar ideas
as in (Isele, Rostami, and Eaton 2016; Kodirov et al. 2015)
and introduce a novel ZSL method based on learning joint
sparse dictionaries for the image features and the semantic
attributes. At its core, JD-ZSL is equipped with a novel en-
tropy minimization regularizer, similar to te one proposed by
(Grandvalet and Bengio 2004), which facilitates the solution
to the ZSL problem by reducing the domain shift effect. We
further show that a transductive approach applied to our at-
tribute aware JD-ZSL formulation provide state-of-the-art or
close to state-of-the-art performance on various benchmark
datasets. Finally it should be noted that the idea of using
joint dictionaries to map data from a given metric space to a
second related space was pioneered by Yang et al. (Yang et
al. 2010) in super-resolution applications.

Figure 1 captures the gist of our idea. Visual features
are extracted via CNNs, left sub-figure, and the semantic
attributes are provided via textual feature extractors like
word2vec or via human annotations, right sub-figure. Both
the visual features and the semantic attributes are assumed
to be representable sparsely in a shared union of linear sub-
spaces, left and right sub-figures. The idea here is then to
enforce the sparse representation vectors for both domains
be equal and thus effectively couple the learned dictionar-
ies for the the visual and the attribute spaces. The intuition
from a co-view perspective (Yu et al. 2014) is that both the
visual and the attribute features provide information about
the same class, and therefore each can augment the learn-
ing of the other. Each underlying class is common to both
views, and one can find task embeddings that are consis-
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tent for both the visual features and their corresponding at-
tributes. Having learned the coupled dictionaries, zero-shot
classification can be performed by mapping images of un-
seen classes into the attribute space, where classification can
be simply done via nearest neighbor or via a more elaborate
scheme like label propagation. Given the coupled nature of
the learned dictionaries, an image could be mapped to its
semantic attributes by first finding the sparse representation
with respect to the visual dictionary, and next the attribute
dictionary can be used to recover the attribute vector from
the joint sparse representation which could then be used for
classification.

Problem Statement and Technical Rational

Consider a visual feature metric space X of dimension p, an
attribute metric space Z with dimension q, and a class label
set Y with dimension K which ranges over a finite alphabet
of size K (images can potentially have multiple member-
ships to the classes). As an example X = R

p for the vi-
sual features extracted from a deep CNN and Z = {0, 1}q
when a binary code of length q is used to identify the pres-
ence/absence of various characteristics in an object (Lam-
pert, Nickisch, and Harmeling 2014). We are given a la-
beled dataset D = {((xi; zi),yi)}Ni=1 of features of seen
images and their corresponding semantic attributes, where
∀i : xi ∈ X , zi ∈ Z , and yi ∈ Y . We are also given the
unlabeled attributes of unseen classes D′ = {z′j}Mj=1 (i.e. we
have access to textual information for a wide variety of ob-
jects but do not have access to the corresponding visual in-
formation). In ZSL the set of seen and unseen classes are dis-
joint and it is assumed that the semantic attributes are class
specific. The goal is then to use D and D′ to learn the rela-
tionship between X and Z so when an unseen image (image
from an unseen class) is fed to the system, its corresponding
attributes and consequently its label could be predicted. Fi-
nally, we assume that ψ : Z → Y is the mapping between
the attribute space and the label space. We show that ψ can
be learned to be a nearest neighbor classifier, or a more elab-
orate labeling scheme.

To further clarify the problem, consider an instance of
ZSL in which features extracted from images of horses and
tigers are included in seen visual features X = [x1, ...,xN],
where xi ∈ X , but X does not contain features from images
containing zebras. On the other hand, the semantic attributes
contain information of all seen Z = [z1, ..., zN] for zi ∈ Z
and unseen Z ′ = [z′1, ..., z

′
M] for z′j ∈ Z classes including

the zebras. Intuitively, by learning the relationship between
the image features and the attributes “has hooves”, “has
mane”, and “has stripes” from the seen images, we must be
able to assign an image of a zebra to its corresponding at-
tribute, while we have never seen a zebra before. More for-
mally, we want to learn the mapping φ : X → Z which re-
lates the visual space and the attribute space. Having learned
this mapping, for an unseen image one can recover the corre-
sponding attribute vector using the image features and then
classify the image using the mapping y = (ψ◦φ)(x), where
‘◦’ represents function composition.

Technical Rational

For the rest of our discussion we assume that X = R
p,

Z = R
q , and Y = R

K . The simplest ZSL approach is to as-
sume that the mapping φ : Rp → R

q is linear, φ(x) =WTx
where W ∈ R

p×q , and then minimize the regression error
1
N

∑
i ‖WTxi − zi‖22 to learn W . Despite existence of a

closed form solution forW , the solution contains the inverse
of the covariance matrix of X , ( 1

N

∑
i(xix

T
i ))

−1, which re-
quires a large number of data points for accurate estimation.
To overcome this problem, various regularizations are con-
sidered for W . Decomposition of W as W = PΛQ, where
P ∈ R

p×l, Λ ∈ R
l×l, Q ∈ R

l×q , and l < min(p, q) can
also be helpful. Intuitively, P is a right linear operator that
projects x’s into a shared low dimensional subspace, Q is
a left linear operator that projects z into the same shared
subspace, and Λ provides a bi-linear similarity measure in
the shared subspace. The regression problem then can be
transformed into maximizing 1

N

∑
i x

T
i PΛQzi, which is a

weighted correlation between the embedded x’s and z’s.
This is the essence of many ZSL techniques including Akata
et al. (Akata et al. 2013) and Romera-Paredes et al.(Romera-
Paredes and Torr 2015). This technique can be extended
to nonlinear mappings using kernel methods. However, the
choice of kernels remains a challenge.

On the other side of the spectrum, the mapping φ : Rp →
R

q can be chosen to be highly nonlinear, as in deep neural
networks (DNN). Let a DNN be denoted as φ(.; θ), where
θ represents the parameters of the network (i.e. synaptic
weights and biases). ZSL can then be addressed by mini-
mizing 1

N

∑
i ‖φ(xi; θ) − zi‖22 with respect to θ. Alterna-

tively, one can nonlinearly embed x’s and z’s in a shared
metric space via deep nets, f(x; θx) : R

p → R
l and

g(z; θz) : R
q → R

l, and maximize their similarity mea-
sure in the embedded space, 1

N

∑
i f(xi; θx)

T g(zi; θz), as
in (Lei Ba et al. 2015). Nonlinear methods are computa-
tionally expensive, require a large training dataset, and can
easily overfit to the training data. On the other hand, linear
ZSL algorithms are efficient, easy to train, and generalizable
but they are often outperformed by nonlinear methods. As a
compromise, we model nonlinearities in data distributions
as union of linear subspaces with coupled dictionaries. By
jointly learning the visual and attribute dictionaries, we ef-
fectively model the relationship between the metric spaces.
This allows a nonlinear scheme with a computational com-
plexity comparable to linear techniques. Finally, The core
assumption in our work is that: there exists a joint sparse
space that encodes both the visual features and the seman-
tic attributes. This assumption holds when the visual fea-
tures and the semantic attributes could be modeled as union
of low-dimensional subspaces and more importantly when
there exist correspondences between these subspaces.

Zero Shot Learning using Joint Dictionaries

Joint dictionary learning has been proposed to couple re-
lated features from two metric spaces (Yang et al. 2010;
Shekhar et al. 2014). Yang et al. (Yang et al. 2010) pro-
posed the approach to tackle the problem of image super-
resolution, while Shekhar et al. (Shekhar et al. 2014) used
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joint dictionary learning for multimodal biometrics recogni-
tion. Following a similar framework, the gist of our approach
is to learn the mapping φ : Rp → R

q through two dictionar-
ies, Dx ∈ R

p×r and Dz ∈ R
q×r that model X and [Z,Z ′],

respectively, where r > max(p, q). The goal is to find a
shared sparse representation (i.e. sparse code) ai for xi and
zi, such that xi = Dxai and zi = Dzai. Below we describe
the training and testing phases of our method.

The standard dictionary learning is based on minimizing
the empirical average estimation error 1

N ‖X −DxA‖2F on a
given training set X , where �1 regularization on A enforces
sparsity:

D∗
x, A

∗ =argmin
Dx,A

1

N
‖X −DxA‖2F + λ‖A‖1

s.t. ‖D[i]
x ‖22 ≤ 1.

(1)

Here λ is the regularization parameter, which controls the
sparsity of A, and D

[i]
x is the i’th column of Dx. Alter-

natively, following the Lagrange multiplier technique, the
Frobenius norm ofDx could be used as a regularizer in place
of the costraint.

In our joint dictionary learning framework, we aim to
learn Dx and Dz such that they share the sparse coefficients
A to represent the seen visual features X and their corre-
sponding attributes Z, respectively. An important twist here
is that the attribute dictionary, Dz , is also required to spar-
sify the semantic attributes of other (unseen) classes, Z ′. To
obtain such coupled dictionaries we propose the following
optimization,

argmin
Dx,A,Dz ,B

{ 1

Np
(‖X −DxA‖2F +

pλ

r
‖A‖1)+

1

Nq
‖Z −DzA‖2F +

1

Mq
(‖Z′ −DzB‖2F+

qλ

r
‖B‖1)} s.t.:‖D[i]

x ‖22 ≤ 1, ‖D[i]
z ‖22 ≤ 1

(2)

The above formulation combines the dictionary learning
problem for X and Z by coupling them via A, and also en-
forces Dz to be a sparsifying dictionary (i.e. a good model)
for Z ′. The optimization in Eq (2), while convex in each in-
dividual term, is highly nonconvex in all variables. Follow-
ing the approach proposed in (Yang et al. 2012) we use an
Expectation Maximization (EM) like alternation to update
dictionaries Dx and Dz . To do so, we rewrite the optimiza-
tion problem into the following two steps:

1. For a fixed Dx update Dz via the following optimization:

min
Dz ,B

1

Mq
(‖Z′ −DzB‖2F +

qλ

r
‖B‖1)+

1

Nq
‖Z −DzA

∗‖2F

s.t. A∗ = argmin
A

1

p
‖X −DxA‖2F +

λ

r
‖A‖1,

‖D[i]
z ‖22 ≤ 1

(3)

A is found using a Lasso optimization problem, and
FISTA (Beck and Teboulle 2009) is used to update Dz

and B.

2. For a fixed Dz update Dx via:

min
Dx

‖X −DxA
∗‖2F

s.t. A∗ = argmin
A

1

q
‖Z −DzA‖2F +

λ

r
‖A‖1,

‖D[i]
x ‖22 ≤ 1,

(4)

which involves a Lasso optimization together with a sim-
ple regression with a close form solution.

Zero-Shot Prediction of Unseen Attributes

In the testing phase we are only given the extracted features
from unseen images, X ′ = [x′

1, ...,x
′
l] ∈ R

p×l and the goal
is to predict their corresponding semantic attributes. Here
we introduce a progression of methods, which clarifies the
logic behind our method, and enables us to efficiently predict
the semantic attributes of the unseen images based on the
learned dictionaries in the training phase.

Attribute Agnostic Prediction The attribute agnostic
(AAg) formulation, is the naive way of predicting semantic
attributes from an unseen image x′

i. In the AAg formulation,
we first find the sparse representation αi of the unseen im-
age x′

i with respect to the learned dictionary Dx by solving
the following Lasso problem,

αi = argmina
1

p
‖x′

i −Dxa‖22 +
λ

r
‖a‖1. (5)

Here, one can simply use αi and compare it to the sparse
codes of the unseen attributes, bj . In our experiments, how-
ever, we found that this approach is not suitable in our JD-
ZSL setting as the dictionaries could have redundant atoms
that cause two similar image features or attributes to have
different sparse codes. Instead, we do the comparison in the
attribute space and predict the corresponding attribute via
ẑi = Dzαi. In the attribute-agnostic formulation, the sparse
coefficients are calculated without any information from the
attribute space. Not using the information from the attribute
space would lead to the domain shift problem, in the sense
that there is no guarantee that αi would reconstruct a mean-
ingful attribute in Z . In other words, ẑi = Dzαi could be
far from the unseen attributes, z′m, and therefore could not
be assigned to any known attribute with high confidence. To
alleviate this problem we progress to an extended solution,
which we denote as the Attribute Aware (AAw) prediction.

Attribute Aware Prediction In the attribute-aware (AAw)
formulation we would like to find the sparse representation
αi to not only approximate the input visual feature, x′

i ≈
Dxαi, but also provide an attribute prediction, ẑi = Dzαi,
that is well resolved in the attribute space and does not suffer
from the domain shift problem. Note that, ideally ẑi = z′m
for some m ∈ {1, ...,M}. To achieve this we define the soft
assignment of ẑi to z′m, denoted by pm, using the Student’s
t-distribution as a kernel to measure similarity between ẑi =
Dzαi and z′m,

pm(αi) =
(1 +

‖Dzαi−z′
m‖2

2

ρ )−
ρ+1
2∑

k(1 +
‖Dzαi−z′

k‖2
2

ρ )−
ρ+1
2

(6)
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where ρ is the kernel parameter. The choice of t-distribution
is due to its long tail and low sensitivity to the choice of
kernel parameter, ρ. Ideally, pm(αi) = 1 for some m ∈
{1, ...,M} and pj(αi) = 0 for j 	= m. The ideal soft-
assignment p = [p1, p2, ..., pM ] then would be one-sparse
and therefore would have minimum entropy. This motivates
our attribute-aware formulation, which regularizes the AAg
formulation in Equation 5 with the entropy of p.

αi = argmina
1

p
‖x′

i −Dxa‖22 + γh(p(a))︸ ︷︷ ︸
g(a)

+
λ

r
‖a‖1 (7)

where h(p(a)) = −∑
m pm(a)log(pm(a) is the entropy

term, and γ is the regularization parameter. Such entropy
minimization scheme has been successfully used in several
work (Grandvalet and Bengio 2004; Huang, Tran, and Tran
2016) whether as a sparsifying regularization or to boost
the confidence of classifiers. The entropy regularization en-
forces the prediction to be close to one of the unseen at-
tributes, but it can potentially backfire in that a low-entropy
solution (aligned to a prototype) doesn’t necessarily have to
be the correct solution. In our experiments, we consistently
observed higher performance for the AAw formulation.

The entropy regularization turns the optimization in Eq.
(7) into a nonconvex problem. In (Huang, Tran, and Tran
2016), the authors use a generalized gradient descent ap-
proach similar to FISTA to optimize this non-convex prob-
lem. We use a similar scheme to optimize the objective func-
tion in Eq. (7). In short, we relax g(a) using its quadratic ap-
proximation around the previous estimation of a, ak−1, and
update a as the solution of the following problem

ak = argmina
1

2t
‖a− (ak−1 − t∇g(ak−1))‖22 +

λ

r
‖a‖1

(8)
Eq. (8) is a LASSO problem, but the solution is readily

available via soft-thresholding (ak−1− t∇g(ak−1)). It only
remains to compute ∇g:

∇g(a) =
1

p
DT

x (Dxa− x′)−
γ

(
∑

k lk(a))
2

∑

m

{(1 + log(pm(a)))×

(
∂lm(a)

∂a

∑

k

lk(a)− lm(a)
∑

k

∂lk(a)

∂a
)}

where:

lm(a) = (1+
‖Dza− z′m‖22

ρ
)−

ρ+1
2 ,

∂lm(a)

∂a
= −ρ+ 1

ρ
(DT

z (Dza− z))(1+
‖Dza− z′m‖22

ρ
)−

ρ+3
2 .

Due to the non-convex nature of the objective function, a
good initialization is needed to achieve a sensible solution.
Therefore we initialize α from the solution of the AAg for-
mulation. Finally the corresponding attributes are estimated
by ẑi = Dzαi, for i = 1, ..., l.

From Predicted Attributes to Labels

In order to predict the image labels, one needs to assign the
predicted attributes, Ẑ = [ẑ1, ..., ẑl], to the M attributes of
the unseen classes Z ′ (i.e. prototypes). In other words, we
still need to learn the mapping ψ : Z → Y . Here we con-
sider learning ψ in two ways, namely the inductive approach
and the transductive approach. In the inductive scheme the
inference could be performed using a nearest neighbor (NN)
approach in which label of each individual ẑi is assigned to
be the label of its nearest neighbor z′m. In such approach
the structure of ẑi’s is not taken into account and the hub-
ness problem could easily degrade the performance of the
ZSL algorithm. Looking at the t-SNE embedding visualiza-
tion (Maaten and Hinton 2008) of ẑi’s and z′m’s in Figure 2,
details are explained later, it can be seen that NN does not
provide an optimal label assignment.

In the transductive setting, on the other hand, the attributes
for all test images (i.e. unseen) are first predicted to form
Ẑ = [ẑ1, ..., ẑl]. Next, a graph is formed on [Z ′, Ẑ] where
the labels for Z ′ are known and the task is to infer the la-
bels of Ẑ. This problem can be formulated as a graph-based
semi-supervised label propagation (Zhou et al. 2003). We
follow the work of Zhou et al. (Zhou et al. 2003) and spread
the labels of Z ′ to Ẑ. More precisely, we first reduce the
dimension of [Z ′, Ẑ] via t-SNE and then form a graph in
the lower dimension and perform label propagation on this
graph. Figure 2 reconfirms that label propagation in a trans-
ductive setting could significantly improve the performance
of ZSL and resolve the hubness and domain shift issues as
also demonstrated in (Fu et al. 2015).

Theoretical Discussion

The core step for ZSL in our scheme is to compute the joint
sparse representation for an unseen image. Note that in the
testing phase, the sparse representation a is estimated using
(5), while the dictionaries are learned for optimal sparse rep-
resentations as in (2). More specifically, we need to demon-
strate that the following two problems lead to close approx-
imations:
α∗ = argmina ‖x−Dxa‖22 + ‖z−Dza‖22 + λ‖a‖1

= argmina ‖
[
x
z

]
−
[
Dx

Dz

]
a‖22 + λ‖a‖1

α+ = argmina ‖x−Dxa‖22 + λ‖a‖1

(9)

in order to conclude that we can solve for α+ in ZSL
regime (i.e. prediction attributes for unseen images) to es-
timate α∗ with good accuracy. Note that the major chal-
lenge in the testing phase is that we are using the dictio-
nary Dx ∈ R

p×r to find the shared sparse parameters, α,
instead of D̃ = [Dx, Dz]

T ∈ R
(p+q)×r. To study the effect

of this change, we first point out that Eq. (1) can be inter-
preted as result of a maximum a posteriori (MAP) inference
from a Bayesian perspective. This means that from a proba-
bilistic perspective, α’s are drawn from a Laplace distribu-
tion and the dictionaryD is a Gaussian matrix with elements
drawn i.i.d: dij ∼ N (0, σ2). This means that given a drawn
dataset, we learn MAP estimate of a Gaussian matrix. To
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Figure 2: Attributes predicted from the input visual features for the unseen classes of images for AWA dataset using our attribute
agnostic and attribute aware formulations respectively in top and bottom rows. The nearest neighbor and label propagation
assignment of the labels together with the ground truth labels are visualized. It can be seen that the attribute aware formulation
together with the label propagation scheme overcomes the hubness and domain shift problems. Best seen in color.

analyze the effect, we rely on the following theorem about
LASSO with Gausian matrices (Negahban et al. 2009):

Theorem 1 (Negahban et al. 2009): Let αs be the unique
sparse solution of the linear system x = Da with ‖a‖0 = k
and D ∈ R

p×n. If α‡ is the LASSO solution for the sys-
tem from noisy observations, then with high probability:

‖αs −α‡‖2 ≤ c′
√
k log r

p , where c′ ∈ R
+ is a constant

which depends on the loss function which measures the data
fidelity, here the Euclidean distance.

Lemma 1: Attribute prediction error in ZSL setting is
upper-bounded proportional to ( 1√

p + 1√
q+p

).

Proof: note that if α∗ is a solution of [xT, zT]T = D̃a,
trivially it is also a solution for x = Dxa as well. Now using
Theorem 1:
‖z∗ − z+‖ ≤ ‖Dx(α

∗ − α+)‖
‖Dx(α

∗ − α+)‖ ≤ c′‖Dz‖2
√
k log r(

1√
p
+

1√
q + p

)

Note we have used the triangular inequality first and then the
theorem in the above deduction and ‖ · ‖2 denotes spectral
norm for a matrix. This result accords with intuition. First,
it advises sparseness of z, i.e. smaller k, decreases the error
which means that a good sparsifying dictionary would lead
to less ZSL error. Second, the error is proportional to in-
verse of both

√
p and

√
p+ q, meaning that rich visual and

attribute descriptions lead to minimal ZSL error. This sug-
gests that for our approach to work, existence of a good spar-

sifying dictionary as well as rich visual and attribute data is
essential. Finally, although increasing the number of dictio-
nary columns r intuitively can improve sparsity, i.e. decrease
k, this result shows that it can potentially increase the ZSL
error, and should be tuned for an optimal performance.

Experiments

We carried out experiments on three benchmark ZSL
datasets and empirically evaluated the resulting performance
against nascent ZSL algorithms.

Datasets: We conducted our experiments on three bench-
mark datasets namely: the Animals with Attributes (AwA1)
(Lampert, Nickisch, and Harmeling 2014), the SUN at-
tribute (Patterson and Hays 2012), and the Caltech-UCSD-
Birds 200-2011 (CUB) bird (Wah et al. 2011) datasets. The
AwA1 dataset is a coarse-grained dataset containing 30475
images of 50 types of animals with 85 corresponding at-
tributes for these classes. Semantic attributes for this dataset
are obtained via human annotations. The images for the
AWA1 dataset are not publicly available; therefore we use
the publicly available features of dimension 4096 extracted
from a VGG19 convolutional neural network, which was
pretrained on the ImageNet dataset. Following the conven-
tional usage of this dataset, 40 classes are used as source
classes to learn the model and the remaining 10 classes are
used as target (unseen) classes to test the performance of
zero-shot classification. The SUN dataset is a fine-grained
dataset and contains 717 classes of different scene categories
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Method SUN CUB AwA
(Romera-Paredes and Torr 2015)‡ 82.10 - 75.32

(Zhang and Saligrama 2015)† 82.5 30.41 76.33
(Zhang and Saligrama 2016)† 82.83 42.11 80.46

(Bucher, Herbin, and Jurie 2016)† 84.41 43.29 77.32
(Xu et al. 2017)† 83.5 53.6 84.5
(Li et al. 2017) † - 61.79 87.22

(Ye and Guo 2017)† 85.40 57.14 85.66
(Ding, Shao, and Fu 2017)† 86.0 45.2 82.8

(Wang and Chen 2017)† - 42.7 79.8
(Kodirov, Xiang, and Gong 2017)† 91.0 61.4 84.7
Ours AAg (5) 82.05 35.81 77.73
Ours AAw (6) 83.22 38.36 83.33
Ours Transductive AAw (TAAw) 85.90 47.12 88.23
Ours TAAw hit@3 94.52 58.19 91.73
Ours TAAw hit@5 98.15 69.67 97.13

Table 1: Zero-shot classification results for three benchmark
datasets. All methods use VGG19 features trained on the Im-
ageNet dataset and the original continuous (or binned) at-
tributes provided by the datasets. Here, † indicates that the
results are extracted directly from the corresponding paper,
‡ indicates that the results are reimplemented with VGG19
features, and − indicates that the results are not reported.

with 20 images per category (14340 images total). Each im-
age is annotated with 102 attributes that describe the corre-
sponding scene. Following (Lampert, Nickisch, and Harmel-
ing 2014), 707 classes are used to learn the dictionaries and
the remaining 10 classes are used for testing. The CUB200
dataset is a fine-grained dataset containing 200 classes of
different types of birds with 11788 images with 312 at-
tributes and boundary segmentation for each image. The at-
tributes are obtained via human annotation. The dataset is
divided into four almost equal folds, where three folds are
used to learn the model and the fourth fold is used for test-
ing. For both SUN and CUB200-2011 datasets we used fea-
tures from VGG19 trained on the ImageNet dataset, which
have 4096 dimensions.

Tuning parameters: The optimization regularization pa-
rameters λ, ρ, γ as well as the number of dictionary atoms
r need to be tuned for maximal performance. We used stan-
dard k-fold cross validation to search for the optimal param-
eters for each dataset. After splitting the datasets accordingly
into training, validation, and testing sets, we used perfor-
mance on the validation set for tuning the parameters in a
brute-force search. we used the common evaluation metrics
in ZSL, flat hit@K classification accuracy, to measure the
performance. This means that a test image is said to be clas-
sified correctly if it is classified among the top K predicted
labels. We report hit@1 rate to measure ZSL image classifi-
cation performance and hit@3 and hit@5 for image retrieval
performance. Each experiment is performed ten times and
the mean is reported in Tabel 1.

Results: Figure 2 demonstrates the 2D t-SNE embed-
ding for predicted attributes and actual class attributes of
the AWA dataset. The actual attributes are depicted by col-
ored circles with black edges. The first column of Figure
2 demonstrates the attribute prediction for AAg and AAw

formulations. It can be clearly seen that the entropy regular-
ization in AAw formulation improves the clustering quality,
decreases data overlap, and reduces the domain shift prob-
lem. The nearest neighbor label assignment is shown in the
second column, which demonstrates the domain shift and
hubness problems with NN label assignment in the attribute
space. The third column of Figure 2 shows the transductive
approach in which a label propagation is performed on the
graph of the predicted attributes. Note that the label propa-
gation addresses the domain shift and hubness problem and
when used with the AAw formulation provides significantly
better zero-shot classification accuracy. In this figure each
colored cluster corresponds to predicted labels for images
from one unseen class and the black o close to that cloud de-
notes the attribute description embedding for that class. This
figure visualizes very helpful information. First, it can be
seen that our algorithm can cluster the dataset in the attribute
space. This explains why ZSL can be performed. Second, it
is clear that entropy regularization improves the clustering
quality and decreases data overlap which stems from enforc-
ing the predictions to be clustered. Finally, it demonstrates
why nearest neighbor search is a naive approach for final la-
bel assignment. We conclude label propagation techniques
are more suitable.

Performance comparison results are summarized in Table
1. As pointed out by Xian et al. (Xian et al. 2017) the variety
of used image features (e.g. various DNNs and various com-
binations of these features) as well as the variation of used
attributes (e.g. word2vec, human annotation), and different
data splits make direct comparison with the ZSL methods in
the literature very challenging. In Table 1 we provide a fair
comparison of our JDZSL performance to the recent meth-
ods in the literature. All compared methods use the same
visual features (i.e. VGG19) and the same attributes (i.e.
the continuous or binned) provided in the dataset. Table 1
provides a comprehensive explanation of the shown results.
Note that our method achieves state-of-the-art or close to
state-of-the-art performance.

We report the hit@1 accuracy on unseen classes in the
first nine rows of the table to measure image classification
performance. For the sake of transparency and to provide
the complete picture to the reader, we included results for
the AAg formulation using nearest neighbor, the AAw us-
ing nearest neighbor, and AAw using the transductive ap-
proach, denoted as transductive attribute aware (TAA) for-
mulation. As it can be seen, while the AAw formulation
significantly improves the AAg formulation and adding the
transductive approach (i.e. label propagation on predicted at-
tributes) to the AAw formulation further boosts the classifi-
cation accuracy, as also shown in Figure 2. In addition, our
approach leads to better and comparable performance in all
three datasets which include zero-shot scene and object rec-
gonition tasks. More importantly, while the other methods
can perform well on a specific dataset, our algorithm leads
to competitive performance on all the three datasets.

Conclusions
We proposed a novel ZSL formulation, which models the
relationship between visual features and semantic attributes
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via joint sparse dictionaries. The proposed method effec-
tively projects the data into a shared subspace of sparse co-
efficients. We demonstrated that while a classic joint dic-
tionary learning approach could still suffer from the do-
main shift problem, an entropy regularization scheme can
help with this phenomenon and provide superior zero-shot
performance. In addition, we demonstrated that a transduc-
tive approach towards assigning labels to the predicted at-
tributes can boost the performance considerably and lead
to state-of-the-art zero-shot classification. Finally, we com-
pared our method to the nascent approaches in the liter-
ature and demonstrated its competitiveness on benchmark
datasets.
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