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Abstract

Linear regression methods are commonly used by both re-
searchers and data scientists due to their interpretability and
their reduced likelihood of overfitting. However, these meth-
ods can still perform poorly if little labeled training data is
available. Typical methods used to overcome a lack of la-
beled training data somehow involve exploiting an outside
source of labeled data or large amounts of unlabeled data.
This includes areas such as active learning, semi-supervised
learning and transfer learning, but in many domains these ap-
proaches are not always applicable because they require ei-
ther a mechanism to label data, large amounts of unlabeled
data or additional sources of sufficiently related data. In this
paper we explore an alternative, non-data centric approach.
We allow the user to guide the learning system through three
forms of feature-level guidance which constrain the parame-
ters of the regression function. Such guidance is unlikely to
be perfectly accurate, so we derive methods which are robust
to some amounts of noise, a property we formally prove for
one of our methods.

1 Introduction

Linear regression methods are often used in practice due to
their simplicity, interpretability and resilience to overfitting
(Friedman, Hastie, and Tibshirani 2001), but they can per-
form poorly if too little labeled data is available. This situa-
tion can be addressed by several branches of Machine Learn-
ing and Statistics, such as semi-supervised learning, trans-
fer learning and active learning, but each of these areas has
strong data requirements that may not always hold. Semi-
supervised learning (Zhu 2005) methods can make use of
unlabeled data, but they require large amounts of it and for
the “cluster assumption” to hold (Singh, Nowak, and Zhu
2009). Active Learning (Settles 2010) methods can increase
the amount of labeled data, but require both unlabeled data
and a trained human annotator. Transfer learning (Pan and
Yang 2010) methods can incorporate external data sets, but
require the data to be sufficiently similar in order for stan-
dard transfer learning techniques to succeed.

We explore an alternative, non-data centric approach - us-
ing knowledge the user may have about the features. While
Machine Learning methods generally treat features as a
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“black box,” users may have a wealth of understanding about
the relationships between the features and the output. For ex-
ample, a scientist performing a longevity study may be con-
fident that life expectancy decreases with respect to smoking
habits.

We propose three forms of feature level knowledge which
we use to constrain the solution space of linear regression,
thereby reducing the necessary amount of training data.
These constraints are on: parameter signs, relative parame-
ter effect ordering and pairwise parameter signs. This allows
a rich set of feature level guidance to be provided, such as
“feature i will have a positive impact on the label” or “fea-
ture j will have a more positive impact than feature k.” This
feature level guidance forms a new set of additional informa-
tion users can provide even in situations where generating
additional labeled data is not possible or cost effective. This
type of guidance can be feasible in domains where the fea-
tures have a semantic meaning, such as text, medicine, ed-
ucation and sales data. Additionally, in order to account for
potential errors in the guidance, we develop methods of har-
nessing this knowledge which are robust to certain amounts
of noise in the feature guidance.

Little work has been done on feature-level guidance for
regression. The most ubiquitous line of work on constraining
the parameters of linear methods is through sparsity promot-
ing regularization such as the Lasso (Tibshirani 1996) and
the Elastic Net (Zou and Hastie 2005), but these methods do
not take in additional guidance the user may be able to pro-
vide. The closest work to our own is on “signed” regression
which alleviates the small data problem by taking the stan-
dard least squares objective and allowing guidance on the
signs of the coefficients of the parameters (Breiman 1995;
Chen and Plemmons 2009; Slawski and Hein 2011; Slawski,
Hein, and others 2013), but they do not have mechanisms for
allowing noisy guidance (i.e. the user is sometimes wrong)
and are limited to just constraints on the coefficient signs.

Our contributions are:

• We introduce Parameter Sign Constrained Regression
(PSCR), which allows the user to provide guidance on pa-
rameter signs and, unlike previous work, is robust to noisy
sign guidance (Section 3).

• We introduce Parameter Relative Constrained Regression
(PRCR), which incorporates relative ordering of the coef-
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ficients (Section 3). This allows a user to state that feature
i should have a greater positive impact on the label than
feature j.

• We introduce Pairwise Parameter Sign Constrained Re-
gression (PPSCR), which constrains pairs of coefficients
to have the same signs. This allows a user to state that fea-
tures i and j should have the same signed impact on the
label, but is unsure if it is a positive or negative impact.

• We propose a novel transfer mechanism for generating
the guidance which makes weaker assumptions than prior
work, allowing the use of transfer learning in areas where
the source data is significantly different from the target
(Section 3.5).

• We present a theoretical analysis of our PSCR formulation
and an associated bound which shows it can perform well
even when the sign guidance is noisy (Section 4).

• Our experimental results show our formulations outper-
form natural baselines and prior work (Section 5).

2 Previous Work

Our work falls into the general area of how to overcome lim-
itations in the amount of training data through feature level
guidance.

Regularization. A typical method is to modify regular-
izers to penalize the use of certain features such as in the
Ridge or the Lasso (Hoerl and Kennard 1970; Yuan and
Lin 2006). However, this requires the user to specify sepa-
rate real-valued regularization parameters for each feature,
a challenging task because these values do not necessar-
ily correspond to some physical quantity. Methods exist for
“learning” these regularization parameters (Boer and Hafner
2005), but this makes the learning problem harder by in-
creasing the number of parameters that need to be learned,
rather than making it easy.

Feature Level Guidance For Classification. Another
line of work considers “labeled features” (Raghavan,
Madani, and Jones 2006; Raghavan and Allan 2007; Druck,
Mann, and McCallum 2008; Settles 2011). These meth-
ods generally have human annotators create associations be-
tween features and classes, followed by somehow convert-
ing these features into instances and using standard super-
vised learning algorithms. Alternatively, other methods use
the guidance to modify priors over the solution space. These
works are different from ours because they only apply to
the classification setting, they do not provide any theoreti-
cal justification for their methods and they do not explore
alternative forms of feature guidance.

Previous Work on Signed Regression. Signed and non-
negative least squares are extensions of least squares which
allow the user to specify the signs of the estimated parame-
ters (Breiman 1995; Slawski and Hein 2011; Slawski, Hein,
and others 2013). While these methods have a stronger the-
oretical basis, they are not robust to noisy guidance and can
perform arbitrarily poorly if the signed guidance is incorrect.
They also do not explore alternative forms of guidance.

Transfer Learning: Transfer learning is a setting where
the user wishes to improve performance on a target task

with data from one or more source tasks (Pan and Yang
2010). Standard methods for transfer learning generally re-
duce to somehow transferring the prediction made by the
source function, either through regularization or by making
the source predictions a new feature (Daume III and Marcu
2006; Tommasi, Orabona, and Caputo 2010; Gong et al.
2012; Fernando et al. 2013; Kuzborskij and Orabona 2013;
Patricia and Caputo 2014). However, if the source data is
not sufficiently similar then using transfer learning can lead
to worse performance than simply using the target data (Pan
and Yang 2010).

Relative Instance Guidance: A line of work similar in
spirit but orthogonal in approach considers alternative forms
of supervision for regression (Zhu and Goldberg 2006;
2007; Sculley 2010; Gress and Davidson 2016). In contrast
to the standard instance-label guidance used in regression,
they consider “relative” supervision of the form “f(xi) >
f(xj)”. While both lines of research mitigate the small data
problem through alternative forms of guidance, theirs is at
the instance level while ours is at the feature level.

3 Our Method

In this section we discuss our methods for adding guidance
to regression. First we explore a formulation for signed guid-
ance which is noise tolerant and then we explore relative and
pairwise sign constraints. After presenting our framework
we describe practical methods for generating this guidance.
As in the standard supervised learning setting, for all meth-
ods we assume we are given a labeled data set {X,Y }where
X is a n× p matrix of n instances and p features and Y is a
n× 1 vector of responses.

3.1 Parameter Sign Constrained Regression

We assume that, in addition to the training data, we also have
access to e, a p × 1 vector encoding a set of sign guidance
where ei is 1 if the sign of the coefficient should be non-
negative, −1 if nonpositive and 0 if no guidance is provided
for the coefficient. Previous work has modeled this guidance
using hard constraints, but this can lead to overfitting the
sign guidance. Thus, our goal is to model this problem in a
way that a subset of the guidance can be adaptively ignored
if it leads to a worse fit. Letting C and λ be regularization
parameters, this can be modeled as the following discrete
optimization problem:

min
β,ξ

1

n
||Xβ − y||2 + C||β||2 (1)

s.t. (1− ξi)eiβi ≥ 0, ∀ei ∈ e

ξ ∈ {0, 1}p∑
i

ξi ≤ λ

The objective function is the same as the Ridge (i.e. �2 reg-
ularized linear regression) but with the addition of ξ and the
sign constraints on β. The difference between this and pre-
vious work is the introduction of the ξi, a set of discrete
variables which, when set to 1, deactivate the corresponding
sign constraint. This problem allows up to λ constraints to
be ignored and reduces to previous work when λ = 0.
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While this models the problem we want to solve, it is a
difficult discrete optimization problem which can be hard to
solve in practice. Thus, we relax it to the following continu-
ous, convex optimization problem:

Primal Form.

min
β,ξ

1

n
||Xβ − y||2 + C||w||2

s.t. Eβ + ξ ≥ 0

ξ ≥ 0∑
i

ξi ≤ λ

(2)

where E is a diagonal matrix encoding the sign constraints,
with Eii ∈ {−1, 0, 1} depending on the sign guidance. The
ξi are now, in a manner analogous to the Support Vector
Machine (SVM), slack variables which control the extent
to which the sign constraints can be violated (Friedman,
Hastie, and Tibshirani 2001). In the same way that slack
variables can prevent SVM from overfitting the data, ξ can
prevent our method from overfitting the sign guidance. Ad-
ditionally, this problem is convex because the objective is a
convex function and the constraints are all affine, so it can
be solved efficiently using standard convex optimization li-
braries.

Dual Problem. To better understand equation 2 we now
compute its dual problem. The derivation is done using La-
grange Duality and is included in the supplementary mate-
rials.

Dual Form.

min
α,γ

1

4C
α′(EE′ −B′MB)α+ y′MBα+ λγ

s.t. α, γ ≥ 0

α ≤ γ1

(3)

where
1. B = XE′

2. M = (nCI +XX ′)−1

3. δ = M(−XE′α+ 2Cy)

4. β = 1
2C (X ′δ + E′α)

This dual is similar to the Ridge’s dual but with the addition
of the dual variables α and γ which capture the constraints
from equation 2. Considering this dual formulation is useful
because this problem can be less computationally intensive
to solve when p (the number of features) is much greater
than n (the number of instances) and the number of sign
constraints.

Impact of Active Sign Constraints on Dual. We can bet-
ter understand the impact of sign constraints on PSCR by
contrasting the behavior of the dual with another way of en-
forcing sign constraints - a thresholding procedure wherein
the solution to the Ridge βRidge is first computed, then its
entries are thresholded to respect the sign constraints. e.g. if

Eii = 1, then set βi to max((βRidge)i, 0). By considering
equation 3 we will show our method has a much different
result than thresholding.

From the KKT conditions we know that if α = 0, then
none of the sign constraints are active (i.e. none of them hold
with equality), so the solution reduces to that of the Kernel
Ridge (βRidge = X ′My). This is identical to the solution
one would get when using the simple thresholding proce-
dure we just mentioned. If α �= 0, then some subset of the
sign constraints are active and α induces a data dependent
translation. By plugging in δ to item (4) above we can better
understand the impact of an active sign constraint:

β =
1

2C
(X ′δ + E′α) (4)

= βRidge +
1

2C
(I −X ′MX)E′α (5)

Now consider the case where only a single entry of α
is nonzero, indicating that one of the sign constraints
is violated by the Ridge solution. Thresholding would
solve this by only modifying the corresponding coefficient,
but our method translates the Ridge solution by 1

2C (I −
X ′MX)E′α, which may potentially modify all the other
coefficients. Intuitively, our method accommodates the sign
constraint by modifying the entries with non-active sign con-
straints in order to still fit the data well, as opposed to thresh-
olding which considers each coefficient in isolation. In a
certain sense, our method finds an alternative solution to β
that fits the data well while enforcing the relaxed sign con-
straints.

3.2 Parameter Relative Constrained Regression

The second form of guidance we consider is pairwise guid-
ance. Let P be a set of pairs where each pi ∈ P is a tuple
(j, k) indicating that coefficient j is greater than coefficient
k. This guidance can similarly be used to define a discrete
optimization problem, but for the sake of brevity we imme-
diately jump to its continuous relaxation:

min
β,ξ

1

n
||Xβ − y||2 + C||β||2 (6)

s.t. βj − βk + ξi ≥ 0, ∀pi ∈ P

ξ ≥ 0∑
i

ξi ≤ λ

Similar to equation 2, the first constraint enforces the guid-
ance the user provides and ξ is a slack parameter to prevent
overfitting. Also similarly, this problem is convex. The key
difference between this and PSCR is that the user does not
need to know the signs of the coefficients, just their relative
ordering, which may be easier to generate in some settings.
A similar formulation was considered for “nearly” Isotonic
Regression (Tibshirani, Hoefling, and Tibshirani 2011).

This problem can be more concisely written by replacing
the first constraint of equation 6 with Eβ + ξ ≥ 0, where
for every pair pi = (j, k), there is a corresponding row Ei

where the entries are Ei
j = 1, Ei

k = −1 and 0 otherwise. By
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using this form the problem becomes identical to equation
2, but with a different matrix encoding the constraints and a
different interpretation of the slack variables ξ. Additionally,
the dual will take the same form.

3.3 Pairwise Parameter Sign Constrained
Regression

The final form of guidance we consider is pairwise sign
guidance. Let P be a set of pairs where each pi ∈ P is a
tuple (j, k) indicating that coefficients j and k should have
the same (or opposite) sign. Our strategy for modeling this is
by constraining the product Ejkβjβk to be positive, where
Ej,k is positive if they should have the same sign, and neg-
ative otherwise. This cannot be modeled through the previ-
ously proposed formulation because while the other forms
of guidance lead to affine constraints, this leads to noncon-
vex quadratic constraints which most standard continuous
optimization libraries cannot model. Thus, we propose the
following formulation:

min
β,ξ

1

n
||Xβ − y||2 + C||β||2 (7)

+ λ2

∑
pi∈P

max(−(Ej,kβjβk + ξi), 0)

s.t. ξ ≥ 0∑
i

ξi ≤ λ1

where λ1 and λ2 are regularization parameters. The key dif-
ference between this and previous formulations is that we
have moved the guidance constraint to the objective. This
term will be 0 when the entire set of pairwise sign guidance
is respected, and positive otherwise. This optimization prob-
lem is nonconvex, but a local optimum can be found using
standard optimization libraries such as SciPy’s optimization
module (Jones et al. 2001 ).

3.4 User Generated Guidance

Ideally, parameter constraint guidance could be estimated
from the training data, but this guidance will be noisy if lit-
tle training data is available. The user is a potentially better
source, but it is not clear users will be able to accurately pro-
vide it because they won’t necessarily know such properties
of β. This problem is challenging because it requires know-
ing the relationship between one or more features and the
response within the context of the other features. This leads
to a chicken-and-the-egg type problem: we use this guidance
to more accurately estimate β, but to get it we need an accu-
rate estimate of β.

To solve this problem we propose the user answer sim-
pler queries that assess more basic properties of the rela-
tionships between covariates and the response. Rather than
ask for properties of the ground truth coefficients, we in-
stead ask for guidance when considering individual or pairs
of features independently of the others. The advantage of
this method is that while users may not be able to accurately
answer questions about the ground truth β when considering
all the features, they can likely answer these same questions

when considering a small subset of the features. For exam-
ple, in a medical domain a user could likely say with con-
fidence that increasing the number of cigarettes smoked per
day will reduce average life expectancy.

It is important to note that this guidance is a proxy for the
sign or pairwise properties of β. For example, just because
coefficient i is positive when regressing on only feature i
does not mean βi will be positive. This is why our meth-
ods of relaxing the guidance are important - it can prevent
overfitting when the guidance is noisy.

3.5 Parameter Constraint Transfer

While our proposed guidance can be provided by domain
experts, for domains where this is not possible, it can in-
stead be learned through transfer learning. To do this, rather
than have a human generate the constraints manually, the
constraints are generated by estimating them from a related
source domain which shares the same feature set. For ex-
ample, if the task is to predict the probability of a customer
buying a TV given a set of demographics information, then
the sign constraints could be generated by estimating cus-
tomer purchasing habits of other related products, and then
use these estimates to generate the sign guidance. Formally,
given a source task S, we can compute the Ridge solution βS

on the source data, then generate sign/relative/pairwise sign
constraints from the entries of βS . e.g. if (βS)i > 0, then set
Eii = 1. This leads to a new form of transfer learning, “Pa-
rameter Constraint Transfer,” which makes different mod-
eling assumptions from previous work. While many trans-
fer learning methods assume the source and target functions
are similar, ours makes the weaker assumption that proper-
ties such as sign and relative ordering of the coefficients are
shared between the domains. This can allow Parameter Con-
straint Transfer to succeed in areas where standard transfer
learning methods fail.

4 Theory

In this section we present an error bound for Parameter
Sign Constrained Regression. This bound provides theoreti-
cal justification for our formulation as well as providing in-
sight into the relationship between the performance of our
method and the accuracy of the sign guidance. We start with
a high-level description of the bound, followed by the bound
and an analysis of how the regularization parameter λ relates
to the accuracy of the sign guidance.

Bound Description. Recall that λ controls the extent to
which our method can violate the given guidance. Intu-
itively, Theorem 1 states that the error of our estimate is
bounded by the sum of two key terms: the “excess error”
due to making λ too small, and λ itself. This leads to a trade
off between these two terms - increasing λ will decrease the
former term but increase the latter and vice versa. However,
when all the sign guidance is completely accurate, the excess
error term will be 0 for all λ, so this sum is minimized when
λ = 0. Along these lines, this bound decreases when the
guidance is more accurate. Thus, while our method is robust
to noise, accurate guidance will lead to better estimates.

Error Bound. For our analysis we assume yi = x′
iβ

∗+εi

3056



for all (xi, yi), where the εi are independent and identically
distributed Gaussian random variables.

First, some notation:

• βλ: Closest approximation to β∗ that lies within the feasi-
ble set of equation 2 for the given value of λ. i.e. it is the
solution to the problem minβ ||β∗ − β||2 subject to the
constraints in equation 2.

• β̂λ: Estimate of β from solving equation 2 for hyperpa-
rameter λ.

• δ̂ = β̂λ − βλ

• δ̂p, δ̂n: the positive and negative components of δ̂ respec-
tively. Intuitively, the components of β̂λ which overesti-
mate and underestimate β∗.

For the sake of clarity we also make the following as-
sumptions:

• 1
n ||X ′X||∞ = 1

• Sign constraints are provided for every feature.

• All the sign constraints are nonnegative. This does not re-
strict the generality of our results because any nonposi-
tive constraint can be transformed into a nonnegative con-
straint by scaling the associated feature by −1.

At a high level, the bound is derived by considering how
much the coefficients of β̂λ over and under-estimates β∗.
First we bound the negative components:

Lemma 1 (Bounding ||δ̂n||).
||δ̂n|| ≤ gn(δ̂) = ||β∗||+ λ

Bounding the norm of the negative component is straight-
forward using the constraints from equation 2. Next, we
bound the positive components:

Lemma 2 (Bounding ||δ̂p||). With at least probability 1 −
2p−M2

:

||δ̂p|| ≤ gp(δ̂) = O(
1

C
(||β∗ − βλ||+A+ ||βλ||

+ (C + 1)||δ̂n||)

where A =
√

2 log p
n σ(1 +M)

The proof of this result is more involved because equation
2 does not explicitly bound the overestimation of β̂λ. As a
result, this bound is a function of several terms including the
excess error, a standard concentration of measure term and
||δ̂n||. Finally, we combine these results to get:

Theorem 1 (Error Bound). With at least probability 1 −
2p−M2

:

||β∗ − β̂λ|| ≤ O(||β∗ − βλ||+ gp(δ̂p) + gn(δ̂n))

Given the previous lemmas, this result is straightforward
to show using the triangle inequality.

4.1 Interpreting λ

One way of interpreting λ is it controls the extent the algo-
rithm is allowed to deviate from the provided guidance. In
the theoretical setting, we can better analyze this by setting
λ = ||β∗||k, where k is the relative error between β∗ and
βλ (i.e. k = ||β∗−βλ||

||β∗|| ). For this value of λ the right hand
side of the second item in Theorem 1 becomes a function of
(1 + k)||β∗||. This term decreases with the relative error k,
which can be done in two ways: by providing more accu-
rate sign guidance or by tuning λ to increase the size of the
feasible set of equation 2. Thus, while our method can ac-
commodate noisy guidance, it will perform better with more
accurate guidance.

5 Experiments

Our first set of experimental questions explore the effective-
ness of our formulations for feature guidance:

• How well do our proposed methods (PSCR, PRCR, PP-
SCR) perform relative to standard methods which cannot
take the guidance we proposed (Table 3)?

• How beneficial is our method of using soft constraints
compared to using hard constraints when the same guid-
ance is used (Table 4)?

Our second set of experimental questions explore the ef-
fectiveness of our methods for generating the feature guid-
ance. Due to space constraints, for these experiments we fo-
cus on sign guidance.

• How well does our proposed method of generating sign
constraints via the user compare to estimating the con-
straints automatically from the training data (Table 5)?

• How well does our proposed method of generating con-
straints using transfer learning compare to standard meth-
ods of performing transfer (Table 6)?

The methods and data sets we used are described in Tables
1 and 2. We generated the guidance by simulating a domain
expert. Specifically, we randomly selected a subset of fea-
tures, estimate the signs (or relative orderings) of regression
coefficients of each feature separately using ordinary least
squares on a validation set. i.e. to generate the sign of coeffi-
cient i, we solved the problem β̂i = argminβi

||Xiβi−Y ||2
and used the sign to generate the guidance.

For all methods all regularization parameters were tuned
on a validation set. Reported results are the mean of 30
train/test splits. Values in parentheses indicate 95% con-
fidence interval. More extensive experiments and learn-
ing curves are presented in the supplementary ma-
terial. Code and processed data sets are available at
https://github.com/adgress/AAAI2018.

Comparisons with Baselines: For our first experiments
we compared the performance of our methods to a set of
baseline methods. These results are in Table 3. These results
show that our methods combined with our guidance gener-
ation methods can dramatically outperform standard meth-
ods. In particular, our methods performed much better than
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Method Description
Ridge (Friedman, Hastie, and Tibshirani
2001)

Least squares with �2 regularization.

Lasso (Tibshirani 1996) Least squares with �1 regularization.
Nonnegative (Slawski, Hein, and others
2013)

The Ridge with nonnegative constraints.

Signed Ridge (Slawski, Hein, and others
2013)

The Ridge with sign guidance. For these experiments the sign guidance was generated
in the same way as for our method.

Transfer Ridge (Pan and Yang 2010) The Ridge where source predictions were added as an additional feature.
PSRC: p signs Our method with sign guidance. The number of sign constraints is equal to the p, the

number of features.
PRCR: p pairs Our method with pairwise guidance. The number of pairwise constraints is equal to p,

the number of features.
PPSCR: p pairs Our method with pairwise sign guidance The number of pairwise sign constraints is

equal to p, the number of features.
Transfer PSRC Our method with sign guidance where the constraints were generated using the method

outlined in 3.5 using a related source domain.
PSRC: Training Guidance Our method with sign guidance where the constraints were estimated from the given

training data.

Table 1: Methods we used in our experiments.

the Ridge with nonnegative constraints, showing that pro-
viding more accurate sign guidance is better than arbitrarily
constraining the signs to be nonnegative.

While relative guidance seemed effective, these experi-
ments suggest sign and pairwise sign guidance performs bet-
ter. This suggests sign guidance does a better job of con-
straining the feasible space than relative guidance.

The Benefits of Soft Constraints: For these experiments
we tested the impact of the “soft guidance” our method uses.
Recall that previous work used hard constraints, which we
argue can lead to overfitting the guidance, while our work
includes slack variables to prevent this phenomenon. Due
to space constraints we focused on sign constraints. Table
4 shows the results of our method, along with the “Signed
Ridge,” which does not have a mechanism for relaxing the
sign guidance, where we added the same set of sign con-
straints. These results show our method performs much bet-
ter. This shows our relaxation can play an important role in
preventing overfitting.

Constraint Generation: For our next experiments we
compared the impact of how we generate the guidance.
Again, due to space constraints, we focus on sign guidance.
Table 5 shows the results of our method when the signs were
generated by simulating a human expert and when the sign
guidance was generated from the given training set by first
computing the Ridge solution βRidge and using the signs of
βRidge as constraints. These results show our method per-
forms much better when the guidance is generated from an
outside source of knowledge. This intuitively makes sense,
because estimating the signs from the training data is in
some sense “redundant” because the same data is used to
estimate the parameters.

Parameter Constraint Transfer: Our final experiments
tests generating the constraints using transfer learning. For
these experiments we used a related source domain to gener-
ate the constraints, which were then used for the target task.
The constraints were generated by computing the Ridge so-

lution βS on the source data, then generating the constraints
from the signs of βS - e.g. if (βS)i > 0 then set Eii

to 1, otherwise set it to −1. Table 6 compares the results
of our method, with and without transfer, and the “Trans-
fer Ridge” where source predictions were used as an ad-
ditional feature. While simple, this method experimentally
works very well and is representative of many recent trans-
fer learning methods (Tommasi, Orabona, and Caputo 2010;
Kuzborskij and Orabona 2013; Patricia and Caputo 2014).

Our results show our method with transfer performs better
than the Transfer Ridge, but worse than our method where
the sign guidance was generated through a simulated human.
This intuitively makes sense because the transfer guidance is
in some sense “noisier” due to it coming from a different do-
main. In spite of this, the fact that our method outperforms
the Transfer Ridge is important because it shows Parameter
Constraint Transfer can be a more effective means of trans-
ferring knowledge.

6 Conclusion

We proposed novel ways of constraining parameter along
with formulations that are more robust to overfitting by al-
lowing the guidance to be relaxed. We also presented two
practical methods to provide this guidance: through sim-
pler pointwise and pairwise queries and through transfer
learning. We also theoretically analyzed our signed guid-
ance method which provides theoretical justification for the
method and explains how our method is more robust to noisy
guidance. In future work we will consider other forms of co-
efficient guidance and extend the theoretical framework to
the forms of pairwise guidance we proposed.
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Data Set Description
Synthetic Linear A synthetic linear regression data set with 10 covariates.
Boston Housing (Harrison and
Rubinfeld 1978; Lichman 2013)

Predicting housing values in Boston as a function of various socioeconomic and geographic
features. For the transfer experiments we created domains based on the LSTAT (percentage of
lower status of the population).

Wine (Lichman 2013) The UCI wine data set. Predicting the quality of wine given a set of chemical and visual char-
acteristics. For the transfer experiments we used the red wine as the target and the white wine
as the source.

Concrete (Yeh 1998; Lichman
2013)

Predicting the compressive strength of concrete as a function of its age and ingredients. For the
transfer experiments we split the data based on the age.

King County Housing (kcH ) Predicting housing prices in King County, Washington, as a function of a number of features
such as location and number of bedrooms.

ITS (Vanlehn et al. 2005) The USNA Physics (Fall 2008) data set, which contains the performance of 69 university stu-
dents using the Andes physics intelligent tutoring system (ITS). Task is to predict student per-
formance on the “Angular Momentum” subset of the system as a function of the students’
performance on the other sections of the system.

Heart (Rousseauw et al. 1983) Predicting heart disease in males from a high-risk heart disease area of Western Cape, South
Africa, as a function of various lifestyle and biometric features.

Table 2: Data sets we used in our experiments.

Nonnegative Ridge Lasso PSRC: p Signs PRCR: p Pairs PPSCR: p pairs
Synthetic 0.183(0.030) 0.179(0.029) 0.180(0.029) 0.141(0.026) 0.155(0.031) 0.161(0.030)
BH 0.212(0.022) 0.202(0.036) 0.183(0.023) 0.149(0.018) 0.176(0.029) 0.163(0.020)
Wine 0.101(0.013) 0.100(0.013) 0.105(0.013) 0.088(0.010) 0.093(0.011) 0.091(0.010)
Concrete 0.255(0.022) 0.275(0.020) 0.293(0.018) 0.220(0.017) 0.232(0.019) 0.229(0.018)
Housing 0.432(0.041) 0.478(0.043) 0.482(0.049) 0.409(0.038) 0.451(0.042) 0.399(0.037)

ITS 0.568(0.092) 0.625(0.095) 0.700(0.118) 0.525(0.089) 0.540(0.091) 0.570(0.093)
Heart 2.129(0.220) 2.159(0.220) 2.190(0.187) 2.007(0.191) 2.044(0.209) 2.124(0.229)

Table 3: Error (with 95% confidence intervals in parentheses) of our methods using feature level guidance, and competing
methods which cannot take feature level guidance. These results show our method is able to successfully exploit the feature
level guidance.

PSRC Signed Ridge
Synthetic 0.141(0.026) 0.150(0.026)
BH 0.149(0.018) 0.163(0.022)
Wine 0.088(0.010) 0.094(0.012)
Concrete 0.220(0.017) 0.232(0.018)
Housing 0.409(0.038) 0.433(0.040)
ITS 0.525(0.089) 0.586(0.095)
Heart 2.007(0.191) 2.128(0.220)

Table 4: Errors (with 95% confidence intervals in paren-
theses) of our method and the Signed Ridge, which takes
the same feature level guidance but lacks the robustness
to noisy guidance of our method . These results show
our method performs better, indicating our mechanism
for handling noisy guidance can work well.

PSRC PSRC: Training Guidance
Synthetic 0.141(0.026) 0.175(0.029)
BH 0.149(0.018) 0.176(0.030)
Wine 0.088(0.010) 0.098(0.013)
Concrete 0.220(0.017) 0.266(0.020)
Housing 0.409(0.038) 0.437(0.042)
ITS 0.525(0.089) 0.608(0.102)
Heart 2.007(0.191) 2.156(0.222)

Table 5: Errors (with 95% confidence intervals in parentheses)
of our method when the feature guidance is provided from an
outside source versus when the guidance is estimated from the
training data. These experiments show generating the guidance
from the training data does not work well, indicating the need
for the guidance to come from an outside source.

Ridge Lasso Transfer Ridge PSRC: p Signs Transfer PSRC: p Signs
Synthetic 0.597(0.101) 0.515(0.126) 0.539(0.102) 0.430(0.092) 0.496(0.109)
BH 0.337(0.062) 0.390(0.080) 0.323(0.062) 0.247(0.042) 0.242(0.045)

Wine 0.217(0.026) 0.224(0.023) 0.268(0.076) 0.179(0.020) 0.194(0.022)

Table 6: Errors of our method (with 95% confidence intervals in parentheses) when the guidance is transferred from a related
source data set versus the Transfer Ridge, in which the source data is used by treating the source predictions as an extra feature.
These results show using the source data to generate feature level guidance performs better than the standard method of transfer.
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