
A Provable Approach for Double-Sparse Coding

Thanh V. Nguyen
ECE Department

Iowa State University
thanhng@iastate.edu

Raymond K. W. Wong
Statistics Department

Texas A&M University
raywong@tamu.edu

Chinmay Hegde ∗
ECE Department

Iowa State University
chinmay@iastate.edu

Abstract

Sparse coding is a crucial subroutine in algorithms for various
signal processing, deep learning, and other machine learn-
ing applications. The central goal is to learn an overcom-
plete dictionary that can sparsely represent a given dataset.
However, storage, transmission, and processing of the learned
dictionary can be untenably high if the data dimension is
high. In this paper, we consider the double-sparsity model in-
troduced by Rubinstein, Zibulevsky, and Elad (2010) where
the dictionary itself is the product of a fixed, known ba-
sis and a data-adaptive sparse component. First, we intro-
duce a simple algorithm for double-sparse coding that can
be amenable to efficient implementation via neural architec-
tures. Second, we theoretically analyze its performance and
demonstrate asymptotic sample complexity and running time
benefits over existing (provable) approaches for sparse cod-
ing. To our knowledge, our work introduces the first com-
putationally efficient algorithm for double-sparse coding that
enjoys rigorous statistical guarantees. Finally, we support our
analysis via several numerical experiments on simulated data,
confirming that our method can indeed be useful in problem
sizes encountered in practical applications.

Introduction

We consider the problem of dictionary learning (also known
as sparse coding), a common and powerful technique in un-
supervised feature learning. The high-level idea of sparse
coding is to represent a set of data vectors in terms of sparse
linear combinations of atoms from a learned basis (or dic-
tionary). Sparse coding has a rich history in diverse fields
such as image processing, machine learning, and neuro-
science (Krim et al. 1999; Elad and Aharon 2006; Rubin-
stein, Bruckstein, and Elad 2010; Mairal et al. 2009). Sparse
coding forms a core component of several neural learning
systems, both biological (Olshausen and Field 1997) and
artificial (Gregor and LeCun 2010; Boureau et al. 2010;
Mazumdar and Rawat 2017).

Formally, suppose we are given p data samples Y =
[y(1), y(2), . . . , y(p)] ∈ R

n×p. We wish to find a dictionary
D ∈ R

n×m (with n < m) and corresponding sparse code

∗This work is supported in part by the National Science Foun-
dation under the grants CCF-1566281 and DMS-1612985.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

vectors X = [x(1), x(2), . . . , x(p)] ∈ R
m×p such that the

representation DX fits the data samples as well as possible.
The typical approach is to pose the dictionary (and codes) as
the solution to the constrained optimization problem:

min
D,X

L(D,X) =
1

2

p∑
j=1

‖y(j) −Dx(j)‖22,

s.t.
p∑

j=1

S(x(j)) ≤ S,

(1)

where S(·) is some sparsity-inducing penalty function, such
as the �1-norm. However, even a cursory attempt at solving
(1) reveals several conceptual obstacles:

Theoretical challenges. The constrained optimization
problem (1) involves a non-convex (bilinear) objective func-
tion, as well as potentially non-convex constraints depend-
ing on the function S . Therefore, design and analysis of
provably correct algorithms for this problem can be difficult.
Indeed, the vast majority of practical approaches for sparse
coding are based on heuristics; barring a few recent papers
from the learning theory community (Spielman, Wang, and
Wright 2012; Agarwal et al. 2014; Arora et al. 2015; Sun,
Qu, and Wright 2015), very few methods come equipped
with global correctness guarantees.

Challenges in applications. Even if we ignore theoreti-
cal correctness issues and somehow are able to learn good
enough sparse codes, we often find that applications using
such learned sparse codes encounter memory and running-
time issues. Indeed, in the overcomplete case, merely stor-
ing the learned dictionary D incurs mn = Ω(n2) memory
cost, which is prohibitive when n is large. In practical ap-
plications such as image analysis, one typically resorts to
chopping the data into smaller blocks (e.g., partitioning im-
age data into patches) to make the problem manageable.

An approach used to resolve those practical computa-
tional difficulties is to assume some type of structure in the
(learned) dictionary D; e.g., the dictionary is assumed to be
either separable, or obey a convolutional structure. One such
variant is double-sparse coding (Rubinstein, Zibulevsky, and
Elad 2010; Sulam et al. 2016) where the dictionary D itself
exhibits a sparse structure. More precisely,

D = ΦA,

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3852

Setting Reference
Sample complexity

(w/o noise)
Sample complexity

(w/ noise)
Upper bound on

running time
Expt

Regular

MOD (Engan, Aase, and Husoy 1999) � � � �

K-SVD (Aharon, Elad, and Bruckstein 2006) � � � �

(Spielman, Wang, and Wright 2012) O(n2 logn) � ˜Ω(n4) �

(Arora, Ge, and Moitra 2014) ˜O(m2/k2) � ˜O(np2) �

(Gribonval, Jenatton, and Bach 2015) O(nm3) O(nm3) � �

(Arora et al. 2015) ˜O(mk) � ˜O(mn2p) �

Double
Sparse

Double Sparsity (Rubinstein, Zibulevsky, and Elad 2010) � � � �

(Gribonval et al. 2015) ˜O(mr) ˜O(mr) � �

Trainlets (Sulam et al. 2016) � � � �

This paper ˜O(mr) ˜O(mr + σ2
ε

mnr
k) ˜O(mnp) �

Table 1: Comparison of various sparse coding techniques. Expt: whether numerical experiments have been conducted. � in all
other columns indicates no provable guarantees. Here, n is the signal dimension, and m is the number of atoms. The sparsity
levels for A and x are r and k respectively, and p is the sample size.

with a known “base dictionary” Φ ∈ R
n×n and a learned

column-sparse “synthesis” matrix A ∈ R
n×m. The base

dictionary Φ is typically any orthonormal basis (such as
the canonical or wavelet basis) chosen according to domain
knowledge, while the synthesis matrix A is column-wise
sparse and is learned from the data. Such a double-sparsity
assumption is appealing conceptually, since it lets us com-
bine the knowledge of good dictionaries Φ to synthesize new
representations tailored to specific data families. Moreover,
the sparse structure of the synthesis matrix produces more
interpretable features than the regular model; see (Rubin-
stein, Zibulevsky, and Elad 2010; Sulam et al. 2016) for an
extensive discussion and illustration. If the columns of A has
only (say) r � n non-zero elements, then the overall mem-
ory burden of storing and transmitting A is O(mr), which is
much lower than that for general unstructured dictionaries.
Moreover, this approach performs comparably with (regu-
lar) sparse coding approaches, as demonstrated by the ex-
tensive empirical evaluations in (Sulam et al. 2016). How-
ever, two obstacles remain: the associated training algo-
rithms used to learn double-sparse codes incur significant
running time, and no rigorous theoretical analysis of their
performance has been reported in the literature.

Our Contributions

We provide a new algorithmic approach to double-sparse
coding. To the best of our knowledge, our approach is the
first method that enjoys provable statistical and algorithmic
guarantees for the double-sparse coding problem. In addi-
tion, our approach enjoys three benefits: (i) our method is
tractable as well as neurally plausible, i.e., its execution can
plausibly be achieved using a neural network architecture;
(ii) our method enjoys noise robustness guarantees; (iii) we
demonstrate practical relevance via several simulations.

Inspired by the aforementioned recent theoretical pa-
pers in sparse coding, we assume a learning-theoretic setup
where the data samples arise from a ground-truth generative
model. Informally, suppose there exists a true (but unknown)
synthesis matrix A∗ ∈ R

n×m whose columns have only r
non-zero elements, and the ith data sample is generated as:

y(i) = ΦA∗x∗(i) + noise, i = 1, 2, . . . , p,

where the code vector x∗(i) is independently drawn from
a distribution supported on the set of k-sparse vectors. We
desire to learn the matrix A∗. We suppose that the synthesis
matrix A∗ is incoherent (the columns of A∗ are sufficiently
close to orthogonal) and has bounded spectral norm, that m
is at most a constant multiple of n, and that the noise is sub-
Gaussian. All these assumptions are standard1.

First, we propose and analyze an algorithm that produces
a coarse estimate of the synthesis matrix that is sufficiently
close to the ground truth A∗. Our method builds upon the
method of spectral initialization that have recently gained
popularity in non-convex machine learning (Zhang et al.
2016; Wang, Zhang, and Gu 2016).

Second, given such a coarse estimate of the synthesis ma-
trix A∗, we propose and analyze a gradient descent-style
algorithm to refine this estimate. This algorithm is simpler
than previously studied double-sparse coding algorithms
that rely on alternating minimization (such as the Trainlets
approach of (Sulam et al. 2016)), while still giving good sta-
tistical performance.

Put together, the above constitutes the first provably
polynomial-time method for double-sparse coding. In par-
ticular, in the absence of noise, we prove that p =
Ω(mr polylog n) samples are sufficient to obtain a good
enough estimate in the initialization, and also to obtain guar-
anteed linear convergence during descent to provably re-
cover A∗. See Table 1 for the summary and a comparison
with the existing work. Indeed, our sample complexity re-
sult matches with what is achieved in (Gribonval et al. 2015).
Nevertheless, we provide a practical polynomial-time algo-
rithm for learning the sparse dictionary whereas Gribonval
et al. only study properties of a theoretical estimator. Also,
our approach results in strict improvement in sample com-
plexity, as well as running time over rigorous methods for
(regular) sparse coding, such as (Arora et al. 2015).

We analyze our approach in a more realistic setting with
the presence of additive noise, and demonstrate its stability.
While our analysis mainly consists of sufficiency results and
involves several (absolute) unspecified constants, in practice
we have found that these constants are reasonable. We jus-

1We clarify the generative model in concrete terms below.

3853

tify our observations by reporting a suite of numerical ex-
periments on synthetic test datasets.

Techniques

The remainder of the paper is fairly technical; therefore, for
clarity let us provide some non-rigorous intuition for our
approach. At a high level, our method extends the neural
sparse coding approach of (Arora et al. 2015) to the double-
sparse case. A major barrier in the analysis of sparse coding
algorithms is that the gradient of L in (1) with respect to
D inherently depends on the codes of the training samples
(i.e., the columns of X), but these codes are unknown a pri-
ori. However, the main insight in (Arora et al. 2015) is that
within a small enough neighborhood of the true dictionary,
an approximated version of X∗ can be estimated, and there-
fore the overall method is similar to performing approximate
gradient descent towards the population parameter A∗. Re-
garding the actual algorithm as its noisy variation allows us
to overcome the finite-sample variability of the loss, and ob-
tain a descent property directly related to A∗.

The descent stage of our approach leverages this intuition.
However, instead of standard gradient descent, we perform
approximate projected gradient descent so that the column-
wise r-sparsity property is enforced in each new estimate of
A∗. This extra projection step is critical in showing sample
complexity improvement over (regular) sparse coding meth-
ods. The key novelty is in figuring out how to perform the
projection in each gradient iteration. For this purpose, we
develop a novel initialization algorithm that identifies the
locations of the non-zeroes in A∗ even before commencing
the descent phase. This is non-trivially different from previ-
ous rigorous methods for sparse coding, and the analysis is
somewhat more involved.

In (Arora et al. 2015), (the principal eigenvector of)
the weighted covariance matrix of y, given by a suitable
weighted average of outer products yiy

T
i , is shown to pro-

vide a coarse estimate of a given dictionary atom. We lever-
age this idea and rigorously show that the diagonal of the
weighted covariance matrix serves as a good indicator of the
support of a column in A∗. The success relies on the concen-
tration of the diagonal vector with dimension n, instead of
the covariance matrix with dimensions n× n. With the sup-
port selected, our scheme only utilizes a truncated weighted
covariance matrix with dimensions r × r. This initialization
scheme enables us to effectively reduce the dimension of the
problem, and therefore leads to significant improvement in
sample complexity and running time over previous (prov-
able) sparse coding methods when the data representation
sparsity k is much smaller than m.

Further, we rigorously analyze the proposed algorithms
in the presence of noise with a bounded expected norm. Our
analysis shows that our method is stable, and in the case
of i.i.d. Gaussian noise with bounded expected �2-norms, is
at least a polynomial factor better than previous polynomial
time algorithms for sparse coding in terms of running time.
Our analysis of the descent stage follows from (Arora et al.
2015), where the descent property is first shown under an
ideal algorithm which uses the expectation of the noisy (ap-
proximate) gradient, and is later established to the practical

case via a concentration argument. Our novel initialization
algorithm allows an accurate determination of the support of
A∗, and therefore, for each column of A∗, we can focus on
an r-dimensional subvector of the noisy (approximate) gra-
dient vector, rather than the full n-dimensional vector. This
allows us to sharpen the sample complexity beyond what has
been established in the earlier work.

Setup and Definitions

Notation. Let [m] � {1, 2, . . . ,m} for some integer m. For
any vector x = [x1, x2, . . . , xm]T ∈ R

m, let supp(x) �
{i ∈ [m] : xi �= 0}. Given any subset S ⊆ [m], xS corre-
sponds to the sub-vector of x indexed by the elements of S.
For any matrix A ∈ R

n×m, we use A•i and AT
j• to represent

the ith column and the jth row respectively. For some appro-
priate sets R and S, let AR• (respectively, A•S) be the sub-
matrix of A with rows (respectively columns) indexed by the
elements in R (respectively S). For the ith column A•i, use
AR,i to denote the sub-vector indexed by the elements of R.
Use AT

R• to indicate (AR•)T . Let ◦ and sgn(·) represent the
(element-wise) Hadamard operator and sign function. Fur-
ther, thresholdK(x) is a thresholding operator that replaces
any elements of x with magnitude less than K by zero.

The �2-norm ‖x‖ for a vector x and the spectral norm
‖A‖ for a matrix A are used extensively in this paper. In
some cases, we also utilize the Frobenius norm ‖A‖F and a
special matrix operator norm ‖A‖1,2 � max‖x‖1≤1‖Ax‖.

For clarity purposes, we adopt big-Oh notation exten-
sively. The symbols Ω̃(·) and Õ(·) represent Ω(·) and O(·)
up to a multiplicative poly-logarithmic factor of n respec-
tively. Throughout the paper, we use the phrase “with high
probability” (abbreviated to w.h.p.) to describe an event
with failure probability of O(n−ω(1)). In addition, g(n) =
O∗(f(n)) means g(n) ≤ Kf(n) for some small enough
constant K.

Model. Suppose that the observed samples are given by

y(i) = Dx∗(i) + ε, i = 1, . . . , p;

i.e., we are given p samples of y generated from a fixed (but
unknown) dictionary D where the sparse code x∗ and the
error ε are drawn from a joint distribution D specified be-
low. In the double-sparse setting, the dictionary is assumed
to follow a decomposition D = ΦA∗, where Φ ∈ R

n×n is
a known orthonormal basis matrix and A∗ is an unknown,
ground truth synthesis matrix. Our approach relies upon the
following assumptions on the synthesis dictionary A∗:

A1 The dimensions of A∗ obey m = O(n).

A2 A∗ is μ-incoherent, i.e., for i �= j, |〈A∗
•i, A

∗
•j〉| ≤ μ/

√
n.

A3 A∗
•i has exactly r non-zero elements, and is normalized

such that ‖A∗
•i‖ = 1 for all i. Moreover, |A∗

ij | ≥ τ for
A∗

ij �= 0 and τ = Ω(1/
√
r).

A4 A∗ has bounded spectral norm: ‖A∗‖ ≤ O(
√
m/n).

These assumptions are standard. In Assumption A2, the in-
coherence μ is O(1/ log n) with high probability for a nor-
mal random matrix (Arora, Ge, and Moitra 2014). Assump-

3854

tion A3 is a common assumption for sparse signal recov-
ery 2. Assumption A4 is also standard (Arora et al. 2015).
In addition to Assumptions A1-A4, we make the following
distributional assumptions on D:

B1 The support S = supp(x∗) is of size at most k; its indices
are uniformly drawn without replacement from [m].

B2 The nonzero entries x∗
S are pairwise independent and sub-

Gaussian conditioned on the support S, with E[x∗
i |i ∈

S] = 0 and E[x∗2
i |i ∈ S] = 1.

B3 For i ∈ S, |x∗
i | ≥ C where 0 < C ≤ 1.

B4 The additive noise ε has i.i.d. Gaussian entries with vari-
ance σ2

ε with σε = O(1/
√
n).

Similar sub-Gaussian models for D have been previously
considered in (Jenatton, Gribonval, and Bach 2012).

For the rest of the paper, for notational simplicity we set
Φ = In, i.e., the identity matrix. This does not affect any-
thing, since one can study the equivalent problem:

y′ = A∗x∗ + ε′,

where y′ = ΦT y and ε′ = ΦT ε. Due to the Gaussian as-
sumption on ε, it follows that ε′ also has independent Gaus-
sian entries. The analysis can be extended to sub-Gaussian
noise with several minor (but tedious) changes.

Our goal is to devise an algorithm that produces an prov-
ably “good” estimate of A∗. For this, we need to define a
suitable measure of “goodness”. We use the following notion
of distance that measures the maximal column-wise differ-
ence in �2-norm under a suitable transformation.

Definition 1 ((δ, κ)-nearness). A is said to be δ-close to A∗
if there is a permutation π : [m] → [m] and a sign flip
σ : [m] : {±1} such that ‖σ(i)A•π(i) − A∗

•i‖ ≤ δ for every
i. In addition, A is said to be (δ, κ)-near to A∗ if ‖A•π −
A∗‖ ≤ κ‖A∗‖ also holds.

For notational simplicity, in our theorems we simply re-
place π and σ in Definition 1 with the identity permutation
π(i) = i and the positive sign σ(·) = +1 while keeping
in mind that in reality we are referring to finding one ele-
ment of the equivalence class of all permutations and sign
flip transforms of A∗.

We will also need some technical tools from (Arora et
al. 2015) to analyze gradient descent-style methods. Con-
sider an iterative algorithm that looks for a desired solution
z∗ ∈ R

n to optimize some function f(z). Suppose that the
algorithm produces a sequence of estimates z1, . . . , zs via
the update rule:

zs+1 = zs − ηgs,

for some vector gs and scalar step size η. The goal is to char-
acterize “good” directions gs such that the sequence con-
verges to z∗ under the Euclidean distance. The following
gives one such sufficient condition for gs.

2The requirement of exactly r non-zero elements is merely for
simplicity and there is no technical difficulty to extend our algo-
rithms and corresponding analyses to the case with at most r non-
zero elements.

Definition 2. A vector gs at the sth iteration is (α, β, γs)-
correlated with a desired solution z∗ if

〈gs, zs − z∗〉 ≥ α‖zs − z∗‖2 + β‖gs‖2 − γs.

We know from convex optimization that if f is 2α-
strongly convex and 1/2β-smooth, and gs is chosen as the
gradient ∇zf(z), then gs is (α, β, 0)-correlated with z∗.
In our setting, the desired solution corresponds to A∗, the
ground-truth synthesis matrix. In (Arora et al. 2015), it
is shown that gs = Ey[(A

sx − y)sgn(x)T], where x =
thresholdC/2((A

s)T y) indeed satisfies Definition 2. This gs
is a population quantity and not explicitly available, but one
can estimate such gs using an empirical average. The corre-
sponding estimator ĝs is a random variable, so we also need
a related correlated-with-high-probability condition:

Definition 3. A direction ĝs at the sth iteration is (α, β, γs)-
correlated-w.h.p. with a desired solution z∗ if, w.h.p.,

〈ĝs, zs − z∗〉 ≥ α‖zs − z∗‖2 + β‖ĝs‖2 − γs.

From Definition 2, one can establish a form of descent
property in each update step, as shown in Theorem 1.

Theorem 1 (Convergence of approximate gradient descent).
Suppose that gs satisfies the condition described in Defini-
tion 2 for s = 1, 2, . . . , T . Moreover, 0 < η ≤ 2β and
γ = maxTs=1 γs. Then, the following holds for all s:

‖zs+1 − z∗‖2 ≤ (1− 2αη)‖zs − z∗‖2 + 2ηγs.

In particular, the above update converges geometrically to
z∗ with an error γ/α. That is,

‖zs+1 − z∗‖2 ≤ (1− 2αη)s‖z0 − z∗‖2 + 2γ/α.

We can obtain a similar result for Definition 3 except that
‖zs+1 − z∗‖2 is replaced with its expectation.

Armed with the above tools, we are now ready to intro-
duce our method. As discussed above, our approach con-
sists of two stages: an initialization algorithm that produces
a coarse estimate of A∗, and a descent-style algorithm that
refines this estimate to accurately recover A∗.

Stage 1: Initialization

The first stage of our approach iteratively estimates the
columns of A∗ (up to sign flips) in a manner similar
to (Arora et al. 2015). However, their initialization algorithm
incurs severe computational costs in terms of running time.
More precisely, the expected value of the running time is
Ω̃(mn2p), which is unrealistic for large m and n.

In contrast, we leverage the double-sparsity assumption
in our generative model to obtain a more efficient approach.
The key ingredient of our method is a novel spectral pro-
cedure that gives us an estimate of the column supports
purely from the observed samples. The full algorithm, that
we call Truncated Pairwise Reweighting, is listed in pseu-
docode form as Algorithm 1.

We first state a theoretical result characterizing the perfor-
mance of Algorithm 1.

3855

Algorithm 1 Truncated Pairwise Reweighting
Initialize L = ∅
Randomly divide p samples into two disjoint sets P1 and
P2 of sizes p1 and p2 respectively
While |L| < m. Pick u and v from P1 at random

For every l = 1, 2, . . . , n, compute

êl =
1

p2

p2∑
i=1

〈y(i), u〉〈y(i), v〉(y(i)l)2

Sort ê1, ê2, . . . , ên in descending order
If ê(r) ≥ Ω(k/mr) ∧ ê(r+1)/ê(r) < O∗(r/ log2 n)

Let R̂ be set of the r largest entries of ê
M̂u,v = 1

p2

∑p2

i=1〈y(i), u〉〈y(i), v〉y(i)̂R (y
(i)
̂R
)T

δ1, δ2 ← top singular values of M̂u,v

z
̂R ← top singular vector of M̂u,v

If δ1 ≥ Ω(k/m) and δ2 < O∗(k/m log n)

If dist(±z, l) > 1/ log n for any l ∈ L

Update L = L ∪ {z}
Return A0 = (L1, . . . , Lm)

Theorem 2. Suppose that Assumptions B1-B4 hold and As-
sumptions A1-A4 hold with parameters μ = O∗(√

n
k log3 n

)
,

k = O∗(√
n

logn

)
and r = o(log2 n). Then, with high prob-

ability, Algorithm 1 returns an initial estimate A0 whose
columns share the same support as A∗ and is (δ, 2)-near to
A∗ with δ = O∗(1/ log n) if p1 = Ω̃(m) and p2 = Ω̃(mr).

The formal proof is available in our extended ver-
sion (Nguyen, Wong, and Hegde 2017). To provide some
intuition about the working of the algorithm (and proof of
Theorem 2), let us consider the setting where we have ac-
cess to infinitely many samples. Of course, this setting is
fictional. However, the analysis of this case is much simpler
since we can deal with expected values rather than empiri-
cal averages. Moreover, the analysis reveals several key lem-
mas, which we will reuse extensively for proving Theorem
2.

First, we give some intuition behind the definition of the
“scores”, êl. Fix a sample y = A∗x∗+ εy from the available
training set, and consider two other samples

u = A∗α+ εu, v = A∗α′ + εv.

Consider the (very coarse) estimate for the sparse code of u
with respect to A∗:

β = A∗Tu = A∗TA∗α+A∗T εu.

As long as A∗ is incoherent enough and εu, εy is small, the
estimate β “looks” like α in the following sense:

〈y, u〉 ≈ 〈x∗, β〉 ≈ 〈x∗, α〉.
Moreover, the above inner products are large only if α and
x∗ share some elements in their supports; else, they are

likely to be small. Likewise, the weight 〈y, u〉〈y, v〉 is large
only when x∗ shares common elements with both α and α′.
The following lemma leverages this intuition; given suffi-
ciently many samples, êl gives an indicator of how large the
“overlap” between α and α′ is.
Lemma 1. Fix samples u and v. Suppose that y = A∗x∗+ε
is a random sample independent of u and v, whose codes α
and α′ have supports U and V respectively. Then

el � E[〈y, u〉〈y, v〉y2l] =
∑

i∈U∩V

qiciβiβ
′
iA

∗2
li + E,

where qi = P[i ∈ S], qij = P[i, j ∈ S] and ci = E[x4
i |i ∈

S]. Also, E has absolute value O∗(k/m log2 n) w.h.p.
Now, suppose for a moment that u and v share exactly one

common atom in their codes, i.e., U ∩ V = {i}. Lemma 1
suggests that el is proportional to A∗2

li ; therefore, the scores
el corresponding to the r largest coefficients of the shared
atom will dominate the rest. This lets us isolate the support,
R, of the shared atom. We still need a mechanism to esti-
mate its non-zero coefficients. This is handled in the follow-
ing two Lemmas, which shows that the spectrum of a certain
(truncated) weighted covariance matrix reveals this infor-
mation. This step is reminiscent of covariance-thresholding
methods for sparse PCA (Johnstone and Lu 2004; Desh-
pande and Montanari 2014), and distinguishes our approach
from that in (Arora et al. 2015).
Lemma 2. The truncated re-weighting matrix obeys:

MR
u,v � E[〈y, u〉〈y, v〉yRyTR]

=
∑

i∈U∩V

qiciβiβ
′
iA

∗
R,iA

∗T
R,i + E′,

where E′ have spectrum norm at most O∗(k/m log n) w.h.p.
Lemma 3. If U ∩ V = {i}, then the r largest entries of el
are of magnitude at least Ω(k/mr) and are supported on R.
Moreover, the top singular vector of MR

u,v is δ-close to A∗
R,i

for δ = O∗(1/ log n).
Using the same argument for bounding E in Lemma 1,

we can see that M0 � qiciβiβ
′
iA

∗
R,iA

∗T
R,i has norm at least

Ω(k/m) when u and v share a unique element i. Therefore,
the spectral norm of M0 dominates those of the perturbation
term E′. Thus, given R, we can use the first singular vector
of MR

u,v as an estimate of A∗
R,i.

The question remains when and how we can certify that
u and v share a unique single element in the support of their
code vectors. Fortunately, this condition can be confirmed by
checking the decay of the singular values of the (truncated)
covariance matrix. This is quantified as follows.
Lemma 4. If the top singular value of Mu,v is at
least Ω(k/m) and the second largest one is at most
O∗(k/m log n), then u and v share a unique dictionary ele-
ment with high probability.

The above discussion assumes infinitely many available
samples. However, we can derive analogous finite-sample
lemmas which hold w.h.p. via concentration arguments. See
the appendix for details. Similar to (Arora et al. 2015), our

3856

Algorithm 2 Double-Sparse Coding Descent Algorithm
Initialize A0 is (δ, 2)-near to A∗. H = (hij)n×m where
hij = 1 if i ∈ supp(A0

•j) and 0 otherwise.
Repeat for s = 0, 1, . . . , T

Encode: x(i) = thresholdC/2((A
s)T y(i))

Update: As+1 = PH(As − ηĝs) = As − ηPH(ĝs),
where ĝs = 1

p

∑p
i=1(A

sx(i) − y(i))sgn(x(i))T

and PH(G) = H ◦G

algorithm requires Õ(m) iterations to estimate all the atoms,
and hence the expected running time is Õ(mnp).

Lemma 3 indicates that the support, as well as a coarse
(δ-close) estimate, of each column of A∗ can be estimated
using our proposed initialization method. We now show how
to refine this estimate using a descent-style method.

Stage 2: Descent

We adapt the neural sparse coding approach of (Arora et al.
2015) to obtain an improved estimate of A∗. As mentioned
earlier, at a high level the algorithm is akin to performing
approximate gradient descent. The insight is that within a
small enough neighborhood (in the sense of δ-closeness) of
the true A∗, an estimate of the ground-truth code vectors,
X∗, can be constructed using a neurally plausible algorithm.
It can be used to construct a noisy approximate gradient ĝs.

The innovation, in our case, is the double-sparsity model
since we know a priori that A∗ is itself sparse. Under suf-
ficiently many samples, the support of A∗ can be deduced
from the initialization stage; therefore we perform an extra
projection step in each iteration of gradient descent. In this
sense, our method is non-trivially different from (Arora et
al. 2015). The full algorithm is presented as Algorithm 2.

As discussed in the Setup section above, convergence of
noisy approximate gradient descent can be achieved as long
as ĝs is correlated-w.h.p. with the true solution. However,
an analogous convergence result for projected gradient de-
scent does not exist in the literature. We fill this gap via a
careful analysis. Due to the projection, we only require the
correlated-w.h.p. property for a part of ĝs with A∗ when
it is restricted to some support set. The descent property is
still achieved via Theorem 3. Due to the various perturbation
terms, ĝ is only a biased estimate of ∇AL(A,X); therefore,
we can only refine the estimate of A∗ until the column-wise
error is of the order of O(

√
k/n). The performance of Al-

gorithm 2 can be characterized via the following theorem.

Theorem 3. Suppose that the initial estimate A0 has the
correct column supports and is (δ, 2)-near to A∗ with δ =

O∗(1/ log n). If Algorithm 2 is provided with p = Ω̃(m +
σ2
ε
mnr
k) samples at each step and η = Θ(m/k), then

E[‖As
•i −A∗

•i‖2] ≤ (1− ρ)s‖A0
•i −A∗

•i‖2 +O(k/n)

for some 0 < ρ < 1/2 and for s = 1, 2, . . . , T . Con-
sequently, As converges to A∗ geometrically until column-
wise error is O

(√
k/n

)
.

The formal proof of Theorem 3 is available in our ex-
tended version (Nguyen, Wong, and Hegde 2017). Here, we
shed some light on the analysis techniques by studying the
case of infinite samples. Therefore, the estimate ĝs can be
replaced by its expectation,

gs � E[(Asx− y)sgn(x)T].
Let us focus on the ith column. Given the knowlege of the
support R of A∗

•i, we only have to restrict our focus to gsR,i.
A key component is to establish the (α, β, γs)-correlation of
gsRi with A∗

R,i so as to obtain a descent property, similar to
Theorem 3, for infinite number of samples. To this end, we
establish the following lemma, using the same strategy as in
(Arora et al. 2015).
Lemma 5. Suppose that the initial estimate A0 has the
correct column supports and is (δ, 2)-near to A∗ with
δ = O∗(1/ log n). The update is of the form gsR,i =

piqi(λ
s
iA

s
R,i −A∗

R,i + ξsi ± ζ) where R = supp(A∗
•i) and

ξsi = As
R,−idiag(qij)(As

•−i)
TA∗

•i/qi
and λs

i = 〈As
•i, A

∗
•i〉. In addition, ‖ξsi ‖ ≤ O(k/n) and ζ is

negligible.
Intuitively, Lemma 5 suggests that gsR,i is almost equal

to piqi(A
s
R,i − A∗

R,i) (since λs
i ≈ 1), which is a desired

direction. Then, we can prove the correlation and descent
results accordingly:
Lemma 6. If As is (δ, 2)-near to A∗ with δ = O∗(1/ log n)
and R = supp(A∗

•i), then 2gsRi,i
is (α, 1/2α, ε2/α)-

correlated with A∗
R,i by

〈2gsR,i, A
s
R,i −A∗

R,i〉 ≥ α‖As
R,i −A∗

R,i‖2
+ 1/(2α)‖gsR,i‖2 − ε2/α

where ε = O(k2/mn). In particular, gsR,i is (α, β, γ)-
correlated with A∗

R,i for α = Ω(k/m), β = Ω(m/k) and
γ = O(k3/mn2).

After the results under infinite samples are achieved, we
study the concentration of the empirical average ĝs to its
mean. Again, due to the knowledge of the column supports,
for each column of ĝs, we only have to establish such con-
centration over a r-dimensional sub-vector. This helps to
achieve a better sample complexity especially when r is
small. To sum up, the respective sample complexities for the
descent and the initialization stage are Õ(m + σ2

ε
mnr
k) and

Õ(mr). Overall, the sample complexity Õ(mr + σ2
ε
mnr
k)

sufficiently guarantees the success of our approach.
Regarding the running time, the running time per itera-

tion of Algorithm 2 is O(mmax(k, r)p) due to the sparsity
of both A and x. The main botteneck is at the initialization
stage with the expected running time is Õ(mnp). Conse-
quently, the total computational complexity of our approach
is Õ(mnp).

Empirical Study
We compare our method with three different methods for
both standard sparse and double-sparse coding. For the stan-
dard approach, we implement the algorithm proposed in

3857

0 2,000 4,000
0

0.2

0.4

0.6

0.8

1

Sample size

R
ec

ov
er

y
ra

te

0 2,000 4,000
0

2

4

6

8

Sample size

R
ec

on
st

ru
ct

io
n

er
ro

r

Ours
Arora

Arora+HT
Trainlets

0 2,000 4,000
0

1

2

3

4

Sample size

R
un

ni
ng

tim
e

0 2,000 4,000
0

0.2

0.4

0.6

0.8

1

Sample size

R
ec

ov
er

y
ra

te

0 2,000 4,000
0

2

4

6

8

Sample size

R
ec

on
st

ru
ct

io
n

er
ro

r

Ours
Arora

Arora+HT
Trainlets

0 2,000 4,000
0

2

4

6

Sample size

R
un

ni
ng

tim
e

Figure 1: (top) The performance of four methods on three metrics (recovery rate, reconstruction error and running time) in
sample size in the noiseless case. (bottom) The same metrics are measured for the noisy case.

(Arora et al. 2015), which currently is the best theoretically
sound method for provable sparse coding. However, since
their method does not explicitly leverage the double-sparsity
model, we also implement a heuristic modification that per-
forms a hard thresholding (HT)-based post-processing step
in the initialization and learning procedures (which we dub
Arora + HT). The final comparison is the Trainlets approach
of (Sulam et al. 2016).

We generate a synthetic training dataset according to the
model described in the Setup. The base dictionary Φ is the
identity matrix of size n = 64 and the square synthesis ma-
trix A∗ is a block diagonal matrix with 32 blocks. Each 2×2
block is of form [1 1; 1 −1] (i.e., the column sparsity r = 2) .
The support of x∗ is drawn uniformly over all 6-dimensional
subsets of [m], and the nonzero coefficients are randomly set
to ±1 with equal probability. In our simulations with noise,
we add Gaussian noise ε with entrywise variance σ2

ε = 0.01
to each of those above samples.

For all the approaches except Trainlets, we use T = 2000
iterations for the initialization procedure, and set the num-
ber of steps in the descent stage to 25. Since Trainlets does
not have a specified initialization procedure, we initialize it
with a random Gaussian matrix upon which column-wise
sparse thresholding is then performed. The learning step of
Trainlets3 is executed for 50 iterations, which tolerates its
initialization deficiency. For each Monte Carlo trial, we uni-
formly draw p samples, feed these samples to the four dif-
ferent algorithms, and observe their ability to reconstruct
A∗. Matlab implementation of our algorithms is available
online4.

3We use the implementation of Trainlets’s provided at
http://jsulam.cswp.cs.technion.ac.il/home/software/.

4https://github.com/thanh-isu/double-sparse-coding

We evaluate these approaches on three metrics as a func-
tion of the number of available samples: (i) fraction of trials
in which each algorithm successfully recovers the ground
truth A∗; (ii) reconstruction error; and (iii) running time. The
synthesis matrix is said to be “successfully recovered” if the
Frobenius norm of the difference between the estimate Â
and the ground truth A∗ is smaller than a threshold which
is set to 10−4 in the noiseless case, and to 0.5 in the other.
All three metrics are averaged over 100 Monte Carlo sim-
ulations. As discussed above, the Frobenius norm is only
meaningful under a suitable permutation and sign flip trans-
formation linking Â and A∗. We estimate this transforma-
tion using a simple maximum weight matching algorithm.
Specifically, we construct a weighted bipartite graph with
nodes representing columns of A∗ and Â and adjacency ma-
trix defined as G = |A∗T Â|, where |·| is taken element-wise.
We compute the optimal matching using the Hungarian al-
gorithm, and then estimate the sign flips by looking at the
sign of the inner products between the matched columns.

The results of our experiments are shown in Figure 1 with
the top and bottom rows respectively for the noiseless and
noisy cases. The two leftmost figures suggest that all algo-
rithms exhibit a “phase transitions” in sample complexity
that occurs in the range of 500-2000 samples. In the noise-
less case, our method achieves the phase transition with the
fewest number of samples. In the noisy case, our method
nearly matches the best sample complexity performance
(next to Trainlets, which is a heuristic and computationally
expensive). Our method achieves the best performance in
terms of (wall-clock) running time in all cases. To conclude,
simulation suggests that our method enjoys the sample effi-
ciency, robustness and computational efficacy, and strongly
supports our theory.

3858

References

Agarwal, A.; Anandkumar, A.; Jain, P.; Netrapalli, P.; and
Tandon, R. 2014. Learning sparsely used overcomplete dic-
tionaries. In Conference on Learning Theory, 123–137.
Aharon, M.; Elad, M.; and Bruckstein, A. 2006. rmk-
svd: An algorithm for designing overcomplete dictionaries
for sparse representation. IEEE Transactions on signal pro-
cessing 54(11):4311–4322.
Arora, S.; Ge, R.; Ma, T.; and Moitra, A. 2015. Simple,
efficient, and neural algorithms for sparse coding. In Con-
ference on Learning Theory, 113–149.
Arora, S.; Ge, R.; and Moitra, A. 2014. New algorithms
for learning incoherent and overcomplete dictionaries. In
Conference on Learning Theory, 779–806.
Boureau, Y.-L.; Bach, F.; LeCun, Y.; and Ponce, J. 2010.
Learning mid-level features for recognition. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, 2559–2566. IEEE.
Deshpande, Y., and Montanari, A. 2014. Sparse pca via
covariance thresholding. In Advances in Neural Information
Processing Systems, 334–342.
Elad, M., and Aharon, M. 2006. Image denoising via
sparse and redundant representations over learned dictionar-
ies. IEEE Transactions on Image processing 15(12):3736–
3745.
Engan, K.; Aase, S. O.; and Husoy, J. H. 1999. Method of
optimal directions for frame design. In Acoustics, Speech,
and Signal Processing, 1999. Proceedings., 1999 IEEE In-
ternational Conference on, volume 5, 2443–2446. IEEE.
Gregor, K., and LeCun, Y. 2010. Learning fast approxima-
tions of sparse coding. In Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10), 399–
406.
Gribonval, R.; Jenatton, R.; Bach, F.; Kleinsteuber, M.; and
Seibert, M. 2015. Sample complexity of dictionary learn-
ing and other matrix factorizations. IEEE Transactions on
Information Theory 61(6):3469–3486.
Gribonval, R.; Jenatton, R.; and Bach, F. 2015. Sparse and
spurious: dictionary learning with noise and outliers. IEEE
Transactions on Information Theory 61(11):6298–6319.
Jenatton, R.; Gribonval, R.; and Bach, F. 2012. Local stabil-
ity and robustness of sparse dictionary learning in the pres-
ence of noise. arXiv preprint arXiv:1210.0685.
Johnstone, I. M., and Lu, A. Y. 2004. Sparse principal com-
ponents analysis. Unpublished manuscript 7.
Krim, H.; Tucker, D.; Mallat, S.; and Donoho, D. 1999. On
denoising and best signal representation. IEEE Transactions
on Information Theory 45(7):2225–2238.
Mairal, J.; Bach, F.; Ponce, J.; and Sapiro, G. 2009. Online
dictionary learning for sparse coding. In Proceedings of the
26th annual international conference on machine learning,
689–696.
Mazumdar, A., and Rawat, A. S. 2017. Associative memory
using dictionary learning and expander decoding. In AAAI,
267–273.

Nguyen, T.; Wong, R. K. W.; and Hegde, C. 2017. A
provable approach for double-sparse coding. arXiv preprint
arXiv:1711.03638.
Olshausen, B. A., and Field, D. J. 1997. Sparse coding
with an overcomplete basis set: A strategy employed by v1?
Vision research 37(23):3311–3325.
Rubinstein, R.; Bruckstein, A. M.; and Elad, M. 2010. Dic-
tionaries for sparse representation modeling. Proceedings of
the IEEE 98(6):1045–1057.
Rubinstein, R.; Zibulevsky, M.; and Elad, M. 2010. Dou-
ble sparsity: Learning sparse dictionaries for sparse signal
approximation. IEEE Transactions on Signal Processing
58(3):1553–1564.
Spielman, D. A.; Wang, H.; and Wright, J. 2012. Exact
recovery of sparsely-used dictionaries. In Conference on
Learning Theory, 37–1.
Sulam, J.; Ophir, B.; Zibulevsky, M.; and Elad, M. 2016.
Trainlets: Dictionary learning in high dimensions. IEEE
Transactions on Signal Processing 64(12):3180–3193.
Sun, J.; Qu, Q.; and Wright, J. 2015. Complete dictionary re-
covery using nonconvex optimization. In Proceedings of the
33rd International Conference on Machine Learning, 2351–
2360.
Wang, L.; Zhang, X.; and Gu, Q. 2016. A unified compu-
tational and statistical framework for nonconvex low-rank
matrix estimation. arXiv preprint arXiv:1610.05275.
Zhang, Y.; Chen, X.; Zhou, D.; and Jordan, M. I. 2016.
Spectral methods meet em: A provably optimal algorithm
for crowdsourcing. The Journal of Machine Learning Re-
search 17(1):3537–3580.

3859

