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Abstract

In multi-label learning, each training example is represented
by a single instance (feature vector) while associated with
multiple class labels simultaneously. The task is to learn a
predictive model from the training examples which can as-
sign a set of proper labels for the unseen instance. Most ex-
isting approaches make use of multi-label training examples
by exploiting their labeling information in a crisp manner, i.e.
one class label is either fully relevant or irrelevant to the in-
stance. In this paper, a novel multi-label learning approach is
proposed which aims to enrich the labeling information by
leveraging the structural information in feature space. Firstly,
the underlying structure of feature space is characterized by
conducting sparse reconstruction among the training exam-
ples. Secondly, the reconstruction information is conveyed
from feature space to label space so as to enrich the origi-
nal categorical labels into numerical ones. Thirdly, the multi-
label predictive model is induced by learning from training
examples with enriched labeling information. Extensive ex-
periments on fifteen benchmark data sets clearly validate the
effectiveness of the proposed feature-induced strategy for en-
hancing labeling information of multi-label examples.

Introduction

Multi-label learning is one of the major learning frameworks
to deal with real-world objects with rich semantics, where
each example is represented by a single instance (feature
vector) while associated with multiple class labels simulta-
neously (Zhang and Zhou 2014; Gibaja and Ventura 2015;
Zhou and Zhang 2017). Formally speaking, let X = R

d be
the d-dimensional feature space and Y = {y1, y2, . . . , yq}
be the label space with q class labels. Given the multi-label
training set D = {(xi, Yi) | 1 ≤ i ≤ p}, where xi ∈ X
is the d-dimensional feature vector (xi1, xi2, . . . , xid)

� and
Yi ⊆ Y is the set of relevant labels associated with xi, the
task of multi-label learning is to learn a predictive model
h : X → 2Y from D which can assign a set of proper labels
for the unseen instance.

The accessible labeling information of multi-label train-
ing example is categorical, i.e. each class label y is either
regarded to be relevant (y ∈ Yi) or irrelevant (y /∈ Yi) for in-
stance xi. Accordingly, most existing approaches learn from
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multi-label training examples by exploiting their labeling in-
formation in a crisp manner, e.g. decomposing multi-label
examples into multiple binary examples, considering the co-
occurring patterns of pairwise labels, enforcing ranking be-
tween relevant and irrelevant labels, among others (Zhang
and Zhou 2014).

Nonetheless, recent studies show that categorical labeling
information is actually a simplification of the rich semantics
encoded by multi-label training examples (Li, Zhang, and
Geng 2015; Zhang and Wu 2015; Hou, Geng, and Zhang
2016). For instance, a multi-scenery image may exhibit dif-
ferent region size for each scenery, a multi-category docu-
ment may have different topical importance for each cate-
gory, and a multi-functionality gene may have different ex-
pression level for each functionality, etc. Therefore, it is a
natural choice to enrich the labeling information of multi-
label training examples so as to induce multi-label predictive
model with strong generalization performance.

In light of the above observation, a novel multi-label
learning approach named MLFE, i.e. Multi-label Learning
with Feature-induced labeling information Enrichment, is
proposed. The basic strategy of MLFE is to enrich the la-
beling information of multi-label examples by leveraging
the structural information in the feature space. Specifically,
the underlying structure of feature space is characterized by
the sparse reconstruction relationships among training ex-
amples. After that, the reconstruction information is utilized
to guide the enrichment process of turning categorical label-
ing information into numerical labeling information. Then,
the desired multi-label predictive model is learned from
training examples with enriched labeling information based
on tailored multivariate regression techniques. Experimen-
tal studies across a wide range of benchmark data sets show
that MLFE achieves highly competitive performance against
other state-of-the-art multi-label learning approaches.

The rest of this paper is organized as follows. Firstly,
technical details of the proposed approach are introduced.
Secondly, related work on multi-label learning is briefly dis-
cussed. Thirdly, experimental results of comparative studies
are reported. Finally, we conclude this paper.

The MLFE Approach

The learning procedure of MLFE consists of three steps, in-
cluding structural information discovery, labeling informa-
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tion enrichment, and predictive model induction. Technical
details of these steps are scrutinized as follows.

Structural Information Discovery

To characterize the underlying structure of feature space,
MLFE works by constructing a weighted directed graph
G = (V,E,W) where the vertex set V = {xi | 1 ≤ i ≤ p}
corresponds to the set of training instances. Accordingly, the
set of directed edges E = {(xi,xj) | wij �= 0, 1 ≤ i �= j ≤
p} connect any pair of instances xi and xj with nonzero
weight.

Intuitively, the weight matrix W = [wij ]p×p encodes the
relationships among all training examples, where wij re-
flects the influence of xi over xj . In this paper, the weight
matrix is instantiated by modeling the relationship between
one example and all the other examples via sparse recon-
struction. In this way, the relationship among all training
examples is exploited in a global and concise way. For
each instance xi, MLFE aims to reconstruct xi from all
the other instances in the training set, i.e. V \ {xi}. Let
Ai = [x1, . . . ,xi−1,xi+1, . . . ,xp] denote the d × (p − 1)
matrix formed by concatenating all training instances other
than xi, and vi = [w1i, . . . , wi−1,i, wi+1,i, . . . , wpi]

� de-
note the (p−1)-dimensional reconstruction coefficients. Un-
der canonical sparse representation, the coefficient vector vi

is learned by solving the following optimization problem:

min
vi

‖Aivi − xi‖22 + λ‖vi‖1 (1)

Here, the first and second terms in Eq.(1) control the linear
reconstruction error via L2 norm and the sparsity of the co-
efficients via L1 norm respectively. The relative importance
of each term is balanced by the tradeoff parameter λ. To
solve Eq.(1), MLFE adapts the popular ADMM (Alternat-
ing Direction Method of Multiplier) techniques (Bertsekas
and Tsitsiklis 1989; Ghadimi et al. 2015) which reformulate
the above optimization problem into the following equiva-
lent form:

min
{vi,zi}

1

2
‖Aivi − xi‖22 + λ‖zi‖1 (2)

s.t. vi − zi = 0

Following the ADMM procedure, the constrained optimiza-
tion problem in Eq.(2) can be solved as a series of uncon-
strained minimization problems with augmented Lagrangian
function:

L(vi, zi,μi) =
1

2
‖Aivi − xi‖22 + (3)

λ‖zi‖1 + μ�
i (vi − zi) +

ρ

2
‖vi − zi‖22

Here, ρ is the penalty parameter and μi is the estimate of
Lagrange multiplier. A sequential minimization of the vari-
ables vi, zi and μi can be conducted by the scaled ADMM
iterations:
v
(k+1)
i = (A�

i Ai + ρI)−1(A�
i xi + ρz

(k)
i − μ

(k)
i ) (4)

z
(k+1)
i = (v

(k+1)
i + μ

(k)
i /ρ− λ/ρ)+ −

(−(v
(k+1)
i + μ

(k)
i /ρ)− λ/ρ)+

μ
(k+1)
i = μ

(k)
i + ρ(v

(k+1)
i − z

(k+1)
i )

By solving the sparse reconstruction problem of Eq.(2)
with ADMM techniques for each instance xi (1 ≤ i ≤ p),
the weight matrix W can be instantiated with vi (1 ≤ i ≤ p)
and zero diagonal elements. Note that in most cases wij �=
wji, as the influence of xi in reconstructing xj is generally
different to the influence of xj in reconstructing xi.

Labeling Information Enrichment

For each multi-label training example (xi, Yi), its labeling
information can be represented by a categorical (binary) vec-
tor ti = (ti1, ti2, . . . , tiq)

� where tik = 1 if yk ∈ Yi, and
tik = −1 otherwise. The goal of MLFE is trying to trans-
form the binary labeling vector ti ∈ {1,−1}q into a numer-
ical labeling vector ui = (ui1, ui2, . . . , uiq)

� ∈ R
q which

encodes richer semantics for predictive model induction.
Considering that the weight matrix W characterizes the

structural information among training examples in the fea-
ture space, the reconstruction error over the training set cor-
responds to E(W) =

∑p
i=1 ‖xi −

∑p
j=1 wjixj‖22. Ac-

cordingly, suppose that the structural relationship specified
in the feature space also holds in the output space, i.e. the
influence of xi over xj is also conveyed to ui over uj .
Therefore, the goodness of the numerical labeling vectors
can be measured by the reconstruction errors in the la-
bel space: Φ(U) =

∑p
i=1 ‖ui −

∑p
j=1 wjiuj‖22, where

U = [u1,u2, . . . ,up].
Specifically, the enriched labeling information is gener-

ated via leveraging the structural information encoded in W
by solving the following optimization problem:

min
U

p∑
i=1

‖ui −
p∑

j=1

wjiuj‖22 (5)

s.t. c1 ≤ tijuij ≤ c2 (1 ≤ i ≤ p, 1 ≤ j ≤ q)

Here, the constraint in Eq.(5) ensures that the numerical la-
bel possesses the same sign with the binary label and takes
value with reasonable magnitude. Obviously, Eq.(5) corre-
sponds to a standard quadratic programming (QP) problem
which can be efficiently solved by any off-the-shelf QP tool-
box.

Predictive Model Induction

Given the enriched labeling information U, the original
multi-label training set can be transformed into its enriched
version D̃ = {(xi,ui) | 1 ≤ i ≤ p}. As the response vari-
ables ui for each transformed multi-label training example
(xi,ui) are real-valued, it is natural to induce the predictive
model by employing multi-output regression techniques.
Among various ways towards implementing multi-output
regression, we choose to adapt the multi-regression sup-
port vector machines (MSVR) (Chung et al. 2015; Sánchez-
Fernández et al. 2004; Tuia et al. 2011) which is capable of
incorporating kernel trick for nonlinear modeling.

Let ϕ(·) : Rd �→ R
Hκ be the (implicit) nonlinear mapping

from the original feature space to the higher-dimensional
Reproducing Kernel Hilbert Space (RKHS) via kernel func-
tion κ : X × X �→ R. Furthermore, let {(θj , bj) | 1 ≤ j ≤
q} denote the multi-output regression model in the RKHS,
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where one linear predictor (θj , bj) is assumed for each class
label yj ∈ Y . MLFE induces the regression model by mini-
mizing the following objective function:

Ω(Θ, b) =
1

2

q∑
j=1

‖θj‖22 + β1

p∑
i=1

Ω1(ui) + (6)

β2

p∑
i=1

q∑
j=1

Ω2(oij) + β3

p∑
i=1

q∑
j=1

Ω3(rij)

Here, Θ = [θ1,θ2, . . . ,θq] and b = [b1, b2, . . . , bq]
� rep-

resent the regression model’s weight matrix and bias vector
respectively.

As shown in Eq.(6), the first term controls the complex-
ity of the induced model. Furthermore, the second term is
defined based on the ε-insensitive cost which measures how
the model predictions fit the numerical labeling vectors:

Ω1(ui) =

{
0, ui < ε

(ui − ε)2, ui ≥ ε
(7)

Here, ui = ||ei|| =
√

e�i ei with ei = ui −Θ�ϕ(xi)− b.
Based on the ε-insensitive term, correlations among all class
labels are exploited by considering their predictive outputs
simultaneously to yield a unique input to Ω1(·). The third
term is used to penalize the case where the sign of predictive
output is different to that of original binary label:

Ω2(oij) =

{
0, oij > 0

−oij , oij ≤ 0
, (8)

where oij = tij
(
θ�
j ϕ(xi) + bj

)
.

Generally, multi-label examples only assume limited
number of relevant labels over the label space, i.e. |Yi| 
 q
(Zhang and Zhou 2014; Gibaja and Ventura 2015). The
fourth term in Eq.(6) penalizes the case where the predictive
model yields large number of relevant labels for the training
example:

Ω3(rij) =

{
1, rij > 0

0, rij ≤ 0
, (9)

where rij = θ�
j ϕ(xi) + bj .

To minimize the objective function Ω(Θ, b), MLFE em-
ploys the quasi-Newton iterative method named Iterative Re-
Weighted Least Square (IRWLS) (Sánchez-Fernández et al.
2004; Tuia et al. 2011). In each iteration, the descending di-
rection for model refinement is determined analytically by
solving linear systems of equations. Let {Θ(k), b(k)} de-
note the current model after k-th iteration, IRWLS works
by firstly approximating Ω(Θ, b) based on first-order Taylor
expansion over the ε-insensitive term Ω1(ui):

Ω′(Θ, b) =
1

2

q∑
j=1

‖θj‖2 (10)

+β1

⎛
⎝

p∑
i=1

Ω1(u
(k)
i ) +

dΩ1(u)

du

∣∣∣∣∣
u
(k)
i

(e
(k)
i )�

u
(k)
i

(
ei − e

(k)
i

)⎞⎠

+β2

p∑
i=1

q∑
j=1

Ω2(oij) + β3

p∑
i=1

q∑
j=1

Ω3(rij)

Here, e
(k)
i and u

(k)
i are calculated based on the current

model {Θ(k),b(k)}. Then, a quadratic approximation to
dΩ1(u)/du is further constructed to enable identifying ana-
lytical solution to the descending direction:

Ω′′(Θ, b) =
1

2

q∑
j=1

‖θj‖2 (11)

+β1

⎛
⎝ p∑

i=1

Ω1(u
(k)
i ) +

dΩ1(u)

du

∣∣∣∣∣
u
(k)
i

u2
i − (u

(k)
i )2

2u
(k)
i

⎞
⎠

+β2

p∑
i=1

q∑
j=1

Ω2(oij) + β3

p∑
i=1

q∑
j=1

Ω3(rij)

=
1

2

q∑
j=1

‖θj‖2 + 1

2
β1

p∑
i=1

q∑
j=1

aiu
2
i

+β2

p∑
i=1

q∑
j=1

Ω2(oij) + β3

p∑
i=1

q∑
j=1

Ω3(rij) + τ

where

ai =
1

u
(k)
i

dΩ1(u)

du

∣∣∣∣∣
u
(k)
i

=

⎧⎨
⎩
0, u

(k)
i < ε

2
(
u
(k)
i −ε

)

u
(k)
i

, u
(k)
i ≥ ε

and τ is a constant term which does not depend on
{Θ(k), b(k)}.

Thereafter, minimization of Ω′′(Θ, b) can be decoupled
for each class label, whose solution for (θj , bj) (1 ≤ j ≤ q)
is found by equating the corresponding gradient to zero:

∂Ω′′

∂θj
= θj − β1

p∑
i=1

aiϕ(xi)(uij − θ�
j ϕ(xi)− bj) (12)

−β2

p∑
i=1

ϕ(xi)σ(−oij)tij = 0

∂Ω′′

∂bj
= −β1

p∑
i=1

ai(uij − θ�
j ϕ(xi)− bj) (13)

−β2

p∑
i=1

σ(−oij)tij = 0

where σ(z) = 1 if z > 0, and σ(z) = 0 otherwise. Accord-
ingly, Eqs.(12) and (13) can be expressed as a linear system
of equations:[

β1Φ
�DaΦ+ I β1Φ

�a
β1a

�Φ β11
�a

] [
θj
bj

]

=

[
β1Φ

�Dau
j + β2Φ

�Djt
j

β1a
�uj + β2(σ

j)�tj

] (14)

Here, Φ = [ϕ(x1), ..., ϕ(xp)]
�, Da = [dil]p×p with

dil = aiδil (δil is the Kronecker’s delta), a =
[a1, ..., ap]

�, uj = [u1j , u2j , . . . , upj ]
�, Dj = [d′il]p×p

with d′il = σ(−oij)δil, tj = [t1j , t2j , . . . , tpj ]
�, σj =
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Table 1: Characteristics of the multi-label experimental data sets.

Data set |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Domain
cal500 502 68 174 numeric 26.044 0.150 502 1.000 audio

emotions 593 72 6 numeric 1.868 0.311 27 0.046 audio
medical 978 1,449 45 nominal 1.245 0.028 94 0.096 text

llog 1,460 1,004 75 nominal 1.180 0.016 304 0.208 text
msra 1,868 898 19 numeric 6.315 0.332 947 0.507 image
image 2,000 294 5 numeric 1.236 0.247 20 0.010 image
scene 2.407 294 5 numeric 1.074 0.179 15 0.006 image
yeast 2.417 103 14 numeric 4.237 0.303 198 0.082 biology

slashdot 3,782 1,079 22 nominal 1.181 0.054 156 0.041 text
corel5k 5,000 499 374 nominal 3.522 0.009 3,175 0.635 image
rcv1-s1 6,000 500 101 nominal 2.880 0.029 1,028 0.171 text
rcv1-s2 6,000 500 101 nominal 2.634 0.026 954 0.159 text
rcv1-s3 6,000 500 101 nominal 2.614 0.026 939 0.156 text
rcv1-s4 6,000 500 101 nominal 2.484 0.025 816 0.136 text
rcv1-s5 6,000 500 101 nominal 2.642 0.026 946 0.158 text

[σ(−o1j), σ(−o2j), . . . , σ(−opj)]
�. Then, the solution of

Eq. (14) is used to form the descending direction for min-
imizing the objective function, and the subsequent model
{Θ(k+1), b(k+1)} is updated by invoking line search proce-
dure from {Θ(k), b(k)} along this direction.

According to the Representer Theorem (Schölkopf and
Smola 2001), under fairly general conditions, the predic-
tive model can be expressed as a linear combination of
the training examples in the feature space, i.e., θj =∑p

i=1 ϕ(xi)κij = ΦTκj . By replacing this expression into
Eq. (14), the inner product < ϕ(xi), ϕ(xj) > naturally fol-
lows and then kernel trick can be applied to accommodate
nonlinear predictive models.

Related Work

Significant amount of multi-label learning algorithms have
been proposed in recent years, which can be roughly cate-
gorized into three groups based on the order of label cor-
relations being considered (Zhang and Zhou 2014; Gibaja
and Ventura 2015). For first-order approaches, multi-label
learning problem is tackled in a label-by-label style ignoring
the co-existence of other labels (Boutell et al. 2004; Zhang
and Zhou 2007). For second-order approaches, multi-label
learning problem is tackled by considering pairwise rela-
tions between labels (Elisseeff and Weston 2002; Fürnkranz
et al. 2008). For high-order approaches, multi-label learn-
ing problem is tackled by considering high-order relations
among label subsets or all the class labels (Ji et al. 2010;
Read et al. 2011; Tsoumakas, Katakis, and Vlahavas 2011).
Note that existing label correlation exploitation strategies
make use of the labeling information in a crisp manner,
while MLFE models the high-order correlations among class
labels with enriched real-valued labeling information.

There have been some works on multi-label learning
which make use of auxiliary labeling information for model
induction. For instance, in (Cheng, Dembczyński, and
Hüllermeier 2010), an ordinal scale is assumed to charac-
terize the membership degree and each label of the train-
ing example is affiliated with an ordinal grade. In (Xu, Li,
and Zhou 2013), a full ordering is assumed to be known to

rank relevant labels of the training example. In (Geng 2016),
a multinomial distribution is assumed to be specified over
the label space to characterize the descriptive degree of each
class label. Specifically, those auxiliary labeling information
are explicitly given and accessible to the learning algorithm,
while MLFE does not assume the availability of such explicit
information.

Recently, there are also some attempts which aim to facili-
tate multi-label predictive model induction by manipulating
the feature space. In (Zhang and Wu 2015), label-specific
features are constructed by conducting clustering analysis
over the positive and negative instances w.r.t. each class la-
bel. In (Li, Zhang, and Geng 2015), label propagation is
conducted over the fully-connected affinity graph specified
over the feature space. In (Hou, Geng, and Zhang 2016), the
manifold structure of feature space is characterized by the
weighted k-nearest neighbor graph defined over training ex-
amples. Different to those approaches, MLFE serves as the
first attempt which enriches labeling information by exploit-
ing the structure of feature space via sparse reconstruction.

Experiments

Experimental Setup

In this subsection, the benchmark data sets, comparing algo-
rithms, and evaluation metrics used for experimental studies
are introduced.

A total of fifteen benchmark multi-label data sets are em-
ployed for performance evaluation.1 For each multi-label
data set S , we use |S|, dim(S), L(S) and F (S) to repre-
sent the number of examples, feature dimensionality, size of
label space and feature type respectively. In addition, proper-
ties of the data set are further characterized by several multi-
label statistics, including label cardinality LCard(S), label
density LDen(S), distinct label sets DL(S) and proportion
of distinct label sets PDL(S). Detailed definitions on these
properties can be found in (Read et al. 2011).

1Publicly available at http://mulan.sourceforge.net/datasets.
html and http://meka.sourceforge.net/#datasets
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Table 2: Predictive performance of each comparing algorithm (mean ± std. deviation) on the regular-scale data sets.
Comparing One-error ↓
algorithms cal500 emotions medical llog msra image scene yeast
MLFE 0.129±0.047 0.260±0.030 0.113±0.041 0.669±0.044 0.040±0.008 0.258±0.020 0.149±0.023 0.231±0.015
LIFT 0.116±0.040 0.255±0.037 0.152±0.039 0.705±0.049 0.057±0.014 0.277±0.023 0.162±0.023 0.229±0.013

RELIAB 0.159±0.062 0.277±0.036 0.168±0.039 0.746±0.028 0.066±0.017 0.350±0.023 0.270±0.023 0.247±0.017
ML2 0.166±0.078 0.268±0.032 0.129±0.028 0.699±0.038 0.040±0.013 0.267±0.022 0.156±0.029 0.254±0.027
CLR 0.269±0.061 0.322±0.032 0.360±0.170 0.830±0.058 0.144±0.027 0.437±0.019 0.344±0.027 0.241±0.012
RAKEL 0.611±0.084 0.315±0.074 0.246±0.038 0.879±0.026 0.239±0.031 0.412±0.029 0.339±0.027 0.280±0.016
Comparing Coverage ↓
algorithms cal500 emotions medical llog msra image scene yeast
MLFE 0.764±0.013 0.278±0.022 0.031±0.012 0.227±0.027 0.518±0.010 0.163±0.014 0.016±0.009 0.452±0.010

LIFT 0.759±0.020 0.280±0.025 0.048±0.022 0.173±0.020 0.539±0.011 0.172±0.014 0.020±0.009 0.459±0.010
RELIAB 0.738±0.013 0.299±0.029 0.047±0.016 0.161±0.020 0.541±0.011 0.199±0.012 0.107±0.011 0.457±0.004
ML2 0.805±0.013 0.279±0.022 0.031±0.011 0.181±0.019 0.522±0.011 0.165±0.012 0.018±0.009 0.455±0.011
CLR 0.795±0.008 0.334±0.020 0.080±0.068 0.186±0.044 0.618±0.013 0.247±0.016 0.137±0.017 0.480±0.008
RAKEL 0.964±0.006 0.348±0.021 0.089±0.019 0.340±0.023 0.670±0.010 0.253±0.009 0.174±0.015 0.564±0.008
Comparing Ranking loss ↓
algorithms cal500 emotions medical llog msra image scene yeast
MLFE 0.185±0.008 0.142±0.020 0.020±0.010 0.233±0.027 0.118±0.006 0.135±0.014 0.052±0.010 0.167±0.007

LIFT 0.182±0.004 0.142±0.025 0.033±0.017 0.157±0.021 0.125±0.005 0.147±0.015 0.056±0.009 0.170±0.006
RELIAB 0.177±0.005 0.161±0.031 0.031±0.012 0.128±0.018 0.131±0.005 0.181±0.013 0.090±0.010 0.180±0.008
ML2 0.210±0.009 0.144±0.023 0.019±0.008 0.170±0.020 0.119±0.006 0.138±0.011 0.055±0.011 0.172±0.009
CLR 0.224±0.008 0.199±0.024 0.065±0.059 0.152±0.039 0.190±0.009 0.243±0.018 0.119±0.016 0.187±0.005
RAKEL 0.364±0.014 0.217±0.026 0.067±0.015 0.292±0.028 0.232±0.011 0.250±0.012 0.154±0.014 0.250±0.005
Comparing Average precision ↑
algorithms cal500 emotions medical llog msra image scene yeast
MLFE 0.490±0.025 0.815±0.020 0.914±0.024 0.393±0.036 0.827±0.008 0.833±0.014 0.917±0.014 0.767±0.010

LIFT 0.503±0.015 0.817±0.027 0.874±0.029 0.402±0.039 0.830±0.008 0.819±0.015 0.909±0.013 0.762±0.008
RELIAB 0.507±0.019 0.797±0.028 0.869±0.028 0.393±0.034 0.818±0.009 0.776±0.013 0.840±0.014 0.744±0.011
ML2 0.456±0.027 0.811±0.022 0.903±0.021 0.396±0.036 0.836±0.007 0.827±0.014 0.913±0.016 0.757±0.014
CLR 0.436±0.019 0.762±0.024 0.687±0.192 0.295±0.075 0.741±0.013 0.718±0.014 0.795±0.018 0.745±0.008
RAKEL 0.332±0.019 0.766±0.031 0.802±0.027 0.233±0.026 0.694±0.014 0.725±0.013 0.780±0.018 0.710±0.009
Comparing Macro-averaging F1 ↑
algorithms cal500 emotions medical llog msra image scene yeast
MLFE 0.237±0.022 0.670±0.052 0.720±0.073 0.461±0.062 0.553±0.015 0.658±0.024 0.819±0.026 0.425±0.023
LIFT 0.176±0.021 0.630±0.042 0.690±0.079 0.399±0.057 0.516±0.017 0.621±0.035 0.797±0.015 0.388±0.022
RELIAB 0.301±0.022 0.650±0.039 0.712±0.053 0.392±0.058 0.546±0.014 0.556±0.035 0.665±0.025 0.405±0.024
ML2 0.236±0.021 0.650±0.047 0.674±0.061 0.370±0.060 0.548±0.012 0.646±0.029 0.799±0.029 0.443±0.025

CLR 0.211±0.025 0.601±0.038 0.600±0.129 0.395±0.062 0.499±0.017 0.525±0.022 0.620±0.025 0.400±0.018
RAKEL 0.187±0.020 0.618±0.036 0.672±0.058 0.366±0.051 0.492±0.020 0.540±0.012 0.644±0.019 0.430±0.014
Comparing Micro-averaging F1 ↑
algorithms cal500 emotions medical llog msra image scene yeast
MLFE 0.374±0.024 0.684±0.043 0.816±0.032 0.211±0.042 0.725±0.009 0.657±0.021 0.810±0.026 0.649±0.014

LIFT 0.323±0.016 0.659±0.024 0.775±0.036 0.177±0.037 0.716±0.015 0.622±0.031 0.787±0.015 0.645±0.011
RELIAB 0.483±0.012 0.647±0.036 0.725±0.029 0.181±0.037 0.714±0.007 0.560±0.030 0.654±0.025 0.637±0.011
ML2 0.358±0.027 0.661±0.039 0.782±0.026 0.057±0.021 0.722±0.008 0.645±0.028 0.788±0.029 0.641±0.014
CLR 0.326±0.019 0.614±0.037 0.598±0.157 0.176±0.049 0.624±0.010 0.525±0.019 0.612±0.026 0.628±0.012
RAKEL 0.355±0.018 0.634±0.031 0.685±0.031 0.148±0.027 0.613±0.015 0.540±0.011 0.636±0.023 0.632±0.009

Table 1 summarizes detailed characteristics of the bench-
mark data sets, which are roughly organized in ascend-
ing order of |S| with eight being regular-scale (first part,
|S| < 3, 000) and seven being large-scale (second part,
|S| ≥ 3, 000). As shown in Table 1, the fifteen experimental
data sets exhibit diversified multi-label properties serving as
a solid basis for thorough comparative studies.

The performance of MLFE is compared against five
state-of-the-art multi-label learning algorithms, including
the second-order approach CLR (Fürnkranz et al. 2008),
the high-order approach RAKEL (Tsoumakas, Katakis, and
Vlahavas 2011), and three feature-aware approaches LIFT
(Zhang and Wu 2015), RELIAB (Li, Zhang, and Geng 2015)
and ML2 (Hou, Geng, and Zhang 2016).

For the comparing algorithms, parameter configurations
suggested in the literatures are used, i.e. CLR: ensem-

ble size
(
q
2

)
; RAKEL: ensemble size 2q with k = 3;

LIFT: ratio parameter r = 0.1; RELIAB: propagation pa-
rameters τ and β chosen among {0.1, 0.15, . . . , 0.5} and
{10−3, 10−2, . . . , 10}; ML2: balance parameter λ = 1,
cost parameters C1 and C2 chosen among {1, 2, . . . , 10}.
For MLFE, parameters β1, β2 and β3 in Eq.(6) are chosen
among {1, 2, . . . , 10}, {1, 10, 15} and {1, 10} respectively
with cross-validation on the training set.2

In this paper, six widely-used multi-label metrics are em-
ployed for performance evaluation, including four example-
based metrics one-error, coverage, ranking loss, average

2In this paper, the parameters ρ and λ in Eq.(3) are fixed to be
1 and 1

100
‖A�

i xi‖∞, the parameters c1 and c2 in Eq.(5) are fixed
to be 1 and 2. Furthermore, RBF kernel is utilized to instantiate the
multi-output SVR employed by MLFE.
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Table 3: Predictive performance of each comparing algorithm (mean ± std. deviation) on the large-scale data sets.
Comparing One-error ↓
algorithms slashdot corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5
MLFE 0.372±0.020 0.646±0.021 0.413±0.013 0.463±0.014 0.472±0.023 0.453±0.020 0.445±0.015
LIFT 0.397±0.026 0.669±0.014 0.415±0.019 0.455±0.012 0.473±0.020 0.457±0.022 0.445±0.017
RELIAB 0.516±0.017 0.718±0.015 0.467±0.020 0.476±0.011 0.477±0.024 0.462±0.015 0.467±0.017
ML2 0.363±0.018 0.627±0.023 0.396±0.021 0.448±0.014 0.461±0.020 0.438±0.017 0.437±0.017

CLR 0.979±0.005 0.741±0.018 0.501±0.027 0.507±0.019 0.533±0.037 0.499±0.017 0.503±0.018
RAKEL 0.615±0.020 0.872±0.014 0.623±0.023 0.592±0.017 0.598±0.018 0.592±0.013 0.595±0.021
Comparing Coverage ↓
algorithms slashdot corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5
MLFE 0.117±0.008 0.263±0.013 0.100±0.007 0.094±0.005 0.096±0.004 0.081±0.006 0.094±0.006

LIFT 0.107±0.009 0.286±0.013 0.132±0.009 0.139±0.006 0.142±0.006 0.120±0.009 0.134±0.004
RELIAB 0.134±0.005 0.300±0.011 0.137±0.009 0.121±0.005 0.125±0.006 0.113±0.011 0.119±0.006
ML2 0.101±0.007 0.288±0.012 0.110±0.008 0.105±0.007 0.109±0.005 0.088±0.007 0.108±0.007
CLR 0.258±0.009 0.287±0.015 0.112±0.008 0.105±0.006 0.114±0.024 0.095±0.007 0.107±0.006
RAKEL 0.218±0.012 0.874±0.012 0.417±0.012 0.359±0.022 0.369±0.014 0.358±0.020 0.363±0.015
Comparing Ranking loss ↓
algorithms slashdot corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5
MLFE 0.098±0.008 0.109±0.006 0.039±0.003 0.039±0.002 0.040±0.002 0.034±0.003 0.038±0.002

LIFT 0.092±0.008 0.122±0.005 0.053±0.003 0.059±0.002 0.062±0.002 0.051±0.004 0.055±0.002
RELIAB 0.118±0.005 0.130±0.005 0.058±0.003 0.045±0.002 0.052±0.002 0.047±0.004 0.048±0.002
ML2 0.084±0.006 0.163±0.008 0.042±0.003 0.043±0.003 0.046±0.003 0.037±0.003 0.043±0.003
CLR 0.245±0.010 0.131±0.008 0.048±0.002 0.046±0.002 0.054±0.020 0.044±0.002 0.046±0.003
RAKEL 0.198±0.013 0.586±0.011 0.233±0.007 0.209±0.012 0.222±0.009 0.224±0.013 0.209±0.012
Comparing Average precision ↑
algorithms slashdot corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5
MLFE 0.715±0.015 0.316±0.012 0.615±0.010 0.622±0.006 0.614±0.013 0.640±0.013 0.626±0.007
LIFT 0.695±0.019 0.291±0.010 0.582±0.013 0.579±0.008 0.569±0.010 0.596±0.010 0.586±0.009
RELIAB 0.610±0.012 0.269±0.009 0.563±0.010 0.588±0.009 0.586±0.013 0.611±0.010 0.586±0.009
ML2 0.728±0.015 0.315±0.013 0.629±0.013 0.630±0.008 0.622±0.011 0.647±0.014 0.631±0.006

CLR 0.261±0.006 0.247±0.009 0.564±0.012 0.579±0.011 0.554±0.050 0.589±0.013 0.576±0.012
RAKEL 0.516±0.012 0.120±0.007 0.391±0.009 0.429±0.010 0.423±0.010 0.431±0.011 0.421±0.012
Comparing Macro-averaging F1 ↑
algorithms slashdot corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5
MLFE 0.455±0.048 0.338±0.014 0.282±0.024 0.263±0.023 0.243±0.021 0.290±0.036 0.265±0.024
LIFT 0.427±0.036 0.324±0.014 0.219±0.038 0.163±0.020 0.151±0.020 0.203±0.034 0.165±0.022
RELIAB 0.433±0.047 0.303±0.019 0.332±0.026 0.332±0.023 0.333±0.022 0.335±0.039 0.332±0.012

ML2 0.424±0.050 0.331±0.015 0.228±0.025 0.225±0.020 0.216±0.019 0.263±0.037 0.232±0.020
CLR 0.165±0.035 0.276±0.015 0.278±0.028 0.269±0.016 0.255±0.035 0.297±0.023 0.286±0.013
RAKEL 0.363±0.033 0.257±0.013 0.266±0.029 0.237±0.024 0.243±0.023 0.256±0.020 0.255±0.016
Comparing Micro-averaging F1 ↑
algorithms slashdot corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5
MLFE 0.550±0.016 0.177±0.015 0.411±0.011 0.411±0.011 0.397±0.016 0.426±0.013 0.414±0.010
LIFT 0.509±0.020 0.077±0.011 0.311±0.020 0.297±0.013 0.289±0.014 0.327±0.019 0.314±0.012
RELIAB 0.449±0.014 0.226±0.010 0.417±0.007 0.468±0.011 0.431±0.013 0.485±0.009 0.466±0.009

ML2 0.531±0.015 0.126±0.016 0.378±0.016 0.383±0.014 0.377±0.017 0.411±0.012 0.394±0.015
CLR 0.008±0.003 0.123±0.019 0.361±0.008 0.356±0.015 0.338±0.029 0.365±0.017 0.368±0.014
RAKEL 0.362±0.014 0.135±0.009 0.341±0.008 0.337±0.008 0.335±0.012 0.349±0.010 0.350±0.010

precision, and two label-based metrics macro-averaging F1,
micro-averaging F1. These evaluation metrics consider the
performance of multi-label predictor from various aspects,
whose values all vary between [0,1]. Concrete metric defini-
tions can be found in (Zhang and Zhou 2014), and the cover-
age metric is normalized by the number of class labels (i.e.
q). For one-error, coverage and ranking loss, the smaller the
values the better the performance. For the other three met-
rics, the larger the values the better the performance. Ten-
fold cross-validation is performed on the benchmark data
sets, where the mean metric value as well as standard de-
viation are recorded for each comparing algorithm.

Experimental Results

Table 2 and 3 report the detailed experimental results of
six comparing algorithm on the regular-scale and large-scale

data sets respectively, where the best performance among the
comparing algorithms is shown in boldface. For each evalu-
ation metric, “↓” indicates “the smaller the better” while “↑”
indicates “the larger the better”.

In this paper, Friedman test (Demšar 2006) is used as the
statistical test to analyze the relative performance among the
comparing algorithms. Table 4 summarizes the Friedman
statistics FF and the corresponding critical value on each
evaluation metric. For each evaluation metric, the null hy-
pothesis of indistinguishable performance among the com-
paring algorithms is rejected at 0.05 significance level. Con-
sequently, the post-hoc Bonferroni-Dunn test (Demšar 2006)
is employed to show the relative performance among the
comparing algorithms. Here, MLFE is treated as the control
algorithm whose average rank difference against the com-
paring algorithm is calibrated with the critical difference
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Figure 1: Comparison of MLFE (control algorithm) against five comparing algorithms with the Bonferroni-Dunn test. Algo-
rithms not connected with MLFE in the CD diagram are considered to have significantly different performance from the control
algorithm (CD=1.7597 at 0.05 significance level).

(CD). Accordingly, MLFE is deemed to have significantly
different performance to one comparing algorithm if their
average ranks differ by at least one CD (CD=1.7597 in this
paper: # comparing algorithms k = 6, # data sets N = 15).

Figure 1 illustrates the CD diagrams (Demšar 2006) on
each evaluation metric, where the average rank of each com-
paring algorithm is marked along the axis (lower ranks to the
right). In each subfigure, any comparing algorithm whose
average rank is within one CD to that of MLFE is intercon-
nected to each other with a thick line. Overall, the following
observations can be made based on the above experimental
results:
• On regular-scale data sets (Table 2), across all evaluation

metrics, MLFE ranks 1st in 68.7% cases and ranks 2nd in
14.5% cases; On large-scale data sets (Table 3), across all
evaluation metrics, MLFE ranks 1st in 38.0% cases and
ranks 2nd in 45.2% cases.

• It is noteworthy that MLFE achieves optimal (lowest) av-
erage rank in terms of all evaluation metrics except av-
erage precision. Furthermore, no algorithm significantly
outperforms MLFE across all evaluation metrics.

• MLFE significantly outperforms CLR and RAKEL in
terms of all evaluation metrics.

• MLFE is comparable to LIFT in terms of one-error, rank-
ing loss, average precision, comparable to RELIAB in
terms of macro-averaging F1, micro-averaging F1, and
significantly outperforms LIFT and RELIAB on all the
other cases.

Further Analysis

To further investigate the usefulness of the enriched label-
ing information generated by MLFE, experimental studies
on artificial data with ground-truth numerical labeling infor-
mation are conducted. Specifically, following the same ex-
perimental scheme in (Geng 2016), an artificial multi-label
data set with 2,601 examples and ground-truth labeling on
three class labels is generated. The enriched labeling infor-
mation generated by MLFE is normalized and its distance
with the ground-truth labeling information is measured by
several widely-used dissimilarity criteria.

Table 4: Friedman statistics FF in terms of each evalua-
tion metric and the critical value at 0.05 significance level
(# comparing algorithms k = 6, # data sets N = 15).

Evaluation metric FF critical value

One-error 62.0069

2.3456

Coverage 24.9330
Ranking loss 24.4755
Average precision 48.7117
Macro-averaging F1 9.2395
Micro-averaging F1 20.5828

Table 5: Quantitative measures of the dissimilarity between
generated and ground-truth labeling information (ranks on
each criterion shown in brackets).

Criterion MLFE ML2 KM FCM RANDOM

Canberra ↓ 0.8064(2) 0.8442(3) 1.5887(5) 0.7851(1) 1.2085(4)
Chebyshev ↓ 0.1403(1) 0.1519(2) 0.1974(3) 0.2010(4) 0.3559(5)
Clark ↓ 0.6099(2) 0.6278(3) 1.1805(5) 0.5293(1) 0.7817(4)
KL ↓ 0.1242(1) 0.1341(2) 0.2264(3) 0.4091(4) 0.6807(5)
Intersection ↑ 0.8596(1) 0.8481(2) 0.8026(3) 0.7990(4) 0.6441(5)
Cosine ↑ 0.9661(1) 0.9609(2) 0.9471(3) 0.9294(4) 0.7550(5)

Average Rank 1.333 2.333 3.666 3.000 4.666

Table 5 reports the quantitative measures of the dissimi-
larity between generated and ground-truth labeling informa-
tion, which clearly shows the strong capability of MLFE in
discovering useful enriched labeling information w.r.t. the
ML2 (Hou, Geng, and Zhang 2016), KM (k-means) (Jiang,
Zhang, and Lv 2006), FCM (fuzzy c-means) (Klir and Yuan
1995), and RANDOM approaches which can also generate
numerical labeling scores.

Conclusion

In this paper, a novel approach is proposed to learning from
multi-label data by leveraging the structural information in
feature space. The key strategy is to convey the structural in-
formation modeled by sparse reconstruction in feature space
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to facilitate generating enriched labeling information in out-
put space. The effectiveness of feature-induced labeling in-
formation enrichment is clearly validated with extensive ex-
periments on benchmark multi-label data sets.
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