
On Convergence of Epanechnikov Mean Shift

Kejun Huang
University of Minnesota
Minneapolis, MN 55414

huang663@umn.edu

Xiao Fu
Oregon State University

Corvallis, OR 97331
xiao.fu@oregonstate.edu

Nicholas D. Sidiropoulos
University of Virginia

Charlottesville, VA 22904
nikos@virginia.edu

Abstract

Epanechnikov Mean Shift is a simple yet empirically very
effective algorithm for clustering. It localizes the centroids
of data clusters via estimating modes of the probability dis-
tribution that generates the data points, using the ‘optimal’
Epanechnikov kernel density estimator. However, since the
procedure involves non-smooth kernel density functions, the
convergence behavior of Epanechnikov mean shift lacks the-
oretical support as of this writing—most of the existing anal-
yses are based on smooth functions and thus cannot be ap-
plied to Epanechnikov Mean Shift. In this work, we first show
that the original Epanechnikov Mean Shift may indeed termi-
nate at a non-critical point, due to the non-smoothness na-
ture. Based on our analysis, we propose a simple remedy to
fix it. The modified Epanechnikov Mean Shift is guaranteed
to terminate at a local maximum of the estimated density,
which corresponds to a cluster centroid, within a finite num-
ber of iterations. We also propose a way to avoid running the
Mean Shift iterates from every data point, while maintaining
good clustering accuracies under non-overlapping spherical
Gaussian mixture models. This further pushes Epanechnikov
Mean Shift to handle very large and high-dimensional data
sets. Experiments show surprisingly good performance com-
pared to the Lloyd’s K-means algorithm and the EM algo-
rithm.

Introduction

Clustering is a fundamental problem in artificial intelligence
and statistics (Jain, Murty, and Flynn 1999). The simplest
form is arguably the K-means clustering, in which a set of
data points {xm}Mm=1 ⊆ Rd is given, and the objective is
to separate them into K clusters, such that the sum of the
cluster variances is minimized. It has been shown that K-
means clustering is NP-hard in general (Aloise et al. 2009;
Dasgupta and Freund 2009), even though Lloyd’s algorithm
usually gives reasonably good approximate solutions (Lloyd
1982) when d is small. In fact, it has been used as a standard
sub-routine for more complicated clustering tasks like spec-
tral clustering (Ng, Jordan, and Weiss 2001) and subspace
clustering (Elhamifar and Vidal 2013), despite the fact that
it is not guaranteed to give the global optimal solution.

Several attempts have been made to quantify cases un-
der which we can provably cluster the data under a prob-

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

abilistic generative model. Based on the Gaussian mix-
ture model (GMM), instead of applying Lloyd’s algorithm
or Expectation-Maximization (Dempster, Laird, and Rubin
1977), this line of work devises sophisticated and some-
what conceptual methods that guarantee correct estimation
of the GMM parameters under additional conditions. The
first of this genre, to the best of our knowledge, is the
work in (Dasgupta 1999), which shows that if the Gaus-
sian components are almost disjoint, then the deflation-type
method in (Dasgupta 1999) correctly clusters the data with
high probability. A more practical approach is later proposed
in (Dasgupta and Schulman 2000) with the same perfor-
mance guarantee, which is a two-round variant of the EM
algorithm. A number of follow-up works try to further im-
prove the bound on how close the Gaussian components
can be (Arora and Kannan 2001; Vempala and Wang 2004;
Brubaker and Vempala 2008; Moitra and Valianty 2010;
Belkin and Sinha 2010), but most of them focus on theo-
retical guarantees but not practical implementations.

On the other hand, there is a simple and effective method
for clustering called Mean Shift (Fukunaga and Hostetler
1975; Cheng 1995; Comaniciu and Meer 2002) that has been
popular in the field of computer vision. Two main versions
of Mean Shift are the Epanechnikov Mean Shift and Gaus-
sian Mean Shift, and the details will be explained in the
next section. Compared to K-means and Gaussian mixture
model, fewer theoretical results have been presented regard-
ing Mean Shift. Compared to Gaussian Mean Shift, even less
analysis exists for Epanechnikov Mean Shift, partly due to
its non-smoothness nature, despite its simplicity and effec-
tiveness.

The main contribution of this paper is the establishment of
convergence for Epanechnikov Mean Shift. There have been
many convergence studies on different variants and approxi-
mations to the original Epanechnikov Mean Shift. However,
to the best of our knowledge, there is no analysis that di-
rectly addresses the original Epanechnikov Mean Shift, par-
tially because non-smoothness of the kernel employed in the
method poses a hard analytical problem. Nevertheless, an-
alyzing the convergence behavior of the original Epanech-
nikov Mean Shift is of great interest since it is based on
the ‘optimal’ kernel in density estimation. In this work, we
provide detailed functional analysis and rigorous proof for
Epanechnikov Mean Shift. We first show that the method in-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3263

0 5 10 15 20 25 30
MC trial

0

0.05

0.1

0.15

0.2

0.25

0.3
clustering error

0 5 10 15 20 25 30
MC trial

10-1

100

101

102
time / sec.

Meau Shift Deflation
K-means (MATLAB)
EM-GMM (MATLAB)
Dasgupta & Schulman 2000
Mean Shift (Original)

Figure 1: 100 Monte-Carlo simulations on synthetic data. Left: clustering error; right: run time.

deed can get swamped at some undesired points, but with
very simple modification it is guaranteed to reach a local
optimum of the data density function that corresponds to a
cluster centroids within finite number of iterations. This is
the first analytical result that backs convergence behaviors
of the Epanechnikov Mean Shift and the proposed modifi-
cation is of practical significance. Inspired by the idea of
deflation by (Dasgupta 1999) and follow-up works, we also
propose a deflation-variant of the Mean Shift algorithm that
is guaranteed to correctly cluster the data one group at a time
under some additional conditions. This strategy saves a huge
amount of computations compared to the original version
and thus suits large-scale clustering problems.

Illustrative Example

Before we delve into convergence analysis of Epanechnikov
Mean Shift, we give a simple illustrative example to show-
case its effectiveness in clustering—which explains the rea-
son why this particular method interests us. Specifically,
we test the performance of the proposed deflation-based
Epanechnikov Mean Shift and some classic clustering meth-
ods, including Lloyd’s K-means algorithm, Expectation-
Maximization (EM) for Gaussian mixture models (GMM),
the two-round variant of EM by (Dasgupta and Schulman
2000), and the original Epanechnikov Mean Shift. The ex-
periment is conducted in MATLAB, with the build-in imple-
mentation of K-means clustering and EM for GMM. Notice
that these are well-implemented K-means / EM algorithms,
with smart initialization suggested by K-means++ (Arthur
and Vassilvitskii 2007), and/or various parallel implementa-
tion / multiple re-start enhancements that have been shown
to work well in practice. The two-round variant of EM (Das-
gupta and Schulman 2000) is mathematically proven to
work well with high probability when the clusters are non-
overlapping.

The experiments are conducted on a synthetic dataset
{xm}Mm=1 ⊆ Rd generated as follows. For d = 100, we
prescribe K = 30 clusters (Gaussian components). For
cluster k, we first randomly generate its centroid μk ∼
N (0, 4I), and then generate Mk = 50k i.i.d. data points
from N (μk, I). Then we hide the cluster labels and feed

the data into various algorithms. For the two versions of the
Mean Shift algorithm, there is no need to indicate the num-
ber of clusters K before hand—the only parameter (kernel
bandwidth) is tuned by leave-one-out cross-validation, and
then the algorithm automatically detects the number of clus-
ters in the data set. For the other methods, the correct number
of clusters K is given, which means they are already using
more information than the Mean Shift-based methods. The
procedure is repeated 30 times. In each Monte-Carlo trial,
the obtained cluster labels are aligned with the true labels
using the Hungarian algorithm (Kuhn 1955). The clustering
error is then calculated as the ratio of wrongly labeled data
points over the total number of data points.

The clustering error and runtime for each Monte-Carlo
trial are shown in Figure 1. The first observation is that plain
vanilla K-means and EM do not cluster the data very ac-
curately, even though there exists a good clustering struc-
ture according to how we generate the data. The clustering
error is greatly reduced if we adopt the two-round variant
of EM (Dasgupta and Schulman 2000), with the compro-
mise of a significantly higher amount of computation time.
However, since the different Gaussian components are just
marginally separated (and the sizes of each cluster are some-
what unbalanced), the performance is not as good as we
might expect according to (Dasgupta and Schulman 2000).
Mean Shift-based methods, on the other hand, give the sur-
prising zero clustering error in all cases; considering the fact
that the correct number of clusters K is not given to these
methods, the results look even more impressive. In terms
of computation time, the original Mean Shift takes similar
time as that of (Dasgupta and Schulman 2000), whereas the
proposed Mean Shift deflation takes, remarkably, the least
amount of time, even compared to the simple K-means.

In this paper, we will study convergence properties of the
original Epanechnikov Mean Shift and its deflation variant,
and explain the reasons behind its effectiveness.

Background: KDE and Mean Shift

The intuition behind Mean Shift for clustering is as follows.
Suppose we have the probability density function (PDF)
p(z) of the dataset {xm}Mm=1 ⊆ Rd. If the PDF p(z) has

3264

K modes, then we expect K clusters in this dataset. Fur-
thermore, if we run an optimization algorithm, e.g. gradient
descent, initialized at a data point xm, and it converges to
the k-th mode, then we declare that xm belongs to the k-th
cluster.

Kernel Density Estimation

In practice, we do not have access to the PDF p(z), but only
the set of data points {xm}Mm=1. To implement the afore-
mentioned intuition, one needs to first estimate the PDF
p(z)—this is called density estimation (Scott 2015). The
most popular approach for density estimation is the so-called
kernel density estimator (KDE). For a given kernel function
K(z) that satisfies

K(z) ≥ 0 and
∫

K(z)dz = 1,

the corresponding KDE is simply

p̂(z) =
1

M

M∑
m=1

K(z − xm).

Two popular choices of the kernels are the Gaussian kernel

KG(z;w) =
c

wd
exp

(
−‖z‖2

2w2

)
(1)

and the Epanechnikov kernel

KE(z;w) =
c

wd

[
1− ‖z‖2

w2

]
+

, (2)

where c in (1) and (2) are normalizing constants ensuring
that the kernel integrates to one. Each of them (and all other
kernels) are parameterized by a scalar w, called the band-
width, which controls the variance of the kernel. It has been
shown that the Epanechnikov kernel asymptotically mini-
mizes the mean squared error (MSE)∫

(p(z)− p̂(z))
2
dz, (3)

among all possible kernel functions (Epanechnikov 1969).
Somewhat surprisingly, this ‘optimal’ kernel is a highly non-
smooth function.

The bandwidth of the kernel w plays an important role on
how well the KDE approximates the true density. In practice,
one can adopt the leave-one-out cross validation approach to
determine this parameter, as we did in this work. The MSE
of the estimated density (and the unknown true density) (3)
can be separated into three terms:∫

p2(z)dz +

∫
p̂2(z)dz − 2E{p̂(z)}.

The first term is unknown, but a constant; the second term
can be directly calculated; and the third term is estimated via
leave-one-out cross-validation. This quantity is evaluated at
a set of values for w, and the one that gives the minimum
value is selected as the bandwidth for the KDE.

Mean Shift

Based on the KDE p̂(z), the Mean Shift algorithm tries
to find modes of p̂(z) via the following (weighted aver-
age) iterates (Fukunaga and Hostetler 1975; Cheng 1995;
Comaniciu and Meer 2002), initialized at each xm:

z ← 1∑M
m=1 g(‖z − xm‖2)

M∑
m=1

g(‖z − xm‖2)xm,

where g(·) is called the profile for the kernel function K(·).
Putting details aside, the profile for the Gaussian kernel is
exp(‖z−xm‖2/2w2), and that for the Epanechnikov kernel
is the indicator function 1(‖z − xm‖2 < w2).

Existing analyses for convergence properties of Mean
Shift are mostly based on smooth optimization, and argue
that the update is always going at the gradient ascent direc-
tion. Borrowing the convergence results for gradient-based
methods, it is then claimed that the Mean Shift iterates con-
verges to a local maximum of p̂(z). On hindsight, we make
the following comments:

1. The optimal Epanechnikov kernel is non-smooth, so the
existing convergence claims cannot establish convergence
to a local optimum—which asymptotically approaches a
mode of p(z). In fact, we will show that the plain vanilla
Epanechnikov Mean Shift may indeed get stuck at a non-
critical point, and we will provide a simple remedy to fix
it.

2. For smooth kernels like the Gaussian kernel, it is indeed
easy to show that the algorithm converges to a station-
ary point. However, not all stationary points are local
optima—there may exist saddle points, and there is in
general no simple way to check whether it is a local opti-
mum or not.

3. An interesting observation is that Mean Shift with smooth
kernels usually converges slower than Epanechnikov ker-
nel. The convergence rate for Gaussian Mean Shift can be
as slow as sub-linear (Carreira-Perpiñán 2007), whereas
Epanechnikov Mean Shift terminates in finite number of
steps (Comaniciu and Meer 2002), although a rigorous
proof for this claim is still missing.

The remainder of the paper tries to bridge the gap between
the good empirical performance and lack of rigorous theo-
retical analysis for the Epanechnikov Mean Shift. We show
that, with a simple modification, Epanechnikov Mean Shift
terminates at a local maximum of p̂(z) within finite num-
ber of iterations. Even though the objective function is non-
convex and non-smooth, the convergence result is surpris-
ingly strong: It is guaranteed to terminate at a local opti-
mum, never at a saddle point, and the number of iterations
is finite, with zero precision accuracies.

For completeness, the Epanechnikov Mean Shift is clearly
written in Algorithm 1. We shall call the iterative procedure
between line 3–6 “Epanechnikov Mean Shift iterates”, and
the entire algorithm as Epanechnikov Mean Shift, which ini-
tializes the iterates at every data point xm.

3265

Algorithm 1 Epanechnikov Mean Shift
Require: {xm}Mm=1, w2

1: for m = 1, ...,M do
2: initialize zm ← xm

3: repeat � Epanechnikov Mean Shift iterates
4: I(zm) ← {i ∈ [M] : ‖xi − zm‖2 < w2}
5: zm ← 1

|I(zm)|
∑

i∈I(zm)

xi

6: until convergence (cf. Alg. 2)
7: end for
8: find K distinct vectors in {zm}Mm=1, denote as {μk}Kk=1
9: xm in cluster k if zm = μk.

Function Analysis

The Epanechnikov Mean Shift iterates tries to find modes
(i.e., local maxima) of the KDE p̂(z) =

∑
KE(z−xm;w)

with the Epanechnikov kernel. As per conventions in the
field of optimization, we define functions φ and f by flipping
the sign of KE and p̂, and omitting constants and scalings,
which do not affect the task of optimization:

φ(z) = min(‖z‖2, w2), (4)

f(z) =

M∑
m=1

φ(xm − z). (5)

Obviously, modes of p̂(z) correspond to local minima of
f(z). We start by analyzing the basic properties of the loss
function (5).

Lemma 1. The function f(z) is smooth almost everywhere.

Proof. Notice that f(z) is a summation of component func-
tions φ(xm − z), so f(z) is smooth at z if and only if
∀ m = 1, ...,M , φ(xm − z) is smooth at z. According
to the definition of φ in (4), φ(xm − z) is non-smooth iff
‖xm − z‖2 = r, which forms a set that has Lebesgue mea-
sure zero in Rd. Because {xm}Mm=1 is a finite set, the union
set

{z : ‖x1 − z‖2 = w2} ∪ ... ∪ {z : ‖xM − z‖2 = w2},
which forms the set of non-smooth points for f(z), also has
Lebesgue measure zero. In other words, the function f(z) is
smooth almost everywhere.

Lemma 2. At every smooth point z of f(z), define I(z) =
{i : ‖xi − z‖2 < w2}, then we have

∇f(z) =
∑

i∈I(z)
2(z − xi), (6)

∇2f(z) = 2|I(z)|I. (7)

Therefore, f(z) is locally convex at every smooth point, and
strongly convex if I is not empty.

Proof. If z is a smooth point, there does not exist a xj such
that ‖xj − z‖2 = w2. The expressions for the gradient and
Hessian are elementary. For a small hyper-ball containing

only smooth points, the index set I(z) remains the same in
this convex region, therefore the Hessian remains the same
in this area. Since ∇2f(z) � 0, the function f(z) is locally
convex. Furthermore, if I(z) �= ∅, then ∇2f(z) � I , in
which case f(z) is locally strongly convex.

We now switch our focus to the non-smooth points of
f(z). To study their properties, we use the concept of di-
rectional derivative, which is defined as (Bertsekas 1999)

f ′(z; δ) � lim
α↓0

f(z + αδ)− f(z)

α
, (8)

for a particular direction δ, if the limit exists. The defini-
tion (8) clearly shows that δ is a descending direction if
f ′(z; δ) < 0. The directional derivative obeys the sum rule

f ′(z; δ) =
M∑

m=1

φ′(xm − z; δ). (9)

Furthermore, if f is smooth at a point z, then the directional
derivative is simply f ′(z; δ) =∇f(z)�δ. For a non-smooth
function, we can define a stationary point as follows (Raza-
viyayn, Hong, and Luo 2013):

Definition 1. The point z is a stationary point of f(·) if
f ′(z; δ) ≥ 0 for all δ.

Notice that if z is a smooth point for f , Definition 1 re-
duces to ∇f(z)�δ ≥ 0 for all δ, which implies ∇f(z) = 0,
the usual definition of a stationary point for smooth func-
tions.

Lemma 3. The directional derivative of f at z with direc-
tion δ is

f ′(z; δ) =
∑

i∈I(z)
2(z − xi)

�δ +
∑

j∈J (z;δ)

2(z − xj)
�δ, (10)

where

I(z) = {i : ‖xi − z‖2 < w2},
J (z; δ) = {j : ‖xj − z‖2 = w2, (z − xj)

�δ < 0}.
Proof. For a smooth point of φ(z), it is easy to see that
φ′(z; δ) = 2z�δ if ‖z‖2 < w2, and φ′(z; δ) = 0 if
‖z‖2 > w2. For a non-smooth point when ‖z‖2 = w2,
we find its directional derivative by resorting to the defini-
tion (8): φ′(z; δ) equals to 2z�δ or 0 depending on whether
‖z+αδ‖2 is less than w2 or not, when α goes to zero. Since

‖z+αδ‖2 = ‖z‖2 +2αz�δ+α2‖δ‖2 = w2 +2αz�δ+ o(α2),

we see that ‖z + αδ‖2 < w2 iff z�δ < 0. Therefore,

φ′(z; δ) =
{
2z�δ, ‖z‖ < w2, or ‖z‖ = w2 and z�δ < 0,

0, ‖z‖ > w2, or ‖z‖ = w2 and z�δ ≥ 0.
(11)

Now using the sum rule for the directional derivative, we
conclude that f ′(z; δ) is as given in (10).

From the expression of f ′(z; δ), we can show the follow-
ing interesting claims:

3266

Proposition 1. If z is a non-smooth point for f(z), then z
cannot be a stationary point.

Proof. From the expression of φ′(z; δ) in (11), we see that
the second term in (10) is always ≤ 0. To prove that a non-
smooth point cannot be a stationary point, we consider the
following two cases:

1. If
∑

i∈I(z)
2(z − xi) �= 0, then there exists a δ such that

∑
i∈I(z)

2(z − xi)
�δ < 0, e.g., δ = −

∑
i∈I(z)

(z − xi), and

thus f ′(z; δ) < 0 since the second term in (10) cannot be
positive;

2. if
∑

i∈I(z)
2(z − xi) = 0, since z is a non-smooth point,

there exists a δ such that J �= ∅, for example by choosing
δ = −(z − xj) for some j such that ‖z − xj‖2 = w2,
then the second term in (10) is strictly < 0 while the first
term = 0, therefore f ′(z; δ) < 0.

To sum up, there always exists a δ such that f ′(z; δ) < 0
when z is a non-smooth point for f , therefore such a point
cannot be a stationary point.

Proposition 2. A point z� is a local minimum for f(z) iff:

1. There does not exist a xj such that ‖xj − z‖2 = w2;
2. the set I(z�) = {i : ‖xi − z�‖2 < w2} is not empty, and

z� =
1

|I(z�)|
∑

i∈I(z�)

xi.

Proof. A local minimum is first of all a stationary point,
which, according to Proposition 1, cannot be a non-smooth
point for f , therefore there does not exist a xj such that
‖xj − z‖2 = w2.

For a smooth point, its gradient and Hessian is given
in (6) and (7). Stationarity implies that ∇f(z�) = 0, there-
fore z� = 1

|I(z�)|
∑

i∈I(z�)
xi. If I(z�) is not empty, then

∇2f(z�) � 0, and z� is a local minimum; otherwise,
f(z�) = Mw2 = max f(z), which is a global maxi-
mum.

Convergence of Epanechnikov Mean Shift

Now we study the convergence of the Epanechnikov
Mean Shift iterates.
Lemma 4. Epanechnikov Mean Shift iterates successively
minimizes a local upper bound of function f(z), therefore
the value of f(z) is monotonically non-increasing.

Proof. At a particular point z̃, define f(z|z̃) as follows:

f(z|z̃) =
∑

i∈I(z̃)
‖z − xi‖2 + (M − |I(z̃)|)w2.

It is easy to see that

1. f(z|z̃) ≥ f(z) for all z and z̃,
2. f(z̃|z̃) = f(z̃), and

Algorithm 2 Epanechnikov Mean Shift iterates – Redux
Require: {xm}Mm=1, n ∈ [M]

1: initialize z(0) ← xn

2: loop
3: I(z(t−1)) ← {i : ‖xi − z(t−1)‖2 < w2}
4: z(t) ← 1

|I(z(t−1))|
∑

i∈I(z(t−1))

xi

5: if z(t) = z(t−1) then
6: J (z(t)) ← {j : ‖xi − z(t)‖2 = w2}
7: if J (z(t)) = ∅ then

8: return z(t)

9: else
10: sample j from J (z(t))

11: z(t) ← 1

|I(z(t−1))|+1

⎛
⎝xj +

∑
i∈I(z(t−1))

xi

⎞
⎠

12: end if
13: end if
14: t ← t+ 1
15: end loop

3.
1

|I(z̃)|
∑

i∈I(z̃)
xi = argmin

z
f(z|z̃).

This means that, at iteration t, Algorithm 2 updates z as
z(t) = argmin

z
f(z|z(t−1)). Therefore,

f(z(t−1)) = f(z(t−1)|z(t−1)) ≥ f(z(t)|z(t−1)) ≥ f(z(t)),

which means the values of f(z) obtained by Algorithm 2
form a monotonically non-increasing sequence.

Lemma 4 gives the Epanechnikov Mean Shift iterates
in Algorithm 1 a majorization-minimization interpretation,
which guarantees convergence to a stationary point in a lot
of cases. Unfortunately none of the existing convergence re-
sults applies here—they either require both f(z) and f(z|z̃)
to be smooth, or more generally f ′(z̃; δ) = f

′
(z̃|z̃; δ) for

all z̃ and δ (Razaviyayn, Hong, and Luo 2013). Indeed, it
is possible that z(t−1) = z(t) = argmin

z
f(z|z(t−1)), in

which case the algorithm converges, but there exists a xj

such that ‖xj − z(t)‖2 = w2, meaning it is a non-smooth
point, thus cannot be a stationary point according to Propo-
sition 1. Fortunately, we find that this issue can be fixed with
negligible extra computations: If such case happens, we only
need to sample one xj such that ‖xj − z(t)‖2 = w2, and
then re-update z(t) as the average of xj together with all
the points in I(z(t−1)). This can be instead interpreted as
minimizing the following slightly different upper bound:

z(t) = argmin
z

f �(z|z(t−1))

= ‖z−xj‖2 +
∑

i∈I(z(t−1))

‖z−xi‖2 + (M−|I(z(t−1))|−1)w2.

3267

This elaborated procedure is fleshed out in Algorithm 2. We
show that Algorithm 2 provably finds a local optimum in a
finite number of iterations.

Lemma 5. The value of f(z) obtained by Algorithm 2 is
strictly decreasing, unless z(t) = z(t−1).

Proof. If z(t−1) �= 1
|I(z(t−1))|

∑
i∈I(z(t−1)) xi, then we up-

date z(t) = 1
|I(z(t−1))|

∑
i∈I(z(t−1)) xi, and

f(z(t−1))− f(z(t))

≥ f(z(t−1)|z(t−1))− f(z(t)|z(t−1))

=
∑

i∈I(z(t−1))

‖z(t−1) − xi‖2 −
∑

i∈I(z(t−1))

‖z(t) − xi‖2

=
∑

i∈I(z(t−1))

(
‖z(t−1)‖2 − 2x�iz

(t−1) − ‖z(t)‖2 + 2x�iz
(t)

)

= |I(z(t−1))|
(
‖z(t−1)‖2 − 2z(t)�z(t−1) − ‖z(t)‖2 + 2‖z(t)‖2

)

=
∣∣∣I(z(t−1))

∣∣∣
∥∥∥z(t−1) − z(t)

∥∥∥
2

> 0.

Similarly, if z(t−1) = 1
|I(z(t−1))|

∑
i∈I(z(t−1)) xi, we have

f(z(t−1))− f(z(t))

≥ f �(z
(t−1)|z(t−1))− f �(z

(t)|z(t−1))

=
(
|I(z(t−1))|+ 1

)∥∥∥z(t−1) − z(t)
∥∥∥2

=
(
|I(z(t−1))|+ 1

)∥∥∥∥∥∥
1

|I(z(t−1))|
∑

i∈I(z(t−1))

xi

− 1

|I(z(t−1))|+ 1

⎛
⎝xj +

∑
i∈I(z(t−1))

xi

⎞
⎠
∥∥∥∥∥∥
2

=
1

|I(z(t−1))|+ 1

∥∥∥z(t−1) − xj

∥∥∥2
=

w2

|I(z(t−1))|+ 1
> 0.

Theorem 1. Algorithm 2 terminates at a local optimum
of (5) in a finite number of iterations.

Proof. We first prove that Algorithm 2 terminates at a lo-
cal optimum of (5). The loss function f(z) is bounded
from below, and using Algorithm 2, it is monotonically non-
increasing (cf. Lemma 4), so it converges to a certain value.
Lemma 5 further shows that f(z) strictly decreases unless
z(t) = z(t−1), in which case z(t) cannot be a non-smooth
point as we showed in the proof of Lemma 5. Notice that
throughout the iterations I(z(t)) cannot be empty, because
otherwise f(z) takes the maximum value, but since we start
with z(0) = xm, f(z(0)) < max f(z). Invoking Proposi-
tion 2, we conclude that Algorithm 2 terminates at a local
optimum.

Now suppose Algorithm 2 terminates in T number of it-
erations, we show that T can be upperbounded by a finite
number that only depends on the data set {xm} and the
bandwidth w that we choose. From the proof of Lemma 5,
we get the (very loose) inequality

f(z(t−1))− f(z(t)) ≥ ‖z(t−1) − z(t)‖2. (12)

Summing up both sides for t = 1, ..., T , we have

f(z(0))− f(z(T)) ≥
T∑

t=1

‖z(t−1) − z(t)‖2. (13)

We have shown that each of the terms on the right-hand-side
is positive, unless the algorithm has terminated. If we can
further find a quantity λ > 0 such that

‖z(t−1) − z(t)‖2 ≥ λ > 0, ∀ t = 1, ..., T, (14)

then we can easily conclude that

T ≤ f(z(0))− f(z(T))

λ
, (15)

which is a finite number.
To find such a λ, we note that each z(t) is the average

of a non-empty subset of points from the data set {xm},
which are all the points that can be enclosed in a Euclidean
ball with radius w (except for z(0), which is simply one data
point). Define

S = {I(z) ∪ J (z; δ) : ∀ z, δ ∈ Rd},
where I(z) and J (z; δ) are as defined in Lemma 3. We
know that |S| < 2M , since it is a union of subsets of {xm},
and there can be at most 2M−1 non-empty subsets of {xm}.
Then we define

λ = min
K,L∈S
K�=L

∥∥∥∥∥ 1

|K|
∑
k∈K

xk − 1

|L|
∑
�∈L

x�

∥∥∥∥∥
2

, (16)

which exists since S is a finite set, and it satisfies (14). This
λ is also strictly positive: If

1

|K|
∑
k∈K

xk =
1

|L|
∑
�∈L

x�, (17)

the distance between this point and every point in either K
or L is no greater than w. According to the construction of
S , (17) implies K = L, contradicting K �= L in (16).

To sum up, we have shown that there exists λ > 0 that sat-
isfies (14), thus (15) holds, meaning Algorithm 2 terminates
in a finite number of iterations.

We remark that (15) is a gross over-estimate of the number
of iterations. We omitted a rather big scaling factor on the
right-hand-side of (12), for the sake of simplicity in (13).
The point is to show that T can indeed be bounded by a finite
number. In practice, our observation is that Epanechnikov
Mean Shift terminates in a very smaller number of iterations,
usually less than 10.

As we can see, even though we are trying to optimize
a non-convex and non-smooth function, we obtain a very

3268

0 20 40 60 80 100
d

10-8

10-6

10-4

10-2

100

p
(Y

>
2d
)

Y ∼ χ
2(d)

Figure 2: Probability that Y > 2d, for Y ∼ χ2(d).

strong convergence result that Epanechnikov Mean Shift
reaches (not approaches) a local optimum in a finite num-
ber of iterations. From the proof one can see that the non-
smoothness of the Epanechnikov kernel actually helps ob-
taining such a nice convergence property. It has a very differ-
ent flavor as the smooth optimization based analyses. For ex-
ample, the work in (Carreira-Perpiñán 2007) uses a smooth
Gaussian kernel, and the analysis ends up with an asymp-
totic convergence and a sub-linear rate in the worst case.

Mean Shift Deflation for Non-overlapping

Spherical Gaussian Mixtures

The main computation bottleneck for Mean Shift is obvi-
ously the fact that the Mean Shift iterates (Algorithm 2) is
run at every data point, which is potentially a large set. In this
section we provide a heuristic to avoid this computation bot-
tleneck, under the probabilistic generative model that each
cluster is generated from a spherical Gaussian with variance
σ2I , and they are non-overlapping.

Suppose the set of data points {xm}Mm=1 ⊆ Rd comes
from a mixture of Gaussian distributions N (μk,σ

2I), ∀k=
1, ...,K, with different means {μk}Kk=1 ⊆ Rd but the same
covariance matrix σ2I . For a specific data point xm coming
from N (μk,σ

2I), the random variable Y =‖xm−μk‖2/σ2

follows the χ2-distribution with d degrees of freedom, de-
noted as χ2(d).

An interesting property of the χ2-distribution is that the
probability that Y > γd becomes almost negligible for
large d and γ > 1. As an example, Figure 2 shows the
probability that Y > 2d, as d increases. This can be seen
from the Chernoff bound on the tail probability of the χ2-
distribution (Dasgupta and Gupta 2003): for γ > 1, we have
that Pr(Y > γd) ≤ (γe1−γ)d/2. It can be easily shown that
γe1−γ < 1 when γ > 1, implying that Pr(Y > γd) goes to
zero at least exponentially as d increases.

This observation inspires us to use
√
2dσ as the band-

width, since a Euclidean ball with radius
√
2dσ encloses al-

most all points coming from N (μk,σ
2I) if it is centered

at μk. Furthermore, if min ‖μk − μ�‖ > 2
√
dσ, the Gaus-

sian components are non-overlapping, thus the ball centered
at μk will only contain points coming from N (μk,σ

2I).

Algorithm 3 Epanechnikov Mean Shift deflation
Require: {xm}Mm=1, w2 = 2dσ2

1: M ← {1, 2, ...,M}, k ← 1
2: while M �= ∅ do
3: sample m from M
4: run Algorithm 2 initialized at xm, outputs μk

5: declare {xi}i∈I(μk) as cluster k
6: M ← M\ I(μ)
7: k ← k + 1
8: end while

Therefore, once we find one local optimum of p̂(z) that is
presumably close to a μk, we can safely group all data points
that are within radius

√
2dσ from μk and declare them as a

cluster. This idea leads to the Epanechnikov Mean Shift de-
flation shown in Algorithm 3.

As shown in Figure 1, this simple procedure obtains ex-
tremely good clustering performance, while reducing the
computational complexity down to even smaller than that
of Lloyd’s K-means algorithm. Notice that the bandwidth w
is still estimated via leave-one-out cross-validation. Under
strong generative models as in this case, however, we do ob-
serve that the estimated bandwidth w is very close to

√
2dσ.

Conclusion

We study the Epanechnikov Mean Shift algorithm, which
is observed to work well but lacked theoretical analysis on
its performance as of this writing. After in-depth study on
estimated density p̂(z), with particular focus on its non-
smoothness, we fixed an issue that could potentially affect
its convergence, and showed that the Epanechnikov Mean
Shift iterate terminates at a local optimum within finite num-
ber of iterations. A deflation-based variant of Epanechnikov
Mean Shift is also proposed to avoid initializing the iterates
at every data point, which reduces the computation consider-
ably, and maintains good clustering performance under non-
overlapping spherical Gaussian mixture assumptions.

Acknowledgments

This work was supported in part by the National Science
Foundation (NSF) under grants IIS-1247632, IIS-1447788,
and ECCS-1608961.

References

Aloise, D.; Deshpande, A.; Hansen, P.; and Popat, P. 2009.
NP-hardness of Euclidean sum-of-squares clustering. Ma-
chine learning 75(2):245–248.
Arora, S., and Kannan, R. 2001. Learning mixtures of arbi-
trary Gaussians. In ACM Symposium on Theory of Comput-
ing (STOC), 634–644.
Arthur, D., and Vassilvitskii, S. 2007. k-means++: The ad-
vantages of careful seeding. In Proceedings of the eigh-
teenth annual ACM-SIAM symposium on Discrete algo-
rithms, 1027–1035. Society for Industrial and Applied
Mathematics.

3269

Belkin, M., and Sinha, K. 2010. Polynomial learning of
distribution families. In IEEE Symposium on Foundations
of Computer Science (FOCS), 103–112.
Bertsekas, D. P. 1999. Nonlinear programming. Athena
Scientific.
Brubaker, S. C., and Vempala, S. S. 2008. Isotropic PCA and
affine-invariant clustering. In IEEE Symposium on Founda-
tions of Computer Science (FOCS), 551–560.
Carreira-Perpiñán, M. Á. 2007. Gaussian mean-shift is an
EM algorithm. IEEE Transactions on Pattern Analysis and
Machine Intelligence 29(5):767–776.
Cheng, Y. 1995. Mean Shift, Mode Seeking, and Cluster-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence 17(8):790–799.
Comaniciu, D., and Meer, P. 2002. Mean shift: A robust ap-
proach toward feature space analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence 24(5):603–619.
Dasgupta, S., and Freund, Y. 2009. Random projection trees
for vector quantization. IEEE Transactions on Information
Theory 55(7):3229–3242.
Dasgupta, S., and Gupta, A. 2003. An elementary proof of a
theorem of Johnson and Lindenstrauss. Random Structures
& Algorithms 22(1):60–65.
Dasgupta, S., and Schulman, L. J. 2000. A Two-Round
Variant of EM for Gaussian Mixtures. In Uncertainty in
Artificial Intelligence, 152–159.
Dasgupta, S. 1999. Learning mixtures of Gaussians.
In IEEE Symposium on Foundations of Computer Science
(FOCS), 634–644.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society. Series B (Method-
ological) 1–38.
Elhamifar, E., and Vidal, R. 2013. Sparse subspace cluster-
ing: Algorithm, theory, and applications. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35(11):2765–
2781.
Epanechnikov, V. A. 1969. Non-parametric Estimation of A
Multivariate Probability Density. Theory of Probability and
Its Applications 14(1):153—-158.
Fukunaga, K., and Hostetler, L. D. 1975. The Estimation of
the Gradient of a Density Function, with Applications in Pat-
tern Recognition. IEEE Transactions on Information Theory
21(1):32–40.
Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data
clustering: A review. ACM Computing Surveys (CSUR)
31(3):264–323.
Kuhn, H. W. 1955. The Hungarian method for the as-
signment problem. Naval Research Logistics Quarterly 2(1-
2):83–97.
Lloyd, S. P. 1982. Least Squares Quantization in PCM.
IEEE Transactions on Information Theory 28(2):129–137.
Moitra, A., and Valianty, G. 2010. Settling the polynomial
learnability of mixtures of Gaussians. In IEEE Symposium
on Foundations of Computer Science (FOCS), 93–102.

Ng, A. Y.; Jordan, M. I.; and Weiss, Y. 2001. On Spec-
tral Clustering: Analysis and an algorithm. In Advances in
Neural Information Processing Systems (NIPS), 849–856.
Razaviyayn, M.; Hong, M.; and Luo, Z.-Q. 2013. A uni-
fied convergence analysis of block successive minimization
methods for nonsmooth optimization. SIAM Journal on Op-
timization 23(2):1126–1153.
Scott, D. W. 2015. Multivariate density estimation: theory,
practice, and visualization. John Wiley & Sons.
Vempala, S., and Wang, G. 2004. A spectral algorithm for
learning mixture models. Journal of Computer and System
Sciences 68(4):841–860.

3270

