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Abstract

Text data co-clustering is the process of partitioning the doc-
uments and words simultaneously. This approach has proven
to be more useful than traditional one-sided clustering when
dealing with sparsity. Among the wide range of co-clustering
approaches, Non-Negative Matrix Tri-Factorization (NMTF)
is recognized for its high performance, flexibility and theo-
retical foundations. One important aspect when dealing with
text data, is to capture the semantic relationships between
words since documents that are about the same topic may not
necessarily use exactly the same vocabulary. However, this
aspect has been overlooked by previous co-clustering mod-
els, including NMTF. To address this issue, we rely on the
distributional hypothesis stating that words which co-occur
frequently within the same context, e.g., a document or sen-
tence, are likely to have similar meanings. We then propose a
new NMTF model that maps frequently co-occurring words
roughly to the same direction in the latent space to reflect the
relationships between them. To infer the factor matrices, we
derive a scalable alternating optimization algorithm, whose
convergence is guaranteed. Extensive experiments, on several
real-world datasets, provide strong evidence for the effective-
ness of the proposed approach, in terms of co-clustering.

Introduction

Co-clustering is an important extension of traditional one-
sided clustering that aims to partition the rows and columns
of a data matrix simultaneously (Hartigan 1972; Baner-
jee et al. 2007; Govaert and Nadif 2013). This approach
has been shown to be useful in many application domains
such as text mining (Dhillon, Mallela, and Modha 2003;
Salah and Nadif 2017; Ailem, Role, and Nadif 2017a) to
group words and documents simultaneously, bioinformat-
ics (Cheng and Church 2000; Madeira and Oliveira 2004;
Cho et al. 2004) to group genes and experimental condi-
tions simultaneously or to identify heterogeneous groups of
two related entities (Pio et al. 2015), collaborative filter-
ing (Hofmann and Puzicha 1999; Shan and Banerjee 2008;
Deodhar and Ghosh 2010) to group users and items.

It turns out that, when dealing with high dimensional
sparse data, such as text, co-clustering is more useful than
traditional one-sided clustering even if we are interested in
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a clustering along one dimension only (Salah, Rogovschi,
and Nadif 2016; Ailem, Role, and Nadif 2017b). In fact, co-
clustering exhibits several advantages, over one-sided clus-
tering: it leverages the inherent duality between the rows and
columns of a data matrix, which makes it possible to im-
prove clustering along both dimensions. It performs an im-
plicit adaptive dimensionality reduction at each stage, which
lends itself to scalable and effective algorithms for sparse
data. It produces meaningful and interpretable results; in the
case of document-word matrices, for example, co-clustering
annotates sets of documents by clusters of words.

Among existing co-clustering approaches, Non-Negative
Matrix Tri-Factorization (NTMF) has proven to be useful
for this task (Long, Zhang, and Yu 2005; Ding et al. 2006).
NMTF turns the co-clustering problem into a matrix approx-
imation problem. In the context of text data, this approach
seeks a decomposition of the document-word matrix X into
three non-negative latent factor matrices, i.e., X ≈ ZSW�,
where Z and W play the role of the document and column
cluster membership matrices, respectively, while S can be
viewed as a “summary” of X, due to co-clustering. Key ad-
vantages to consider NMTF for co-clustering are: high per-
formance, efficiency, easy to implement inference and flexi-
bility: NMTF can be easily composed to build more complex
models and incorporate side information.

One important aspect when dealing with text data, is to
preserve the semantic relationships between words. How-
ever, previous co-clustering algorithms, including NMTF,
have overlooked this aspect. This is an important issue that
may induce a significant loss of semantics, i.e., words with
similar meanings are not guaranteed to have similar latent
representations. Consequently, documents which are about
the same topic, using similar (but not identical) words,
are not guaranteed to be mapped to the same direction in
the latent space. Clearly, this may severely impede the co-
clustering performance of NMTF.

To address this issue, we propose to extend NMTF to ac-
count for the semantic relationships between words. The re-
search question is how to capture and leverage such rela-
tionships. In this work, we rely on the distributional hypoth-
esis (Harris 1954) stating that, words which co-occur fre-
quently within the same “context” (e.g., a sentence, docu-
ment, etc.) have similar meanings. Following this hypoth-
esis, we propose to regularize the word factors in NMTF
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based on the word co-occurrence matrix, in such a way to en-
courage frequently co-occurring words to have similar rep-
resentations in the latent space. The word co-occurrence ma-
trix encodes the number of times each pair of words oc-
curred within the same context. The context is a design
choice. Without loss of generality, in this work we use the
documents as the context in which words co-occur. The
objective of leveraging the relationships among words has
been investigated recently in (Ailem, Salah, and Nadif 2017;
Salah, Ailem, and Nadif 2017), but these works focused on
one-sided clustering only.

To learn the factor matrices, we derive a scalable alternat-
ing optimization algorithm, whose convergence is guaran-
teed. Through extensive experiments, on several real-world
datasets, we evaluate the performance of our model in terms
of document clustering as well as word clustering. This is an
important contribution over previous studies, in which co-
clustering models are usually evaluated in terms of docu-
ment partitioning, only. Empirical results show that, thanks
to leveraging the word co-occurrences, our model preserves
more semantics and, thereby, substantially outperforms pre-
vious NMTF models, on the co-clustering task.

Related Work
The literature on co-clustering is rich. Here we provide a
brief overview of works that are most closely related to
ours. For detailed surveys of existing co-clustering algo-
rithms please refer to (Madeira and Oliveira 2004; Banerjee
et al. 2007; Govaert and Nadif 2013).

NMTF-based co-clustering is pioneered by Long, Zhang,
and Yu (2005) under the name of Block Value Decom-
position. Ding et al. (2006) introduced orthogonality con-
straints on the document and word factors and emphasized
their importance for the clustering task. More precisely, they
shown theoretically that under these constraints, NMTF is
equivalent to the simultaneous k-means co-clustering algo-
rithm. To enforce these orthogonality constraints, Ding et
al. (2006) rely on the Lagrangian method. Later on, Yoo and
Choi (2010) proposed a more direct way to introduce such
orthogonality constraints, by exploiting the true gradient in-
formation on Stiefel manifolds. Since these contributions,
NMTF has been widely considered for co-clustering.

An important stream of efforts has focused on preserv-
ing the intrinsic geometry of the data (Gu and Zhou 2009;
Shang, Jiao, and Wang 2012; Du and Shen 2013; Allab,
Labiod, and Nadif 2017). These approaches construct two
nearest neighbor graphs to encode the document manifold
and the word manifold. The objective is then to seek doc-
ument and word factors which are smooth with respect to
these manifolds. Modeling document and word manifolds
is an orthogonal direction to the present work; here we fo-
cus on preserving the semantic relationships between words.
On the other hand, there have been efforts spent on develop-
ing scalable NMTF-based co-clustering algorithms (Wang et
al. 2011) and, more recently, on incorporating side informa-
tion, e.g., social network, into NMTF (Pei, Chakraborty, and
Sycara 2015).

Our model is a novel contribution to existing work on
NMTF, and as far as we know, this is the first that focuses

on preserving the semantic relationships among words.
Notation. Matrices are denoted with boldface uppercase

letters and vectors with boldface lowercase letters. The
Frobenius norm is denoted by ‖.‖ and the Hadamard mul-
tiplication by �. The document-word matrix is represented
by X = (xij) ∈ R

n×d
+ , its ith row represents the weighted

term frequency vector of document i ∈ I, i.e., xi =
(xi1, . . . , xid)

� where � denotes the transpose. The word
co-occurrence matrix is represented by C = (cjj′) ∈ R

d×d
+ ,

where row j ∈ J corresponds to word wj , column j′ ∈ J
denotes context word wj′ , and each entry cjj′ encodes the
number of times the pair of words (wj , wj′) occurred within
the same context.

Word Co-occurrence Regularized NMTF

In this section, we describe Word Co-occurrence regular-
ized NMTF (WC-NMTF), a new model that leverages the
relationships among words to preserve more semantics and,
consequently, improve co-clustering on text data.

In addition to the document-word matrix X ∈ R
n×d
+ , we

consider the word co-occurrence matrix C ∈ R
d×d
+ which

encodes the number of times each pair of words occurred
within the same context. To better quantify the associations
between words, we further rely on a non-linear transforma-
tion of the word co-occurrences, based on the Point-wise
Mutual Information (PMI). The PMI is an information the-
oretic measure widely used to quantify the association be-
tween pairs of outcomes arising from discrete random vari-
ables. Our choice for the PMI is motivated by previous stud-
ies (Newman, Karimi, and Cavedon 2009), which shown
that this measure is highly correlated with human judgments,
in assessing word relatedness. Formally, the PMI between
words wj and wj′ is given by

PMI(wj , wj′) = log
p(wj , wj′)

p(wj)p(wj′)
. (1)

Given the word co-occurrence matrix C, the PMI between
wj and wj′ can be estimated empirically as follows

PMI(wj , wj′) = log
cjj′ × c..
cj. × c.j′

(2)

where c.. =
∑

jj′ cjj′ , cj. =
∑

j′ cjj′ and c.j′ =
∑

j cjj′ .
Since it is intractable to work directly with the PMI ma-

trix, which is dense and high-dimensional, we propose to
approximate it with the Sparse Shifted Positive PMI ma-
trix (SPPMI). In the rest of the paper, we use the notation
M = (mjj′) ∈ R

d×d
+ to refer to the SPPMI matrix, where

mjj′ = max{PMI(wj , wj′)− log(N), 0}. (3)

Where N is a hyperparameter that controls the sparsity of
M. With the SPPMI matrix M in place, we now give the
formulation of our model.

WC-NMTF seeks a decomposition of X ∈ R
n×d
+ into

three low-dimensional non-negative latent factor matrices
Z = (zik) ∈ R

n×g
+ , W = (wj�) ∈ R

d×m
+ and S = (sk�) ∈

R
g×m
+ , such that X ≈ ZSWT . The factor matrices Z and

W play the role of the row and column cluster membership
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Figure 1: Illustrative scheme of WC-NMTF. X ≈ ZSW∗
with W∗ = W� and M ≈ W∗Q� with W∗ = W.

matrices, whereas S plays the role of a summary of X due
to co-clustering. In order to reflect the semantic relationships
between words, WC-NMTF further assumes that, the word
factors W are involved in factorizing the SPPMI matrix M.
Putting all this together, results in the objective function of
WC-NMTF, F = F (Z,W,S,Q), given by

F =
1

2
||X− ZSW�||2︸ ︷︷ ︸

NMTF

+
λ

2
||M−WQ�||2︸ ︷︷ ︸
Regularization term

, (4)

where λ is the regularization parameter, and Q ∈ R
d×m
+ is

an extra factor (context factor) due to the decomposition of
M. We can interpret the above objective function as jointly
decomposing the document-word and SPPMI matrices. The
intuition behind the factorization of the SPPMI matrix M, is
to encourage words with similar meanings, those with high
PMI, to have closer representations in the latent space. In
doing so, WC-NMTF effectively preserves semantics, and
can capture that documents which are about the same topic
are similar even if they do not use exactly the same words.
Figure 1 provides a graphical illustration of WC-NMTF.

Inference

In this section, we shall derive an alternating optimization
algorithm to infer the latent factor matrices from the data. To
this end, we rewrite (4), using the Trace operator, as follows

F =
1

2
Tr

(
(X− ZSW�)(X− ZSW�)�

)

+
λ

2
Tr

(
(M−WQ�)(M−WQ�)�

)

=
1

2
Tr

(
XX� − 2XWS�Z� + ZSW�WS�Z�)

+
λ

2
Tr

(
MM� − 2MQW� +WQ�QW�).

In the following, we derive a set of multiplicative up-
date rules in order to minimize F under the constraints

of positivity of Z, W, S and Q. Let α ∈ R
n×g ,

β ∈ R
d×m, μ ∈ R

g×m and γ ∈ R
d×m be the La-

grange multipliers for the constraints, the Lagrange function
L(Z,W,S,Q,α,β,μ,γ) = L is given by

F +Tr (αZ�) + Tr (βW�) + Tr (μS�) + Tr (γQ�).

The derivatives of L with respect to Z, W, S and Q are
∂L

∂Z
= ZSW�WS� −XWS� +α (5a)

∂L

∂W
= W(Z̃�Z̃+ λQ�Q)−X�Z̃− λMQ+ β (5b)

∂L

∂S
= Z�ZSW�W − Z�XW + μ (5c)

∂L

∂Q
= λQW�W − λM�W + γ. (5d)

where we introduced Z̃ = ZS, for presentation purposes.
Making use of the Kuhn-Tucker conditions α�Z = 0, β�
W = 0, μ�S = 0 and γ �Q = 0 we obtain the following
stationary equations:

(ZSW�WS�)� Z− (XWS�)� Z = 0 (6a)(
W(Z̃�Z̃+ λQ�Q)−X�Z̃− λMQ

)
�W = 0 (6b)

(Z�ZSW�W)� S− (Z�XW)� S = 0 (6c)

(QW�W)�Q− (M�W)�Q = 0. (6d)

Based on the above equations we derive the following mul-
tiplicative update rules

Z ← Z� XWS�

ZSW�WS� (7a)

W ← W � (X�ZS+ λMQ)

W(S�Z�ZS+ λQ�Q)
(7b)

S ← S� Z�XW

Z�ZSW�W
(7c)

Q ← Q� M�W
QW�W

. (7d)

Theorem 1. (I) Fixing S and W, the objective function of
WC-NMTF (4) is non-increasing under the update formula
(7a). (II) Fixing Z and W, (4) is non increasing under the
update formula (7c). (III) Fixing W, (4) is non increasing
under the update formula (7d). (IV) Fixing Z, S and Q, (4)
is monotonically decreasing under the update rule (7b).
Proof.

• (I) Absorbing S into W, i.e., W ← WS�, equation (7a)
is similar to that of original NMF, therefore based on (Lee
and Seung 2001) the objective function of WC-NMTF is
non-increasing under this update rule.

• (II) Equation (7c) is identical to that of 3-factor NMF,
thereby based on Theorem 7 in (Ding et al. 2006), the ob-
jective function (4) is non-increasing under equation (7c)
for any fixed matrices Z and W.

• (III) The update formula of Q (7d) is similar to that of
NMF. Therefore, based on Theorem 1 in (Lee and Seung
2001), (III) also holds.
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• (IV) Hence, it remains to demonstrate that (4) is non-
increasing under the update rule of W, for any fixed ma-
trices Z, S and Q.
To prove (IV), we follow a similar approach to that de-

scribed in (Lee and Seung 2001), which is inspired by the
Expectation-Maximization (EM) algorithm and consists in
using an auxiliary function.
Definition. G(w,w′) is an auxiliary function for F (w)
if the following conditions are satisfied G(w,w′) ≥
F (w) and G(w,w) = F (w).

A key point to the auxiliary function is described by the
following lemma.
Lemma 1. If G is an auxiliary function for F , then F is non-
increasing under the update

w(t+1) = argmin
w

G(w,w(t)). (8)

Proof. F (w(t+1)) ≤ G(w(t+1), w(t)) ≤ G(w(t), w(t)) =
F (w(t)).�

Next we make use of an appropriate auxiliary function to
demonstrate that our objective function F is non-increasing
under the update rule (7b). The following lemma yields an
auxiliary function for F .

Lemma 2. The function G defined as follows

G(W,W(t)) =
1

2
Tr

(
XX� + λMM�)

− Tr
(
XWS�Z� + λMQW�)

+
∑
j,�

(
W(t)

(
S�Z�ZS+ λQ�Q

))
j�

2w
(t)
j�

w2
j�

(9)

is an auxiliary function for F̃ .

Proof. It is obvious that G(W,W) = F (W). Now we
show that G(W,W(t)) ≥ F (W), by making use of the
following proposition (Ding et al. 2006).

Proposition 1. Let A ∈ R
d×d
+ and B ∈ R

m×m
+ denote any

symmetric matrices. For any matrices H, H′ ∈ R
d×m
+ the

following inequality holds
∑
j,�

(AH′B)j�h
2
j�

h′
j�

≥ Tr (H�AHB). (10)

Proof. The proof of the above proposition is available in
(Ding et al. 2006), please refer to Proposition 6.

The first two terms in (9) are the same as in F . Based on
Proposition 1, the following inequality holds

∑
j,�

(
W(t)

(
S�Z�ZS+ λQ�Q

))
j�

2w
(t)
j�

w2
j� ≥

Tr
(
W�W

(
S�Z�ZS+ λQ�Q

))
.

From the above inequality we have G(W,W(t)) ≥ F (W),
thereby G(W,W(t)) is an auxiliary function of F (W).�

Thus, to prove (IV) of Theorem 1 it is sufficient to show
that equation (7b) for all wj� satisfies Lemma 1, where
the auxiliary function G is given by Lemma 2. Substitut-
ing equation (9) to G(W,W(t)) in Lemma 1 leads to solve
∂G(W,W(t))

∂wj�
= 0, which gives us

(X�ZS+λMQ)j� =

(
W(t)(S�Z�ZS+ λQ�Q)

)
j�

w
(t)
j�

wj�.

Thus, w(t+1)
j� = argminw G(w,w

(t)
j� ), ∀j, �, yields

w
(t+1)
j� = w

(t)
j�

(X�ZS+ λMQ)j�(
W(t)(S�Z�ZS+ λQ�Q)

)
j�

.

It follows from the latter result and Lemma 1 that F is non-
increasing under the update of wj� in equation (7b), ∀j, �.
Given that (7b) is element-wise, the objective function of
WC-NMTF is non-increasing under update rule (7b). �

Thereby, based on Theorem 1, the fact that (7a), (7b), (7d)
and (7c) satisfy the KKT conditions at convergence, and F is
bounded from below by 0, alternating the application of (7a),
(7b), (7d) and (7c) will monotonically decrease criterion (4)
and converge to a locally optimal solution.

Computational Complexity Analysis.

As stated in the following Proposition, the computational
complexity of the WC-NMTF algorithm scales linearly with
the number of non-zero entries in the document-word and
SPPMI matrices. In practice X and M are very sparse, i.e.,
nzX � n× d and nzM � d× d, and WC-NMTF converges
within 100 iterations. Furthermore, multiplicative update
rules (7a), (7b), (7c) and (7d) are trivially parallelizable,
thereby WC-NMTF can easily scale to large datasets.

Proposition 2. Let nzX and nzM denote respectively the
number of non-zero entries in X and M, and let it be
the number of iterations. The computational complexity of
WC-NMTF is given in O(it·g·(nzX+nzM )+it·g2 ·(n+d)) .

Proof. The computational bottleneck of WC-NMTF is with
the multiplicative update formulas (7a), (7b), (7c) and (7d).
The number of operation in (7b), including multiplications,
additions and divisions, is g(2nzX +2dm+ g(2n+2m))+
m(3nzM + 3d+m(2d+ 1 + 2g)). The complexity of (7b)
is thereby given in O(g · (nzX +nzM )+ g2(n+ d)), where
have assumed that g and m are of the same order. Similarly,
we can derive the complexities of (7a), (7c) and (7d), which
are of order O(g ·nzX+g2 ·(n+d)), O(g ·nzX+g2 ·(n+d))
and O(m · nzM + m · d), respectively. Therefore, the total
computational complexity of WC-NMTF is O(it · g · (nzX +
nzM ) + it · g2 · (n+ d)).�

Experiments

In this section, we study the impact of the word co-
occurrences on the co-clustering task. For that purpose, we
benchmark our model, WC-NMTF, against popular NMF
and NMTF models on several real-world datasets.
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Datasets. We use five popular benchmark datasets, de-
scribed in Table 1, namely CSTR (Li 2005), CLASSIC41,
the 20-newsgroups dataset NG202, and two datasets from
the TREC collection3, namely TREC and LA Times. These
datasets are carefully selected to represent various particular
challenging situations: different numbers of clusters, differ-
ent sizes, different degrees of cluster overlap and different
degrees of cluster balance. The Balance coefficient is the ra-
tio of the minimum cluster size to the maximum cluster size.

Table 1: Description of Datasets.

Datasets
Characteristics

#Documents #Words #Clusters nzX (%) Balance nzM (%)

CLASSIC4 7095 5896 4 0.59 0.323 2.41

CSTR 6387 16921 4 0.25 0.40 0.47

NG20 18846 26214 20 0.59 0.628 1.80

TREC 878 7453 10 2.61 0.037 15.84

LA Times 6279 31472 6 1.17 0.28 14.73

Competing methods. When λ = 0 in equation (4), WC-
NMTF degenerates to the original NMTF (Long, Zhang,
and Yu 2005). Thus, the best way to evaluate the effect of
the word co-occurrences is to compare WC-NMTF to NMTF
(Long, Zhang, and Yu 2005). Moreover, in order to show
that leveraging the relationships among words is beneficial
for text document clustering, we also consider several strong
NMF and NMTF variants, namely the original NMF (Xu,
Liu, and Gong 2003), orthogonal NMF (ONMF) (Yoo and
Choi 2010), projective NMF (PNMF) (Yuan, Yang, and Oja
2009), graph regularized NMF (GNMF) (Cai et al. 2011), or-
thogonal NMTF (Ding et al. 2006) and graph regularized
NMTF (GNMTF) (Shang, Jiao, and Wang 2012). All the
above algorithms have been found to perform very well and
better than several other approaches in terms of text docu-
ment clustering. For the sake of completeness, we also inte-
grate the results of spherical k-means algorithm Skmeans
(Dhillon and Modha 2001), which is widely used for docu-
ment clustering.
Settings. We use the TF-IDF weighting scheme for all
datasets, and we normalize each document to unit L2 norm
so as to remove the biases induced by the length of docu-
ments. For each dataset, we set g to the real number of clus-
ters and m = g for the NMTF models. We perform 50 runs
for all methods, using 50 different starting points obtained
with Skmeans. The setting of the regularization parameter
λ is trivial due to the high stability of WC-NMTF vis-a-vis
this parameter. Hence, we set λ = 1 and discuss this choice
in details later. The hyperparameter N in (3) controls the
sparsity of the SPPMI matrix. A large value of N may cause
to much loss of information, we therefore set N = 2, which
is a good trade-off between keeping much information and
increasing the sparsity of the PPMI matrix.

1http://www.dataminingresearch.com/
2http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
3http://trec.nist.gov

Evaluation metrics. We retain two widely used measures
to assess the quality of clustering, namely the Normalized
Mutual Information (NMI) (Strehl and Ghosh 2002) and the
Adjusted Rand Index (ARI). Intuitively, NMI quantifies how
much the estimated clustering is informative about the true
clustering, while the ARI measures the degree of agreement
between an estimated clustering and a reference clustering;
both NMI and ARI are equal to 1 if the resulting clustering
is identical to the true one.

Document clustering. In Table 2, we report the perfor-
mance of the different models in terms of NMI and ARI,
over all datasets. All the results are averaged over fifty dif-
ferent starting points. Between brackets, we report the result
corresponding to the trial with the lowest criterion.

From this Table, we can see that our algorithm WC-NMTF
provides substantially better results than the other compet-
ing methods, in terms of both metrics. It is worth recalling
that WC-NMTF corresponds to NMTF with an extra word co-
occurrences regularization term, which captures the seman-
tic relationships between words. We can therefore grant the
performance improvement of WC-NMTF, over NMTF, to the
word co-occurrences regularization term.

To characterize the circumstances in which WC-NMTF
provides the most significant improvement, we report in Fig-
ure 2 the distribution of the vocabulary sizes of the docu-
ments, over all datasets. From this Figure and Table 2 we ob-
serve that the improvement reached by WC-NMTF, relative
to NMTF, tends to be more important on datasets containing
many documents with a limited vocabulary, namely CSTR,
CLASSIC4 and NG20. This make sense since when there
is a lack of document-word information, it may be tough
for NMTF to infer good document factors. In this case, the
word co-occurrences in WC-NMTF play a preponderant role
in supplementing the lack of document-word information.

� ��� ��� ��� ��� ��� ��� 	��
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Figure 2: Distribution of the vocabulary sizes of the docu-
ments. For each dataset, we report the difference in perfor-
mance (NMI%,ARI%) between WC-NMTF and NMTF.

Word clustering. To further characterize the effect of
the word co-occurrences, we compare the quality of word
clusters inferred by WC-NMTF and NMTF. This is an im-
portant improvement over most previous studies where co-
clustering algorithms are often evaluated in terms of object
(document) partitioning, only.

Evaluating the quality of word clusters is, however, a chal-
lenging task due to the lack of benchmark datasets provid-
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Table 2: Average NMI and ARI over different datasets. The best result of each method is indicated in parentheses.

Datasets Metrics Skmeans NMF ONMF PNMF GNMF NMTF ONMTF GNMTF WC-NMTF

CSTR
NMI 0.65±0.02 (0.66) 0.65±0.01 (0.65) 0.65±0.05 (0.66) 0.66±0.01 (0.67) 0.57±0.08 (0.42) 0.67±0.03 (0.66) 0.65±0.03 (0.70) 0.64±0.04 (0.68) 0.76±0.01 (0.77)

ARI 0.68±0.05 (0.72) 0.54±0.01 (0.55) 0.56±0.04 (0.58) 0.56±0.01 (0.59) 0.53±0.11 (0.39) 0.64±0.09 (0.56) 0.62±0.07 (0.74) 0.57±0.05 (0.67) 0.81±0.01 (0.82)

CLASSIC4
NMI 0.60±0.02 (0.59) 0.51±0.09 (0.52) 0.55±0.09 (0.50) 0.59±0.05 (0.51) 0.65±0.04 (0.57) 0.55±0.03 (0.58) 0.54±0.03 (0.59) 0.58±0.03 (0.62) 0.72±0.06 (0.76)

ARI 0.47±0.01 (0.47) 0.36±0.10 (0.43) 0.39±0.09 (0.40) 0.44±0.01 (0.43) 0.49±0.05 (0.45) 0.44±0.01 (0.43) 0.43±0.01 (0.43) 0.42±0.03 (0.44) 0.71±0.08 (0.76)

NG20
NMI 0.48±0.02 (0.53) 0.43±0.01 (0.43) 0.44±0.02 (0.43) 0.45±0.02 (0.45) 0.52±0.01 (0.52) 0.40±0.02 (0.42) 0.41±0.01 (0.42) 0.43±0.02 (0.46) 0.63±0.01 (0.64)

ARI 0.30±0.03 (0.34) 0.24±0.01 (0.25) 0.22±0.02 (0.21) 0.24±0.02 (0.28) 0.35±0.05 (0.37) 0.23±0.02 (0.23) 0.25±0.02 (0.27) 0.28±0.02 (0.32) 0.47±0.02 (0.50)

TREC
NMI 0.59±0.04 (0.62) 0.59±0.02 (0.60) 0.61±0.03 (0.60) 0.63±0.03 (0.62) 0.63±0.02 (0.62) 0.59±0.02 (0.60) 0.58±0.03 (0.60) 0.56±0.03 (0.61) 0.67±0.03 (0.70)

ARI 0.42±0.06 (0.47) 0.43±0.04 (0.45) 0.45±0.04 0.44 0.46±0.05 (0.46) 0.50±0.04 (0.50) 0.43±0.03 (0.45) 0.42±0.04 (0.45) 0.36±0.04 (0.44) 0.53±0.05 (0.63)

LA Times
NMI 0.52±0.05 (0.54) 0.42±0.02 (0.44) 0.42±0.02 (0.45) 0.43±0.03 (0.46) 0.47±0.02 (0.50) 0.42±0.02 (0.44) 0.41±0.02 (0.42) 0.41±0.01 (0.42) 0.53±0.03 (0.56)

ARI 0.49±0.05 (0.51) 0.36±0.04 (0.41) 0.35±0.06 (0.44) 0.37±0.06 (0.35) 0.43±0.03 (0.46) 0.35±0.04 (0.41) 0.34±0.04 (0.37) 0.34±0.03 (0.38) 0.50±0.06 (0.55)

ing the ground truth labels for words. Herein, we propose
to evaluate the word clusters in terms of interpretability. To
human subjects, interpretability is closely related to coher-
ence (Newman et al. 2010), i.e., how much the top words
of each cluster are “associated” with each other. To do so,
for each word cluster �, we select its top 30 words based on
the �th column of W. Then, to measure the degree of asso-
ciation between top word pairs, we use the PMI, which is
highly correlated with human judgments (Newman, Karimi,
and Cavedon 2009). Because WC-NMTF already exploits
the PMI estimated from the word co-occurrences in each
dataset, we propose to use an external corpus to estimate the
PMI in this experiment. Following (Newman, Karimi, and
Cavedon 2009), we use the whole English WIKIPEDIA cor-
pus, that consists of approximately 4 millions of documents
and 2 billions of words. Hence, p(wj) is the probability that
word wj occurs in WIKIPEDIA, and p(wj , wj′) is the proba-
bility that words wj and wj′ co-occur in a 5-word window in
any WIKIPEDIA document. For each cluster we average the
PMI’s among its top word pairs, and for a model we average
PMI across clusters.

Figure 3 shows the average PMI obtained by WC-NMTF
and NMTF, over the different datasets. It is clear that
WC-NMTF successes in capturing more semantics and infer-
ring more interpretable word clusters than NMTF. For illus-
trative purposes and to support the results of Figure 3, we
present in Table 3 the top words4, characterizing the word
clusters, inferred by WC-NMTF on the NG20 dataset; for
each cluster we average the PMI’s among its top word pairs.

Word representations. The key intuition behind our
model, WC-NMTF, is to associate words having similar
meanings (or which are about the same topic) with closer
latent representations. Hereafter, we propose to verify this
intuition empirically, by comparing the word representations
inferred by WC-NMTF to those inferred by NMTF.

Figure 4 shows the distribution of pairwise cosine similar-
ities between top words5 characterizing the same “true” doc-
ument class, using the word factors inferred by each method
(over different values of m). We observe that the top words
of each class (topic) tend to have closer latent representa-

4The dataset we used contains stemmed words, so we have, for
example, “allerg” instead of “allergy” in the table.

5The top 30 words of each true document class were obtained
by keeping only words appearing in most documents of this class.
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Figure 3: Cluster interpretability6: average PMI score.
WC-NMTF leads more interpretable clusters than NMTF.

tions under WC-NMTF, compared to NMTF, which validates
the intuition behind WC-NMTF.

Impact of hyperparameters λ and m. Figure 5 shows
the performance of WC-NMTF as a function of the reg-
ularization parameter λ. As it is clear from this Figure,
WC-NMTF is highly stable relative to the variations of λ,
and it seems to provide better performances when λ ≥ 0.01,
which facilitates the setting of this parameter.

In WC-NMTF, m plays the role of the number of column
clusters and dimensions of the word latent space, simulta-
neously. Hence, setting m equal to the number of docu-
ment clusters g—which is typically small—might seem not
enough to infer good word representations reflecting vari-
ous regularities between them. In other words, higher value
of m may be expected to offer more capacity to encode the
relationships among words and, thereby, improve document
clustering even more.

Figure 6 depicts the performance of our model as a func-
tion of m. For each dataset, we vary m from the real number
of document clusters g to 300. Surprisingly, smaller values
of m yield slightly better performance in almost all cases.
One possible explanation to this phenomena, is that when
the value of m increases, we infer finer (or specialized) rela-
tionships among words that are not necessarily relevant for
the clustering task. This suggests that, small values of m
are enough to reflect topical/semantic relationships among

6The original corpus of CSTR is not available, this is the reason
why we do not consider this dataset in this experiment.
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Table 3: Ten best word clusters (in terms of PMI) discovered by WC-NMTF on NG20, characterized by their top 20 words.

cluster (1) cluster (2) cluster (3) cluster (4) cluster (5) cluster (6) cluster (7) cluster (8) cluster (9) cluster (10)

armenia ottoman radio amplifi treatment chronic key crypto hit obp car wagon window zip team goal god spirit war jew
turk sahak output pul diseas nutrit secur escrow baseb clemen ford compart file download hockei score christian doctrin peac isrel

extermin istanbul input signal patient yeast clipper de pitch winfield auto callison disk mswindow play playoff jesu holi arab islam
argic kar wire resistor clinic diagnosi encrypt privaci bat 3b toyota sedan do instal cup nhl bibl passag isr occupi
serdar vilayet circuit shack symptom ocom secret classifi pitcher pennent rear camaro util cica detroit leaf faith spiritu territori palestinian

armenian arromdian batteri transistor diet candida algorithm rsa career outfield mustang turbo ms exe montreal coach christ profet bosnia zionist
serazuma muratoff frequenc capacitor infect sinu kei cryptograf hitter bogg tauru tbird directori config goali selann teach testam palestin policy
appressian ankara audio khz fysician vitamin tap keyescrow homer sandberg torqu nissan microsoft ini puck lemieux sin salvat gaza iraq
melkonian caucasian voltag diod syndrom allerg nsa decrypt rbi shortstop chevi munni setup win3 potvin lafontain lord unto moham syria

ohanu hovannisian amp volt therapi fungal wiretap cryptografi catcher mjonesdonald coup aas7po app norton defenseman penguin scriptur psalm arabia saudi
PMI: 4.43 PMI: 3.83 PMI: 3.78 PMI: 3.71 PMI: 3.70 PMI: 3.69 PMI: 3.21 PMI: 3.09 PMI: 3.03 PMI: 3.01
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Figure 4: Distribution of pairwise cosine similarities between the top 30 words characterizing each document class, computed
using the word factors obtained by NMTF and WC-NMTF.
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Figure 5: Impact of the regularization parameter λ.

� �� �� �� ��� ��� ���
� 	
��������������

���

���

���

���

���

���
���
�� �

CSTR

� �� �� �� ��� ��� ���
� 	
������������� �

���

���

���

���

���

���
���
�� �

CLASSIC4

�� �� �� �� ��� ��� ���
	
����������
�����
������

���

���

���

���

���

���
���
	� �

NG20


� �� �� �� 
�� ��� ���
� 	
��������������� �

���

���

���

���

���


��
���
�� �

TREC

� �� �� �� ��� ��� ���
� 	
��������������� �

���

���

���

���

���

���
���
�� �

LA Times

Figure 6: Impact of the number of column clusters m on NMI and ARI results.

words that are indeed relevant for the clustering task.

Conclusion

We propose to regularize the word factors in NMTF based
on the word co-occurrences. This gives rise to a new co-
clustering model, WC-NMTF, which aims to preserve the
semantic relationships between words. The intuition behind
our regularization scheme is to pull closer the latent repre-
sentations of similar words. In doing so, WC-NMTF suc-
cessfully preserves more semantics, which allows it to no-
ticeably improve the performance of NMTF models in terms
of both document and word clustering, as illustrated through

extensive experiments.

Our work opens different avenues for future research. On
one hand, the idea of leveraging the word co-occurrences to
capture the semantic relationships between words can be ex-
tended to other co-clustering models. On the other hand, be-
ing flexible with solid theoretical foundations, WC-NMTF
can be extended in several directions. For instance, it can be
augmented to leverage the geometric structure of the docu-
ment manifold. Such an extension is expected to yield fur-
ther performance improvements, since it is well established
that manifold regularization is beneficial for clustering. Fur-
thermore, in this work we use the documents as the context
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in which words occur. While this choice is effective, other
type of contexts, e.g., sentences, deserve to be investigated.
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