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Abstract

Cross-domain data reconstruction methods derive a shared
transformation across source and target domains. These
methods usually make a specific assumption on noise, which
exhibits limited ability when the target data are contaminated
by different kinds of complex noise in practice. To enhance
the robustness of domain adaptation under severe noise con-
ditions, this paper proposes a novel reconstruction based al-
gorithm in an information-theoretic setting. Specifically, ben-
efiting from the theoretical property of correntropy, the pro-
posed algorithm is distinguished with: detecting the contami-
nated target samples without making any specific assumption
on noise; greatly suppressing the negative influence of noise
on cross-domain transformation. Moreover, a relative entropy
based regularization of the transformation is incorporated to
avoid trivial solutions with the reaped theoretic advantages,
i.e., non-negativity and scale-invariance. For optimization, a
half-quadratic technique is developed to minimize the non-
convex information-theoretic objectives with explicitly guar-
anteed convergence. Experiments on two real-world domain
adaptation tasks demonstrate the superiority of our method.

Introduction

The task of domain adaptation refers to transferring knowl-
edge from a well-learned source domain with sufficient
labeled data to a target domain, where the two domains
follow different but related distributions (Pan and Yang
2010). It plays a substantial role to the success of super-
vised learning machines when there are no or insufficient
labeled training data in the target domain due to the expen-
sive hand-labeling. As one of the most important families
in domain adaptation, feature extraction (Pan et al. 2011;
Hoffman et al. 2014) has attracted great attention due to
their witnessed promising applications in multi-orientation
face recognition, heterogeneous object classification, etc.

Generally, the key challenge in the feature extraction fam-
ily of domain adaptation is to seek a shared feature space
across the domains where the discrepancy of two distribu-
tions is minimized while the desired data properties are pre-
served. For instance, a representative subcategory employs
a measurement to estimate and reduce the distance between
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the distributions (Si, Tao, and Geng 2010; Long et al. 2013).
Another line of work bridges the distribution gap by build-
ing a deep structure (Zhou et al. 2014). Within the feature
extraction family in domain adaptation, considerable efforts
have also been devoted to cross-domain data reconstruc-
tion (Shao, Kit, and Fu 2014; Ding, Shao, and Fu 2015;
Xu et al. 2016; Zhang, Zuo, and Zhang 2016). In this re-
construction based subcategory, the methods are more con-
cerned on uncovering the intrinsic structures within two
domains and modeling the noise in target domain during
adaptation, showing robust potentials. Specifically, they first
make some assumptions on noise, e.g., having a sparse rep-
resentation. Then the corrupted target data are iteratively
recovered to avoid negative transfer. However, real-world
noise is often severe and unpredictable, which generally
degrades the performance of the above assumption based
methods. Even worse, existing works in cross-domain re-
construction are always optimized by the Augmented La-
grange Multiplier (ALM) technique (Lin, Chen, and Ma
2010), resulting in the absence of convergence guarantee.
Therefore, effectively learning a robust transformation for
domain adaptation is still challenging as the target data may
be contaminated by various kinds of complex noise in real-
world applications (e.g., contiguous occlusions and shadows
exist simultaneously on images).

Recent studies derived from information-theoretic learn-
ing (Prı́ncipe, Xu, and Fisher 2000) have shown their superi-
ority in robust learning (Chen et al. 2016; 2017b). In partic-
ular, based on Renyi’s quadratic entropy, correntropy is pro-
posed and proven to have the theoretical foundation of han-
dling unpredictable noise and outliers (Liu, Pokharel, and
Prı́ncipe 2007). In conventional supervised learning (e.g.,
dimensionality reduction (Yuan and Hu 2009) and classi-
fication (He, Zheng, and Hu 2011)), the correntropy based
objectives provide strong robustness. However, these objec-
tives fail to attain domain alignment and robustness simulta-
neously. Without knowledge transfer, the learning machines
trained from source domain are invalid for target domain.

In this paper, we make great efforts to address the chal-
lenges discussed above and propose a novel reconstruction
based method in an information-theoretic setting, named
Robust Information-Theoretic Domain Adaptation (RIDA).
To robustly uniform the geometrical properties of two do-
mains, RIDA aims at transforming all data into a new space
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Figure 1: Overview of RIDA. The circle and the triangle de-
note two different classes. RIDA transforms all data into a
new space by the matrix W based on reconstruction. In the
process, the contaminated target points (i.e., outliers) are de-
tected and removed. Thus, each clean target point can be ac-
curately reconstructed by its neighbors in source domain.

such that: the contaminated target data are detected and ne-
glected; the clean target points that lie in a specific neigh-
borhood can be locally reconstructed by the corresponding
source-domain neighborhood. In this term, the transforma-
tion is supposed to minimize the marginal distribution dif-
ference between domains and transfer the discriminative in-
formation from source domain to assist the target-domain
recognition tasks. For this purpose, we learn a transforma-
tion matrix and a reconstruction coefficients matrix through
a single optimization and the following three terms com-
pose the objective function. (1) Correntropy is explored to
minimize the sample-specific error between the target sam-
ples and their reconstructions by the source samples. Bene-
fiting from exploring this robust measurement, RIDA is dis-
tinguished with putting more emphasis on the clean target
samples and eliminating the negative influence of the con-
taminated samples on cross-domain reconstruction. (2) The
l1-norm constraint is imposed on the coefficients matrix to
capture the intrinsic relatedness of two domains, which en-
sures the neighborhood-to-neighborhood reconstruction. (3)
RIDA utilizes a relative entropy based regularization for the
transformation matrix to avoid some trivial solutions and
reap the theoretic advantages (i.e., non-negativity and scale-
invariance). The overview of RIDA is illustrated in Figure 1.
In summary, the contribution of this paper is three-fold.

• RIDA is of great robustness in knowledge transfer by re-
moving the contaminated data without any specific as-
sumptions on noise. It is one of the early solutions for
the challenging problems where the target data are con-
taminated even by different kinds of severe noise.

• We develop an effective half-quadratic technique for op-
timization, which simplifies the non-convex information-
theoretic loss function to the quadratic problems. More-
over, the convergence proof is provided.

• RIDA brings considerable improvements in cross-domain
object recognition and face recognition, compared with
the state-of-the-art domain adaptation methods.

Related Works

Domain Adaptation

Significant efforts in domain adaptation have been spent
on feature extraction learning which transfers both do-
mains to a common subspace where the distributions of
two domains are approximately identical (Gong et al. 2012;
Long et al. 2013; Zhou et al. 2014; Wang et al. 2015).
In this category, cross-domain data reconstruction has been
well studied to uncover data relatedness especially when the
data from two domains are drawn from a union of multi-
ple subspaces (Shao, Kit, and Fu 2014; Jhuo et al. 2012;
Ding, Shao, and Fu 2015; Xu et al. 2016; Zhang, Zuo,
and Zhang 2016). To further enhance the robustness, most
of the reconstruction methods introduce an error matrix E
and impose a norm constraint on E (e.g., l1-norm and l2,1-
norm) based on a certain assumption about noise (e.g., spar-
sity). Afterwards, they iteratively correct E and recover con-
taminated data from E. This noise correction strategy is
empirically validated to be effective for arbitrarily sparse
noise (Wright et al. 2009). However, real-world noise is of-
ten unpredictable. Recent theoretical analysis and experi-
mental results verify that a certain noise assumption cannot
deal with complex noise very well (e.g., large contiguous oc-
clusions), especially when the data are simultaneously cor-
rupted by several types of noise (He et al. 2015). Moreover,
these cross-domain reconstruction based methods are ham-
pered by the lack of convergence guarantee with the ALM
based optimization.

Correntropy

In information-theoretic learning, correntropy is defined as
a similarity measure between random variables X and Y :

V (X,Y ) = E[k(X − Y )], (1)

where k(.) is a kernel function and E[·] denotes the expec-
tation operator. Correntropy is closely related with Welsch
M-estimators (Huber 2011) and has robust theoretical foun-
dation (Liu, Pokharel, and Prı́ncipe 2007; Chen et al. 2017a).
Moreover, correntropy owns the properties of symmetry,
positivity and boundedness. Given a finite number of sam-
ples {(xi, yi)}ni=1, Eq. (1) is extended to the following em-
pirical measure, named Correntropy Induced Metric (CIM):

CIM(X,Y ) =
1

n

n∑

i=1

(k(0)− k(xi − yi)). (2)

The value of CIM is mainly decided by the kernel func-
tion along the line X = Y (Liu, Pokharel, and Prı́ncipe
2007). CIM has been successfully applied to many super-
vised learning machines and is proven to be applicable under
a variety of unpredictable noisy environments (e.g., missed
entries, incorrect labeling and dense corruptions) (Yuan and
Hu 2009; He, Zheng, and Hu 2011). However, how to ex-
ploit the robust value of the correntropy to address the do-
main adaptation problems needs further investigation.

Method

In this section, we introduce the Robust Information-
Theoretic Domain Adaptation (RIDA) algorithm in detail.
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Problem Formulation

Let Xt = [xt
1, ...,x

t
m] ∈ R

d×m be the target data ma-
trix consisting m unlabeled samples from a target domain.
Note that a large portion of the target data are seriously
contaminated under severe noise conditions. Let Xs =
[xs

1, ...,x
s
n] ∈ R

d×n be the source data matrix consisting
n labeled samples from a source domain. The correspond-
ing label matrix is denoted as Ys = [ys1, ..., y

s
n] ∈ R

n. We
denote Pt(Xt) and Ps(Xs) as the marginal probability dis-
tributions of Xt and Xs respectively, Pt(Xt) �= Ps(Xs).
The task of RIDA is to eliminate the negative impact of the
contaminated target samples during learning a shared trans-
formation W such that Pt(WXt) and Ps(WXs) will be
approximately equal for successful knowledge transfer.

In the following sections, we start learning a transforma-
tion by considering the basic case without noise contami-
nation. Afterwards, the loss function is extended to severe
noise conditions, which gives the formulation of our RIDA.

The Basic Condition without Noise Contamination In
this basic case, we aim at transforming the target and the
source data into a common space by reconstructing all the
target data, where the reconstruction should reveal the data
structures of two domains. Specifically, it is expected that
in the new space, the target points in a neighborhood can
be reconstructed by the corresponding neighborhood in the
source domain. In other word, the transformed samples from
two domains have similar geometrical properties. As a re-
sult, the distributions of two domains are approximately
identical in the new space.

In order to achieve the above goal, we learn a transforma-
tion matrix and a reconstruction coefficients matrix through
a single optimization by: 1) minimizing reconstruction error;
2) finding sparse reconstruction coefficients; 3) regularizing
the transformation. Mathematically, the problem can be for-
mulated as the following function:

min
W,C

‖WXt −WXsC‖2F + λ1‖C‖1 + λ2R(W), (3)

where W ∈ Rd×d is the transformation matrix, C ∈
Rn×m is the reconstruction coefficients matrix, R(W) is
the regularizer of W, λ1 and λ2 are the trade-off parame-
ters. The rationality of the loss function in Eq. (3) is illus-
trated as follows. First, the l1-norm constraint on C (i.e.,
‖C‖1 =

∑
i,j |Cij |) assures the sparsity. The sparse coef-

ficients help in uncovering the relatedness and ensuring the
neighborhood-to-neighborhood reconstruction. Second, the
regularizer is integrated to avoid some trivial solutions (e.g.,
zero matrix) and control the complexity of W.

The Severe Noise Conditions In practical and general do-
main adaptation scenarios, the target data are often contami-
nated by unpredictable noise, especially when it comes from
the web. In these noise conditions, the target data consist of
two parts: the contaminated target points (i.e., the outliers)
and the uncontaminated target points (i.e., the clean sam-
ples). The contaminated target points are far from the clean
data and have no corresponding neighbourhood in the source
domain. However, the measurement of reconstruction error
in Eq. (3) (i.e., the Frobenius norm) is very sensitive to the

noise or outliers, which puts more emphasis on the contami-
nated points. Consequently, based on the learnt W, the clean
target points cannot be accurately represented by the corre-
sponding source samples, leading to inaccurate data align-
ment and significantly degraded prediction performance.

To alleviate the influence of noise and improve the ro-
bust adaptation ability, the key challenge is how to detect
the contaminated target points and measure the reconstruc-
tion error without their interference. We investigate the theo-
retical foundation of correntropy in robustness against com-
plex noise and originally introduce it into cross-domain data
reconstruction. To this end, the CIM in Eq. (2) with Gaus-
sian kernel k(x) = exp(−x2/σ2) is explored to be the
information-theoretic measurement and the following do-
main adaptation formulation is obtained:

min
W,C

m∑

i=1

{1− exp(−‖(WXt −WXsC)i‖22/σ2)}

+ λ1‖C‖1 + λ2R(W),

(4)

where (WXt − WXsC)i denotes the i-th column of the
error (WXt − WXsC). This column-wise minimization
penalizes the error corresponding to a single sample as a
whole. It is derived from the group sparsity and is used to
control sample-specific error.

The Regularizer R(W) Regarding the regularizer
R(W), we consider the Mahalanobis distance matrix A
(A = WTW) and require the regularizer to be able to
reduce the distance between A and the identity matrix
I. This distance based regularization leads to satisfactory
experimental results in practical domain adaptation prob-
lems (Hoffman et al. 2014). Specifically, R(W) employs
the relative entropy based measurement proposed in (Davis
et al. 2007) to define the distance between A and I, as:

R(W) = D(A, I) = tr(AI−1)− log det(AI−1). (5)

R(W) in Eq. (5) reaps the theoretic advantages: 1) non-
negativity and 2) scale-invariance with an invertible linear
transformation S, i.e., D(STAS,ST IS) = D(A, I).

The Formulation of RIDA Substituting Eq. (5) into
Eq. (4), we derive a novel method named Robust
Information-Theoretic Domain Adaptation (RIDA) to ad-
dress the challenging domain adaptation problems under se-
vere noise conditions. It inherits the robustness by minimiz-
ing the information-theoretic objectives F (W,C):

min
W,C

F (W,C) =

m∑

i=1

{1− exp(−‖(WXt −WXsC)
i‖22/σ2

)}

+ λ1(tr(W
T
W)− log det(W

T
W)) + λ2‖C‖1.

(6)

Once we solve the problem in Eq. (6) and obtain the optimal
W, we can transform all data into a common space using
W. Finally, in this common space, the predictive models
trained from the labeled source data can be directly applied
to the target domain with high-confidence predictions.

Discussion: In contrast to the previous domain adaptation
methods which recover corrupted target data from error ma-
trix, our proposed RIDA is based on information-theoretic
metric and has a clear theoretical foundation of robustness.
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It can effectively deal with the conditions: a mass of target
points are corrupted; the corruptions are dense; and the cor-
ruptions are caused by several kinds of severe noise. Specif-
ically, based on the local property of the correntropy, RIDA
treats each target sample adaptively during cross-domain re-
construction. The corrupted samples, which have no neigh-
bors in the source domain, are prone to large reconstruction
error. Hence, they have relatively stable correntropy values
and only make limited impacts on the minimization. That is,
RIDA removes the contaminated points (i.e., their error is
greatly suppressed), and mainly uses the clean target sam-
ples to learn the transformation and the coefficients matrix.
In this way, RIDA accurately reduces the distribution dif-
ference for knowledge transfer without any specific assump-
tions on noise.

Optimization

Since Eq. (6) is non-linear and non-convex, it is difficult to
be directly optimized. In this section, we explore the Half-
Quadratic (HQ) technique (Geman and Reynolds 1992)
and propose an efficient procedure to iteratively optimize
the augmented function of RIDA in an enlarged parameter
space. Different from the ALM based optimization always
applied in the existing cross-domain representation meth-
ods, our proposed procedure has the provable convergence
guarantee due to the theoretic properties of our information-
theoretic loss function.

Conjugate Function and HQ Form Based on the the-
ory of convex conjugate functions (Boyd and Vandenberghe
2004; He et al. 2015), the following proposition can be de-
rived, which enables Eq. (6) to be minimized in HQ way:
Proposition 1. There exists a convex conjugated function
ϕ(p) of g(x) = 1− exp(−x2/σ2), such that:

g(x) = min
p∈R

(p‖x‖2 − ϕ(p)), (7)

and for a fixed x, the minimization is reached at p =
exp(−x2/σ2).

According to Proposition 1, the first term of F (W,C) in
Eq. (6) can be translated to the following form:

m∑

i=1

{1− exp(−‖(WXt −WXsC)i‖22/σ2)}

=min
pi

m∑

i=1

{pi‖(WXt −WXsC)i‖22 + ϕ(pi)}.
(8)

The above expression is a basic form in HQ analysis (Geman
and Reynolds 1992) where pi is called the auxiliary variable.

Alterative Minimization based on HQ Analysis Substi-
tuting the HQ format of Eq. (8) into Eq. (6), the following
augmented objective function of RIDA (i.e., J(P,W,C))
is obtained in an enlarged parameter space:

min
W,C

F (W,C) = min
P,W,C

J(P,W,C)

=

m∑

i=1

{pi‖(WXt −WXsC)i‖22 + ϕ(pi)}

+ λ1‖C‖1 + λ2(tr(W
TW)− log det(WTW)),

(9)

where P ∈ Rm×m is a diagonal matrix with P(i, i) = pi.
In HQ analysis, J(P,W,C) can be minimized by an al-

ternative strategy which updates one variable with the others
fixed. We emphasize that each update is a convex optimiza-
tion problem in our alternative strategy as follows, which is
numerically tractable.

1) Update P. Based on Proposition 1, pi can be easily
updated as:

pr+1
i = exp(−‖(WrXt −WrXsC

r)i‖22/σ2), (10)

where i = 1, ...,m and r is the iteration number.
2) Update W. When pi is fixed, ϕ(pi) in Eq. (9) becomes

a constant and can be removed. In this term, W is updated
by solving the following problem:

Wr+1 =argmin
W

m∑

i=1

pr+1
i ‖(WXt −WXsC

r)i‖22

+ λ2(tr(W
TW)− log det(WTW)).

(11)

The above loss function is not convex with respect to W.
Therefore, we work in terms of the new variable A =
WTW. With this alternative definition of variable A,
Eq. (11) can be rewritten as a convex optimization problem:

Ar+1 =argmin
A

Tr(A(Xt −XsC
r)Pr+1(Xt −XsC

r)T )

+ λ2(tr(A)− log det(A)).
(12)

By setting the derivative to zero, the closed-form solution of
Ar+1 can be obtained:

Ar+1 = (I+
1

λ2
(Xt −XsC

r)Pr+1(Xt −XsC
r)T )−1. (13)

Based on the solution of Ar+1, the optimal Wr+1

can be obtained using eigen-decomposition: Wr+1 =

diag(
√

θr+1
1 , . . . ,

√
θr+1
d )[ur+1

1 , . . . ,ur+1
d ]T , where θr+1

i

and ur+1
i are the i-th eigenvalue and eigenvector of Ar+1

respectively.
3) Update C. For minimizing C, the problem in Eq. (9)

can be written as follows by fixing P and W:

Cr+1=argmin
C

λ1‖C‖1+
m∑

i=1

pr+1
i ‖(Wr+1Xt−Wr+1XsC)i‖22

=argmin
C

m∑

i=1

{λ1‖Ci‖1 + ‖(Ur+1Ci −Vr+1,i)‖22},
(14)

where Ci and Vr+1,i denote the i-th columns of C and
Vr+1 respectively, Ur+1 =

√
pr+1
i Wr+1Xs and Vr+1 =√

pr+1
i Wr+1Xt. Note that each Ci in Eq. (14) can be in-

dependently solved, which is a standard convex problem in
l1 minimization. Many iterative techniques have been pro-
posed to solve this l1 minimization. Among them, we em-
ploy the feature-sign search technique (Lee et al. 2007) to
find the optimal Ci, which has the step-down character that
each iteration of the minimization can reduce the objective
function. To further save the operation time, just a local op-
timum of each Ci is needed in our procedure instead of find-
ing the global solution.
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Algorithm 1 Robust Information-Theoretic Domain Adap-
tation (RIDA)
Require: Xs, Xt, σ, λ1 and λ2.
Ensure: P, W, C.
1: r = 0, W0 = I, C0 = 0;
2: while not convergence do
3: Solve Pr+1 based on Eq. (10);
4: Solve Wr+1 based on Eq. (13);
5: Solve Cr+1 by optimizing the problem in Eq. (14);
6: r=r+1.
7: end while
8: Return P, W and C.

Overall, the procedure of optimizing the problem in
Eq. (9) is summarized in Algorithm 1.

Robustness Explanation and Complexity Analysis The
optimization process in Algorithm 1 gives a clear explana-
tion of the robustness in RIDA. Specifically, the value of pi
is small for the contaminated target data due to the properties
of correntropy. Thus, the negative influence of the contami-
nated data is dismissed during updating W and C, where pi
acts as the weight.

Next, we analyze the complexity of RIDA. As for step
3 and step 4 in Algorithm 1, their computation complexities
are O(dmn+d2(m+n)) and O(d3+dmn+d2m+dm2) re-
spectively. Step 5 costs nearly O(dmn+

∑
i dN

2
i +

∑
i N

3
i ),

where Ni is the number of nonzero entries of Ci. Since
Ni � min(m,n), the overall complexity of Algorithm 1
is O(R(dmn + d2(m + n) + d3 + dm2)), where R is the
number of iteration.

Convergence Proof The following proposition proves that
the RIDA updating sequences will converge.
Proposition 2. The updating scheme in Algorithm 1 con-
verges to the local minimum of J(P,W,C).

Proof. According to Proposition 1, the closed-form solu-
tion in Eq. (13) and the step-down character of the feature-
sign search technique, we can achieve the following se-
quence: J(Pr+1,Wr+1,Cr+1) ≤ J(Pr,Wr+1,Cr+1) ≤
J(Pr,Wr,Cr+1) ≤ J(Pr,Wr,Cr). That is, the loss
function in Eq. (9) is non-increasing in each iteration. Fur-
thermore, according to the properties of correntropy and rel-
ative entropy, each term of F (W,C) in Eq. (6) is bounded
downwards. Therefore, J(W,C,P) is bounded downwards
as well based on the first line in Eq. (9). Hence, the updating
scheme in Algorithm 1 ensures to converge.

Experiments

In this section, we evaluate the proposed method in two do-
main adaptation related applications: 1) object recognition
and 2) face recognition.

Data Preparation

COIL-20 (Nene et al. 1996) dataset contains 1,440 im-
ages from 20 objects. The images of objects are taken at
pose intervals of 5 degrees, leading to 72 poses per ob-
ject. Some example images are shown in Figure 2(a), where

Figure 2: Illustrative images used in the experiments.

each image has the resolution of 32 × 32 pixels with 256
gray levels per pixel. Following the previous work (Long
et al. 2013; Xu et al. 2016), the dataset is partitioned into
COIL1 (containing all images in the directions [0◦, 85◦] ∪
[180◦, 265◦]) and COIL2 (containing all images in the di-
rections [90◦, 175◦] ∪ [270◦, 355◦]). Consequently, COIL1
and COIL2 have related but different distributions, and two
cross-domain datasets are constructed: 1) C1 vs C2: the
source dataset is COIL1 and the target dataset is COIL2; 2)
C2 vs C1: the source/target pair in C1 vs C2 is switched.

CMU-PIE (Sim, Baker, and Bsat 2002) is a benchmark
face dataset which includes 41,368 face images from 68 in-
dividuals with different poses, illuminations and facial ex-
pressions. Each face image is in 256 gray scales per pixel
with the size of 32 × 32. Figure 2(d) shows some exam-
ple face images. CMU-PIE can be divided into five subsets
according to different poses: PIE1 (left pose), PIE2 (upward
pose), PIE3 (down pose), PIE4 (front pose), PIE (right pose).
As in (Long et al. 2013; Xu et al. 2016), each subset is re-
garded as a domain and 20 cross-domain face datasets are
constructed, i.e., P1 vs P2, P1 vs P3,..., P5 vs P3, P5 vs P4.

For the cross-domain datasets above, different types of
complex noise is added on a large proportion of the target
data to evaluate the robust adaptation ability. Specifically,
contiguous occlusions are simulated on COIL-20 such that
a random local region (16 × 16) of the image is replaced
by a white square (Fidler, Skocaj, and Leonardis 2006) (see
Figure 2(b)). As another kind of noise, the images of COIL-
20 are corrupted by randomly replacing 70 percent of pixels
with i.i.d samples from a uniform distribution (He, Zheng,
and Hu 2011) (see Figure 2(c)). The original images from
PIE may have shadows due to different light conditions, we
further add contiguous occlusions by randomly replacing a
region (16 × 16) with an unrelated monkey image (Wright
et al. 2009) (see Figure 2(e)).

Comparison Methods

We systematically compare the proposed method RIDA with
the following state-of-the-art transformation based domain
adaption methods: 1) Geodesic Flow Kernel (GFK) (Gong et
al. 2012); 2) Transferred Fisher’s Linear Discriminant Anal-
ysis (TrFLDA) (Si, Tao, and Geng 2010); 3) Joint Distribu-
tion Adaptation (JDA) (Long et al. 2013); 4) Latent Sparse
Domain Transfer Learning (LSDT) (Zhang, Zuo, and Zhang
2016) and 5) Discriminative Transfer Subspace Learning
(DTSL) (Xu et al. 2016). Furthermore, 1-Nearest Neighbor
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Table 1: Classification accuracy (%) on the original COIL.

Dataset Standard Learning Transfer Learning
NN CESR GFK TrFLDA JDA LSDT DTSL RIDA

C1 vs C2 83.61 84.86 85.97 86.67 89.31 85.69 88.06 89.17
C2 vs C1 82.78 84.69 85.14 85.56 88.47 84.72 89.17 88.06

(1-NN) classifier and Correntropy-Based Sparse Represen-
tation (CESR) classifier (He, Zheng, and Hu 2011) are also
compared as non-transfer baselines. All the transformation
based domain adaption methods use 1-NN as the base clas-
sifier without parameters tuning. We have tried our best to
empirically search the parameter spaces of these six com-
parison methods to obtain the best results on all the datasets.
Our method involves three parameters: λ1, λ2 and σ. Across
the experiments, we set these parameters by searching the
values in the range [10−3, 103]. In general, our method is
found to be robust to these parameters.

Experimental Results on COIL-20

In this section, we evaluate all the methods under three con-
ditions successively: no noise; a single noise of contiguous
occlusions and another single noise of corruptions.

Original Datasets The classification results are shown in
Table 1. As can be seen, most of the domain adaptation
methods outperform 1-NN and CESR, showing the advan-
tage of information transfer. The results of JDA, DTSL and
RIDA are similar and comparable on these two datasets,
which are much better than those of other transfer methods.

Contiguous Occlusions with a White Square The source
data are composed of all the clean samples in the source
domain. For the target data, we randomly pollute z per-
cent of the data using the contiguous occlusions shown in
Figure 2(b). The z is set to be different large values (i.e.,
z = 30%, 50%, 70%) to explore the influence of the ra-
tio of the contaminated data. The experiments are randomly
repeated 10 times and the average classification results on
the unlabeled target domain are shown in Figure 3(a). The
following observations can be drawn. (1) The performance
of existing domain adaptation methods (i.e., GFK, TrFLDA,
JDA, LSDT and DTSL) is greatly degraded due to the added
occlusions and is worse than CESR and RIDA. It demon-
strates that large occlusions deteriorate the performance of
domain adaptation while the correntropy is a more effec-
tive similarity measure to deal with these occlusions. (2)
Putting emphasis on reducing the distribution difference, our
method successfully transfers information across domains
and consistently provides much higher accuracy (up to 10%
improvement) than the traditional classifier CESR across all
the datasets and the numbers of z. (3) When the number z
increases, the performance of all the other comparison meth-
ods decreases rapidly. By contrast, the accuracy of RIDA
decreases more slowly, showing its advantage of handling
massive noise pollution.

Random Pixel Corruptions Following the similar setting
as before, the source domain is uncontaminated and z per-
cent of the target data are randomly corrupted as shown in

(a) Results under contiguous occlusions.

(b) Results under random pixel corruptions.

Figure 3: Cross-domain object classification accuracy (%)
and standard variation (%) on C1 vs C2 and C2 vs C1.

Figure 2(c). The average classification results over 10 ran-
dom repetitions across different numbers of z are shown in
Figure 3(b). Some observations can be concluded. First, as
can be seen from Figure 2(c), the corrupted images from
target data are even barely recognized to the human eye, in-
dicating greater distribution difference between the domains
than that of the images in the above experiments. In this diffi-
cult case, the robust domain adaptation methods (i.e., DTSL
and RIDA) can transfer the discriminating power from the
source domain to the noisy target domain, thus outperform
the other non-robust methods and non-transfer methods.
Second, our method obtains significant improvement com-
pared with DTSL. The possible reason is that DTSL em-
ploys the l1-norm for error modeling based on the sparse
assumption, which has the limited capability of recovering
clean data from these severe corruptions. By contrast, our
correntropy based method can effectively detect and sup-
press various kinds of complicated noise. Third, with the
increasing number of z, the accuracy of our method is still
higher than 75% even when z = 70%.

Experimental Results on CMU-PIE

On CMU-PIE, we conduct experiments under two different
conditions: low-level shadow corruptions caused by varied
illuminations on the original images; the combined noise of
contiguous occlusions and shadow corruptions.

Original Datasets The classification results are shown
in Table 2 and we achieve the following observations. (1)
CESR outperforms our method on P2 vs P4 and P3 vs P4. A
possible explanation is that each face with front pose can be
approximatively expressed as a linear combination of some
faces with upward pose or down pose, due to the much sim-
ilar distributions. Therefore, the non-transfer and expression
based classifier CESR is more applicable. But we would like
to mention that our method always performs well on the
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Table 2: Classification accuracy (%) on the original CMU-
PIE with low-level shadow corruptions.

Dataset Standard Learning Transfer Learning
NN CESR GFK TrFLDA JDA LSDT DTSL RIDA

P1 vs P2 26.09 44.81 26.15 39.23 58.81 26.21 65.87 60.10
P1 vs P3 26.59 48.41 27.27 35.48 54.23 26.53 64.09 62.32
P1 vs P4 30.67 61.07 31.15 51.46 84.50 30.64 82.03 75.46
P1 vs P5 16.67 27.51 17.59 27.21 49.75 16.91 54.90 48.22
P2 vs P1 24.49 38.39 25.24 31.36 57.62 24.43 45.04 58.31

P2 vs P3 46.63 68.75 47.37 33.95 62.93 46.57 53.49 71.02

P2 vs P4 54.07 84.53 54.25 61.67 75.82 54.10 71.43 80.29
P2 vs P5 26.53 43.32 27.08 25.12 39.89 26.53 47.94 52.51

P3 vs P1 21.37 32.80 21.82 40.40 50.96 21.40 52.49 54.89

P3 vs P2 41.01 56.66 43.16 34.56 57.95 41.07 55.56 65.25

P3 vs P4 46.53 82.94 46.41 66.60 68.45 46.53 77.50 80.84
P3 vs P5 26.23 43.50 26.78 37.62 39.95 26.23 54.11 60.60

P4 vs P1 32.95 50.36 34.24 74.04 80.58 32.89 81.54 78.45
P4 vs P2 62.68 84.47 62.92 78.45 82.63 62.74 85.39 88.34

P4 vs P3 73.22 90.38 73.35 78.13 87.25 73.10 82.23 91.12

P4 vs P5 37.19 57.60 37.38 58.64 54.66 37.38 72.61 75.12

P5 vs P1 18.49 31.33 20.35 42.74 46.46 18.46 52.19 48.56
P5 vs P2 24.19 38.37 24.62 38.43 42.05 24.19 49.41 52.67

P5 vs P3 28.31 49.33 28.49 46.02 53.31 28.31 58.45 62.01

P5 vs P4 31.24 61.16 31.33 57.49 57.01 31.21 64.31 68.58

Mean 34.76 54.78 35.35 47.93 60.24 34.78 63.53 66.73

Table 3: Classification accuracy (%) on CMU-PIE under
added contiguous occlusions

Dataset Standard Learning Transfer Learning
NN CESR GFK TrFLDA JDA LSDT DTSL RIDA

P1 vs P2 19.15 37.69 19.28 27.93 29.96 19.28 48.13 50.03

P1 vs P3 20.53 41.54 20.53 24.63 34.80 20.53 46.20 49.26

P1 vs P4 24.33 52.60 24.36 37.13 53.17 24.30 65.70 69.21

P1 vs P5 12.93 21.63 13.24 19.06 24.26 12.81 38.66 39.15

P2 vs P1 18.52 33.28 18.67 20.89 35.32 18.58 36.40 43.64

P2 vs P3 30.09 58.21 30.21 20.89 35.91 30.09 38.48 52.63
P2 vs P4 40.04 79.81 40.25 43.77 49.23 40.19 61.97 71.52
P2 vs P5 19.49 36.52 19.67 16.36 22.49 19.49 38.05 42.52

P3 vs P1 16.81 28.24 16.93 26.20 28.93 16.84 38.81 40.76

P3 vs P2 28.48 47.89 28.55 22.41 31.31 28.42 40.09 48.99

P3 vs P4 34.09 75.73 34.15 46.80 39.53 34.09 63.35 69.39
P3 vs P5 19.06 38.24 19.30 23.16 24.75 18.93 39.52 46.81

P4 vs P1 25.03 43.86 25.27 48.56 52.49 24.94 63.69 64.89

P4 vs P2 44.14 77.66 44.32 51.26 53.22 44.26 73.05 78.82

P4 vs P3 51.59 83.64 51.53 52.45 58.09 51.59 70.28 84.65

P4 vs P5 27.33 51.16 27.82 38.24 34.80 27.45 58.21 61.15

P5 vs P1 14.26 25.75 14.26 27.55 30.70 14.26 36.42 38.49

P5 vs P2 18.48 32.97 18.48 25.29 22.77 18.48 40.39 43.19

P5 vs P3 20.40 42.22 20.65 28.31 27.70 20.59 45.04 45.53

P5 vs P4 25.20 55.00 25.32 40.01 33.34 25.14 49.05 55.60

Mean 25.50 48.18 25.64 32.05 36.14 25.51 49.57 54.81

other cross-domain datasets with larger distribution differ-
ences. (2) Note that the source data on CMI-PIE are mildly
corrupted as well. RIDA and DTSL are shown to outper-
form the remaining transfer methods, since they can gener-
ally reconstruct each uncorrupted target point (or recovered
point) by its uncorrupted neighbors in the source domain
and transfer the discriminating information accurately. (3)
Our method achieves higher accuracy rates than DTSL on
14 datasets. For instance, our method achieves almost 10%
improvements compared to DTSL on P2 vs P4 and P4 vs P3.
Moreover, the average performance of our method is much
better than all the other competitors. These results illustrate
the reliable cross-domain performance of our method.

Contiguous Occlusions with an Unrelated Image We
further randomly occlude 50 percent of the number of the
target data using the unrelated monkey image shown in Fig-
ure 2(e). Contiguous occlusions and shadows may exist si-
multaneously on these target images, leading to large out-

Figure 4: Convergence of RIDA and DTSL on C1 vs C2.

liers. The average classification results over 10 random rep-
etitions are shown in Table 3 and the following observations
can be concluded. First, with the added occlusions, the ac-
curacy of all the methods decreases, especially JDA. Sec-
ond, our method outperforms all the other domain adapta-
tion methods in terms of average accuracy. RIDA can assign
small weights to the large outliers, and put more emphasis on
the uncontaminated points during learning the reconstruc-
tion and the transformation. As a result, the learnt transfor-
mation can explicitly reduce the distribution difference.

Convergence Analysis

The convergence of RIDA has been proven in Section 3. In
this section, we experimentally plot its convergence on C1
vs C2 in Figure 4(a). For comparison, the convergence of
DTSL has also been shown in Figure 4(b). As can be seen,
our objective function decreases in every iteration and the
optimization process converges after less than 10 iterations.
In contrast, the objective value of DTSL is volatile and there
is still no convergence after 100 steps of iterations. Similar
observations can be drawn from other datasets as well.

Conclusion

In this paper, we have proposed a novel domain adaptation
method inspired from correntropy. The key idea is to seek
a shared feature space based on cross-domain reconstruc-
tion and incorporate the removal of contaminated target data
into this seeking process, resulting in an accurate alignment
between two domains. Without any specific assumptions on
noise, the proposed method achieves its main advantage in
the strong robustness for the challenging domain adaptation
problems where the target data are contaminated by different
kinds of severe and complex noise. Furthermore, an effec-
tive half-quadratic technique has been developed, guarantee-
ing the convergence of RIDA. Comprehensive experimental
results validate the effectiveness and the noise suppression
ability of the proposed method. In the future, we plan to fa-
cilitate the robustness by exploring more knowledge (e.g.,
class information) from two domains.
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