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Abstract

Network quantization is an effective solution to compress
deep neural networks for practical usage. Existing network
quantization methods cannot sufficiently exploit the depth in-
formation to generate low-bit compressed network. In this pa-
per, we propose two novel network quantization approaches,
single-level network quantization (SLQ) for high-bit quan-
tization and multi-level network quantization (MLQ) for ex-
tremely low-bit quantization (ternary). We are the first to con-
sider the network quantization from both width and depth
level. In the width level, parameters are divided into two
parts: one for quantization and the other for re-training to
eliminate the quantization loss. SLQ leverages the distribu-
tion of the parameters to improve the width level. In the
depth level, we introduce incremental layer compensation to
quantize layers iteratively which decreases the quantization
loss in each iteration. The proposed approaches are validated
with extensive experiments based on the state-of-the-art neu-
ral networks including AlexNet, VGG-16, GoogleNet and
ResNet-18. Both SLQ and MLQ achieve impressive results.

Introduction
Recent years, deep convolutional neural networks (DNNs)
are playing an important role in a variety of computer vision
tasks including image classification (Krizhevsky, Sutskever,
and Hinton 2012), object detection (Girshick 2015; Ren
et al. 2015), semantic segmentation (Chen et al. 2014;
Long, Shelhamer, and Darrell 2015) and face recognition
(Taigman et al. 2014; Sun, Wang, and Tang 2014). The
promising results of DNNs are contributed by many factors.
Regardless of more training resources and powerful com-
putational hardware, the large number of learnable param-
eters is the most important one. To achieve high accuracy,
deeper and wider networks are designed which in turn poses
heavy burden on storage and computational resources. It be-
comes more difficult to deploy a typical DNN model on re-
source constrained mobile devices such as mobile phones
and drones. Thus, network compression is critical and has
become an effective solution to reduce the storage and com-
putation costs for DNN models.
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Figure 1: Comparison of single-level quantization and multi-
level quantization. The blue parts indicate the full-precision
weights and layers of the network. The orange parts are
quantized weights and layers.

One major challenge for network compression is the
tradeoff between complexity and accuracy. However, most
of the recent network compression methods degrade the ac-
curacy of the network more or less (Han et al. 2015; Guo,
Yao, and Chen 2016; Gong et al. 2014; Rastegari et al. 2016;
Li, Zhang, and Liu 2016; Zhou et al. 2016). Recently, (Zhou
et al. 2017) propose incremental network quantization which
re-trains the un-quantized parameters to compensate for the
quantization loss can achieve high compression rate while
maintaining performance. However, they pay no attention to
the distribution of parameters and treat all layers equally (as
shown in Figure 1a).

In this paper, we argue that both of the width level (parti-
tioning parameters) and the depth level (partitioning layers)
are important in network quantization (shown in Figure 1b).
In the width level, quantization should fit the distribution of
the weights which directly affects the accuracy of the net-
work. Vector quantization is a quantization method that fully
considers the distribution and makes quantization loss easy
to be controlled. Furthermore, weights with special type may
have special use (e.g. weights with type powers of two may
accelerate computations in FPGA devices). We extend our
approach by using L1 norm to constrain the clustering pro-
cess. In the depth level, layers are important elements of net-
works. They are interacted and make joint contributions to
the networks. Thus, the quantization loss of one layer can
be eliminated by re-training other layers. For ternary quan-
tization, the huge quantization loss can not be compensated
by re-training if only considering the width level. Thus, we
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introduce incremental layer compensation that quantize the
layers partially and retrain other layers to compensate for the
quantization loss. Considering both width level and depth
level, the accuracy can be recovered after iteratively ternary
quantization.

In summary, our contributions to network compression
are two folds: (1) We propose single-level quantization ap-
proach for high-bit quantization. (2) For extremely low-
bit quantization (ternary), we propose multi-level network
quantization.

In the rest of the paper, we first introduce some related
works and propose the single-level quantization approach.
Next, we introduce the multi-level approach. Finally, we
give the experiment results and the conclusion of the paper.

Related Work
Compression by Low-rank Decomposition. Reducing pa-
rameter dimensions using techniques like Singular Value
Decomposition (SVD) (Denil et al. 2013) works well on
fully-connected layers and can achieve 3× compression rate.
(Yu et al. 2017) introduce this idea to convolutional layers by
noting that weight filters usually share smooth components
in a low-rank subspace and also remember some important
information represented by weights that are sparsely scat-
tered outside the low-rank subspace. Although this kind of
method can achieve relatively good compression rate, the
accuracy of some neural network models can be hurt.

Compression by Pruning. Pruning is a straightforward
method to compress the networks by removing the unim-
portant parameters or convolutional filters. (Han et al. 2015)
present an effective unstructured method to prune the pa-
rameters with values under a threshold and they reduce the
model size by 9× on AlexNet and 16× on VGG-16. Filter
level pruning can greatly reduce the computation cost. (Li et
al. 2016) prune filters with small effect on the accuracy of
the model and reduce the computation cost for VGG-16 by
up to 34% and ResNet-110 by up to 38%.

Compression by Quantization. Quantization is a many-
to-few mapping between a large set of input and a smaller
set of output. It groups weights with similar values to re-
duce the number of free parameters. Hash-net (Chen et al.
2015) constrains weights hashed into different groups be-
fore training. Within each group the weights are shared and
only the shared weights and hash indices need to be stored.
(Gong et al. 2014) compress the network with vector quanti-
zation techniques. (Han, Mao, and Dally 2015) present deep
compression which combines the pruning (Han et al. 2015),
vector quantization and Huffman coding, and reduces the
model size by 35× on AlexNet and 49× on VGG-16. How-
ever, these quantization methods takes time and will more or
less hurt the performance of the network. Recently, (Zhou et
al. 2017) present incremental network quantization (INQ)
method. This method partitions the weights into two differ-
ent parts: one part is used to quantize and another part is used
to retrain to compensate for quantization loss. The weights
of the network are quantized incrementally and finally the
accuracy of the quantized model is even higher the the orig-
inal one. This method basically solves the problem of ac-
curacy loss during network compression. However, in this

paper, the values in the codebook are pre-determined and
quantization group is handcrafted. Thus, this kind of quanti-
zation is not data based and the quantization loss can not be
controlled. Besides, they only partition weights which we
refer to the width level and can not achieve great result in
extremely low-bit quantization.

Compression by other strategies. Some other people are
trying to design DNNs with low precision weights, gradients
and activations. (Rastegari et al. 2016) propose Xnor-Net
which is a network with binary weights and even binary in-
puts. (Tang, Hua, and Wang 2017) discuss the basic elements
of training a high accuracy binary network. (Li, Zhang, and
Liu 2016) design ternary weight network. (Cai et al. 2017)
propose HWQN with low bit activations. Knowledge trans-
fer is another method to train a small network. Knowledge
Distilling (Hinton, Vinyals, and Dean 2015) is proposed to
distill the knowledge from an ensemble of models to a sin-
gle model by imitate the soft output of them. Neuron se-
lectivity transfer method (Huang and Wang 2017) explores
a new kind of knowledge neuron selectivity to transfer the
knowledge from the teacher model to the student model and
achieves better performance. Specific DNN architectures are
designed for mobile devices. (Howard et al. 2017) propose
MobileNets which apply depth-wise separable convolution
to factorize a standard convolution into a depthwise convo-
lution and a 1 × 1 convolution and show the effectiveness
of such architecture across a wide range of applications.
(Zhang et al. 2017) present ShuffleNet. They apply group
convolutions to pointwise convolutions and introduce shuf-
fle operations to maintain the connections between groups
which achieves 13× speed up in ALexNet.

Overview
The framework of our approach is shown in Figure 2. Either
single-level quantization or multi-level quantization is com-
posed of four steps: clustering, loss based partition, weight-
sharing and re-training. Clustering uses k-means clustering
to cluster the weights into k clusters layer-wise. Loss based
partition divides the k clusters of each layer into two disjoint
groups based on their quantization loss. The weights in one
group are quantized into the centroids of their corresponding
clusters by the weight-sharing step. The weights the other
group are re-trained. Furthermore, all of the four steps are
iteratively conducted until all the weights are quantized. The
mainly difference for SLQ and MLQ is the loss based par-
tition step. For SLQ, we only partition clusters. While for
MLQ, we partition clusters and layers. Actually, SLQ is a
particular case of MLQ. Technique details are discussed in
the next sections.

Figure 2: Framework of the proposed approach.
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(a) (b)

Figure 3: (a) shows the quantization of two different clusters
generated by k-means in AlexNet. Q/C means the value Q
that weights to be quantized into is divided by the centroid of
the cluster C.The accuracy of the network changes with the
change of Q. (b) shows the test accuracy when 10 clusters of
AlexNet are quantized respectively. The clusters are sorted
in the descending order.

Single-level Quantization
Clustering
Other than using handcrafted mapping rules (Zhou et al.
2017), we adopt k-means clustering which is more data-
driven and can easily control quantization loss. We choose
two clusters generated by k-means and quantize the weights
into different values including the centroids of them. Figure
3a shows that the quantization loss is low if we quantize the
weights into the centroids of the clusters.

Loss based Partition
After the layer-wise clustering, each layer holds a code
book, {ci1, ci2 . . . cik}, i = 1, 2 . . . L, where cik denotes the
kth centroid in the code book of ith layer. We partition the
weights into two groups: the weights in one group are quan-
tized and the weights in the other are re-trained. (Zhou et
al. 2017) use the pruning inspired strategy (Han et al. 2015)
that weights with bigger values are more important and need
to be quantized prior. However, this strategy is not suitable
for our approach because the accuracy of the network can
be affected by many factors during quantization including
the value to be quantized into (as shown in Figure 3a) and
the number of weights to be quantized. We test the quanti-
zation loss of 10 different clusters of AlexNet that generated
by k-means. The result is shown in Figure 3b. There exist
some clusters that do not fit the pruning inspired strategy
(Zhou et al. 2017). Benefit from clustering, the weights are
roughly partitioned and we only need to further partition the
clusters. Besides, for the fact that the number of the clus-
ters is relatively small, we propose loss based partition. We
test the quantization loss of each cluster and sort the clusters
by quantization loss. Cluster with bigger quantization loss is
quantized prior.

For the ith layer, the loss based partition can be defined
as:

Φi
(1) ∪Φi

(2) = Wi, Φi
(1) ∩Φi

(2) = 0

s.t. min
Φi

(1)

EQ > max
Φi

(2)

EQ (1)

where Φi
(1) is the group containing the clusters to be quan-

tized, while Φi
(2) is the group containing the clusters to be

re-trained. Wi is the set that covers all of the weights in the
ith layer. EQ is quantization loss of the cluster. The mini-
mum EQ of the clusters in Φi

(1) is bigger than the maximum
EQ of clusters in Φi

(2).
The clusters are partitioned into two groups, meanwhile

the code book is also divided into two parts: one part is fixed
while the other is updated.

Weight-sharing
We quantize the weights in the group Φi

(1) by weight-
sharing. The weights in this group are quantized into the
centroids of the corresponding clusters. The weight-sharing
of ith layer is described in Equation 2.

ω(p, q) = cij ,

s.t. ω(p, q) ∈ Ψi
j ,Ψ

i
j ∈ Φi

(1)

(2)

where Ψi
j is the cluster in the quantization group Φi

(1), while
cij is the centroid of Ψi

j .

Re-training
As weight-sharing brings error to the network, we need to re-
train the model to recover accuracy. Thus, we fix the quan-
tized weights and re-train the weights in the other group.
After re-training, as shown in Figure 4, we will come back
to beginning of our approach (clustering) to quantize the left
weights iteratively until all the weights are quantized.

Taking the lth layer as an example, we use Ql to denote
the set of quantized weights in the lth layer. To simplify the
problem, we define a mask matrix Ml(p, q), which has the
same size as weight matrix ωl(p, q) and acts as an indicator
function to indicate that if the weights has been quantized.
Ml(p, q) can be defined as:

Ml(p, q) =

{
0 , if ωl(p, q) ∈ Ql

1 , otherwise
(3)

During re-training, our quantization approach can also be
treated as an optimization problem:

min
ωl

E(ωl) = L(ωl) +
∑
m

λmRm(ωl)

s.t. ωl(p, q) ∈ Bl, if Ml(p, q) = 0

(4)

where L(ωl) is the loss of the network, Rm(ωl) is the reg-
ulation term of the mth iteration that constrains the weights
to be quantized into the centroids within Blm. λm is a posi-
tive scalar. Bl is the codebook of the centroids after m iter-
ations.

To solve the optimization problem, we re-train the net-
work using stochastic gradient decent(SGD) to update the
un-quantized weights. To fix the quantized weights, we use
the indicator function Ml(p, q) as a mask on the gradient of
the weights to control the gradient propagation:

ωl(p, q) ← ωl(p, q)− γ
∂E

∂(ωl(p, q))
Ml(p, q) (5)

The whole quantization process is shown in Algorithm 1.
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Figure 4: An schematic diagram of our single-level quantization approach: The small rectangle is the codebook. Blue, green and
orange points indicates the full precision, re-trained and quantized weights. Clustering is conducted on pre-trained full-precision
network; Performing loss based partition on the clusters; One group of clusters with weights are quantized into the centroids of
clusters; Fixing quantized weights, the other clusters are re-trained; The re-trained weights are clustered by k-means clustering;
After several iterations, all weights are quantized into the centroids.

Extended Approach

Later, we extend single-level quantization (SLQ) approach.
In the SLQ approach, we quantize the weights layer-wise
into the centroids of clusters. However, sometimes we need
the weights to be some special type. For instance, if all the
weights are power of two, the model will be convenient to
be deployed in FPGA devices.

The main difference of our extended single-level quanti-
zation (ESLQ) with original SLQ is that we extend tradi-
tional clustering to constrain the cluster centroid to close or
equal to the number with oriented type (t-centroid). Thus,
after weight-sharing, we can quantize the weights into val-
ues with oriented type. For instance, we want to constrain
centroid ci1 to close to or equal to a specific type: t-centroid
ĉi1. We incorporate the L1 norm regulation into the tradi-
tional k-means loss function as:

min
Ψi

1,Ψ
i
2...Ψ

i
k

1

|ωi|
k∑

j=1

∑
ω(p,q)∈Ψi

j

|ω(p, q)− cij |2 + β1|ci1 − ĉi1|,

s.t. cij =
1

|Ψi
j |

∑
ω(p,q)∈Ψi

j

ω(p, q), i = 1, 2 . . . L

(6)

where ĉi1 is the t-centroid of ci1, |ωi| denotes the total number
of weights in the ith layer. We weighted the original k-means
loss by 1

|ωi| to strengthen the impact of the regularization
term.

In ESLQ, we first conduct traditional clustering and loss
based partition. Then we determine the t-centroids of the
cluster to be quantized. Subsequently, we re-cluster the
weights by our extended clustering. The weight-sharing and
re-training steps are the same as SLQ. After several itera-
tions, the network can be quantized into oriented type.

Algorithm 1 Single-Level Quantization

1: Input: {ωl : 1 ≤ l ≤ L}: the pre-trained full-precision DNN
model

2: output:
{
ω

′
l : 1 ≤ l ≤ L

}
: the final low-precision model with

the weights quantized into the centroids in code book Bl

3: for m = 1, 2, . . . , N do
4: Reset the base learning rate and the learning policy
5: Apply k-means clustering layer-wise
6: Perform loss based partition layer-wise by Equation 1
7: Quantize the weights in one group by Equation 2
8: Re-train the network as described in the Re-training section
9: end for

Multi-Level Quantization
The proposed SLQ approach is not suitable for low-bit quan-
tization (e.g. 2-bit quantization into ternary networks) be-
cause the number of clusters is small and the quantization
loss in each iteration step is too huge to be eliminated. We
introduce incremental layer compensation (ILC) to partition
the layers of the network which is the depth level of the net-
work. The ILC is motivated by the intuition that different
layers have different impact on the performance of the net-
work during quantization, e.g. convolutional layers and fully
connected layers. The layers L of the network are partitioned
into two groups: one group Lq containing layers with more
quantization loss is quantized prior and another group Lr

containing the remaining layers is re-trained:

Lq ∪ Lr = L, and Lq ∩ Lr = 0 (7)

We introduce ILC into SLQ which is multi-level quantiza-
tion (shown in Figure 5). The MLQ partitions both the lay-
ers and the parameters within layers, which lowers the huge
quantization loss in low-bit quantization (e.g. 2-bit quanti-
zation). Taking the ith layer as an example (ternary quan-
tization), each layer is clustered into 3 clusters and we ob-
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Figure 5: Quantization process of multi-level ternary quan-
tization. Blue, green and orange parts indicates the full pre-
cision, re-trained and quantized layers. We first quantize the
Boundaries and then quantize the Hearts of the network.

Algorithm 2 Multi-Level Quantization
1: Input: {ωl : 1 ≤ l ≤ L}: the pre-trained full-precision CNN

model
2: output:

{
ω

′
l : 1 ≤ l ≤ L

}
: the ternary network

3: Apply k-means clustering layer-wise (cluster number is 3)
4: Perform loss based partition layer-wise to generate Boundaries

and Hearts of the network
5: Quantize the Boundaries iteratively by ILC (partition, weight-

sharing and re-training)
6: Quantize the Hearts iteratively by ILC (partition, weight-

sharing and re-training)

tain three centroids: ai, bi and ci. ai and ci affect the per-
formance of the networks more. We call them Boundaries.
bi holding smaller effect is called Heart. We first quantize
Boundaries of the network. Different from SLQ that quan-
tizes all the Boundaries at the same time, the MLQ quan-
tizes the boundaries iteratively by ILC. The Boundaries in
different layers are partitioned into two groups, one group is
quantized and the remaining weights in the network are all
re-trained. After all the boundaries are quantized, we then
quantize the Hearts iteratively by ILC too. After several it-
erations, the Boundaries and the Hearts are all quantized
(shown in Algorithm 2).

Experiments
To analyze the performance of SLQ and MLQ, we conduct
extensive experiments on two datasets: CIFAR-10 and Ima-
geNert.

The bit-width parameter b represents the space we used to
store each quantized weight. To fairly compared with other
methods, we use b bits to code the centroids: one bit to
store zero and the other (b-1) bits to code non-zero centroids
which means that for bit-width b, the centroid number of
each layer is 2b−1 + 1.

CIFAR-10: This dataset consists of 60,000 32×32 colour
images in 10 classes, with 6000 images per class. There are
50,000 training images and 10,000 test images.

ImageNet: This dataset contains as much as 1000 classes
of objects with nearly 1.2 million training images and 50
thousand validation images.

(a) Light CNN training (b) Light CNN quantization

Figure 6: (a) is the training curves of the light CNN. (b) is
the training curves in 5 iterations of SLQ quantization on
light CNN.

Network Bit-width Accuracy Increase
Light CNN ref 32 78.66%

Light CNN SLQ 5 81.11% 2.45%
ResNet20 ref 32 91.70%

ResNet20 SLQ 5 91.75% 0.05%

Table 1: Experiment results of 5-bit SLQ on CIFAR-10.

Results for SLQ

SLQ Results on CIFAR-10 We use the light CNN (three
convolutional layers and three fully connected layers) of-
fered in Caffe (Jia et al. 2014) and ResNet20 (He et al. 2016)
to conduct the classification on CIFAR-10. The light CNN is
trained from scratch (as shown in Figure 6a). After 5 itera-
tions the trained full-precision light CNN model is quantized
into 5-bit low-precision model (shown in Figure 6b). The
quantization loss of each iteration is decreasing. The quanti-
zation results of two networks are shown in Table 1. Both of
the two networks enjoy accuracy increase after quantization
by SLQ.

SLQ Results on ImageNet We apply the proposed SLQ
approach to various popular models on ImageNet including:
AlexNet (Krizhevsky, Sutskever, and Hinton 2012), VGG-
16 (Simonyan and Zisserman 2014), GoogleNet (Szegedy
et al. 2015) and Resinet-18 (He et al. 2016). All these full-
precision networks are quantized into 5-bit low precision
ones. The setting of the parameters is shown in Table 2.
The cluster partition ways of the four networks are the same
which means that our approach is easier to implement and is
robust on different DNN architectures. The results are shown
in Table 3. The 5-bit CNN models quantized by SLQ have
better performance in the ImageNet large scale classification
task both in Top1 and Top5 accuracy than full-precision ref-
erences. We also compare our SLQ results with INQ (Zhou
et al. 2017). Our approach achieves improvement in all of
the Top1 accuracy and most of the Top5 accuracy. It shows
that considering the distribution of weights during quantiza-
tion is very important and the loss based partition also con-
tributes to the increase.
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Network Batch size Weight decay momentum Bit-width Cluster number Partition
AlexNet 256 0.0005 0.9 5 17 5,4,4,2,2
VGG16 32 0.0005 0.9 5 17 5,4,4,2,2

GoogleNet 80 0.0005 0.9 5 17 5,4,4,2,2
ResNet18 80 0.0005 0.9 5 17 5,4,4,2,2

Table 2: Parameter settings of networks.

Network Bit-width Cluster number Top1 accuracy Top5 accuracy Increase in top-1/top-5 error
AlexNet ref 32 57.10% 80.20%

AlexNet INQ 5 17 57.39% 80.46%
ALexNet SLQ 5 17 57.56% 80.50% 0.46%/0.30%

VGG16 ref 32 68.54% 88.65%
VGG16 INQ 5 17 70.82% 90.30%
VGG16 SLQ 5 17 72.23% 91.0% 3.69%/1.35%
Googlenet ref 32 68.89% 89.03%

Googlenet INQ 5 17 69.02% 89.28%
Googlenet SLQ 5 17 69.10% 89.19% 0.21%/0.16%
Resinet18 ref 32 68.27% 88.69%

Resinet18 INQ 5 17 68.98% 89.10%
Resinet18 SLQ 5 17 69.09% 89.15% 0.82%/0.46%

Table 3: Experiment results of SLQ method on ImageNet.

Network Bit-width Centroid number Top-1 accuracy Top-5 accuracy Increase in top-1/top-5 error
VGG16 ref 32 68.54% 88.65%

VGG16 SLQ 5 17 72.23% 91.0% 3.69%/1.35%
VGG16 SLQ 4 9 71.18% 90.25% 2.64%/0.60%
VGG16 SLQ 3 5 68.38% 88.55% -0.16%/-1.10%

Table 4: Experiment results of bit-width change on ImageNet.

Network Bit-width Cluster number Top-1 accuracy Top-5 accuracy Increase in top-1/top-5 error
VGG16 ref 32 68.54% 88.65%

VGG16 non-linear 5 17 72.23% 91.0% 3.69%/1.35%
VGG16 linear 5 17 71.85% 90.87% 3.31%/1.22%

Table 5: Experiment results of centroid initialization of SLQ.

Network Bit-width Cluster number Top-1 accuracy Top-5 accuracy Increase in top-1/top-5 error
AlexNet ref 32 57.10% 80.20%

AlexNet ESLQ1 5 17 57.26% 80.28% 0.16%/0.08%
AlexNet ESLQ2 5 17 57.42% 80.25% 0.32%/0.05%

VGG16 ref 32 68.54% 88.65%
VGG16 ESLQ1 5 17 71.17% 90.50% 2.63%/0.85%
VGG16 ESLQ2 5 17 71.95% 90.86% 3.41%/1.21%

Table 6: Experiment results of ESLQ method on ImageNet.
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Results for SLQ with Low-bit Setting
In this experiment, we test our SLQ approach in different bit-
width settings. We use VGG-16 as our test model. Except
for the original 5-bit quantization result, we present 4-bit
and 3-bit results which is shown in Table 4. As 5-bit com-
pressed model, our 4-bit compressed model can also have
good performance in both Top-1 and Top-5. However, for
bit-width as low as 3 which means that the centroid number
is 5, the accuracy of the compressed model drops a little.
The loss based partition step in SLQ is related to the number
of centroids. If the centroid number is big enough(for in-
stance 17 and 9), we can have more iterations during quanti-
zation. While if the centroid number is small(for instance 5),
we will have less iterative quantization steps and the quan-
tization loss in the last quantization step is big. That is why
the accuracy of the 3-bit compressed model is slightly lower
than reference full-precision VGG-16 model. Thus, we have
to try other ways (e.g. our proposed MLQ) to conduct ex-
tremely low-bit quantization. The partition ways of the ex-
periments are described bellow:

5-bit VGG-16 cluster partitions are {5, 4, 4, 2, 2};
4-bit VGG-16 cluster partitions are {3, 2, 2, 2};
3-bit VGG-16 cluster partitions are {2, 2, 1}.

Results for Centroid Initialization
We conduct experiments to show the effect of centroid ini-
tialization on our SLQ approach. We choose two kinds of
centroid initialization ways. One is linear (linear decaying)
and the other is non-linear (exponential decaying).

We choose VGG-16 as our test model. The results are
shown in Table 5. The accuracy of the model quantized by
SLQ with non-linear initialization is higher than the accu-
racy of SLQ with linear initialization. The centroid of the
clusters to be quantized in the last iteration is smaller, so the
number of weights is also smaller. This leads to the smaller
quantization loss in the last iteration. Thus, we adopt non-
linear initialization in all of our experiments.

Results for ESLQ
In this experiment, we test our ESLQ approach. The high-
lights of our ESLQ approach is to quantize the weights to
oriented type: t-centroids. To test it, we choose two types:
one is scientific notation with two significant figures and
the other is either power of two or zero. The experiment
results are shown in Table 6. In Table 6, ESLQ1 indicates
the scientific notation and ESLQ2 indicates the power of 2.
The model quantized with ESLQ in both of the two situa-
tions have accuracy increase which shows the effectiveness
of ESLQ.

Results for MLQ
We quantize light CNN and ResNet20 into ternary networks
on CIFAR-10. In our experiments, we train the networks on
CIFAR-10 without using data augmentation. The results are
shown in Table 7. The accuracy of the ternary light CNN
and ternary ResNet20 decrease little compared with the full-
precision ones.

AlexNet model is quantized into ternary network on Im-
ageNet by MLQ. We compare the proposed MLQ approach
with TWN (Li, Zhang, and Liu 2016) and TTQ (Zhu et al.
2016) (shown in Table 8). Both TWN and TTQ add bach
normalization layers by which the baseline of AlexNet can
reach up to 60%. Moreover, the batch normalization layers
also contribute to the convergency of their network during
training. In TTQ, they do not quantize the first convolu-
tional layer and the last fully connected layer, that is another
reason of their high performance. Different from them, our
MLQ approach is more robust, we do not change the archi-
tecture of the network (without adding batch normalization
layer) and quantize all of layers in ALexNet which can still
achieve comparable results. Another method FGQ (Mellem-
pudi et al. 2017) conducts ternary quantization without ad-
ditional training. Our method outperforms FGQ, though we
have more training time cost.

Network Bit-width Accuracy Increase
Light CNN ref 32 78.66%

Light CNN MLQ 2(ternary) 78.46% -0.2%
ResNet20 ref 32 91.70%

ResNet20 MLQ 2(ternary) 90.02 -1.68%

Table 7: Experiment results of MLQ on CIFAR-10.

Network BN Top-1 Top-5 Layers
Baseline No 57.1% 80.2%

TWN Yes 54.5% 76.8% 8 layers
TTQ Yes 57.5% 79.7% 6 layers

MLQ(ours) No 54.24% 77.78% 8 layers

Table 8: Experiment results of MLQ on ImageNet.

Compression Ratio and Acceleration
The compression ratio can be easily computed by the bit-
width of the networks. The compression ratio of the 5-
bit compressed AlexNet is 6×. Besides, the proposed ap-
proach can be combined with the pruning strategy (Han et
al. 2015) to further compress the network. The 5-bit pruned
AlexNet is 53× compressed without accuracy loss. Since
current BLAS libraries on CPU and GPU do not support in-
direct look-up and relative indexing, accelerators designed
for quantized models (Han et al. 2016) can be adopted.

For training time, with one NVIDIA TITAN Xp, the pro-
posed approach takes about 28 hours to accomplish 5-bit
AlexNet quantization on ImageNet.

Conclusion
In this paper, we propose single-level quantization (SLQ)
and multi-level quantization (MLQ) by considering the net-
work quantization from both width and depth level. By
taking the distribution of the parameters into account, the
SLQ obtains accuracy gain in the high-bit quantization of
state-of-the-art networks on two datasets. Besides, the MLQ
achieves impressive results in extremely low-bit quantiza-
tion (ternary) without changing the architecture of networks.
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