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Abstract

Label distribution learning (LDL) is a newly arisen machine
learning method that has been increasingly studied in recent
years. In theory, LDL can be seen as a generalization of multi-
label learning. Previous studies have shown that LDL is an ef-
fective approach to solve the label ambiguity problem. How-
ever, the dramatic increase in the number of possible label
sets brings a challenge in performance to LDL. In this paper,
we propose a novel label distribution learning algorithm to
address the above issue. The key idea is to exploit correlations
between different labels. We encode the label correlation into
a distance to measure the similarity of any two labels. More-
over, we construct a distance-mapping function from the la-
bel set to the parameter matrix. Experimental results on eight
real label distributed data sets demonstrate that the proposed
algorithm performs remarkably better than both the state-of-
the-art LDL methods and multi-label learning methods.

Introduction
How to overcome the label ambiguity problem has be-
come a hot research topic in the fields of machine learn-
ing and data mining. To solve this issue, the most pop-
ular used methods are either based on single-label learn-
ing or multi-label learning (Zhang and Zhang 2010). The
former assigns a single label while the latter assigns mul-
tiple labels for each instance. A large number of studies
have indicated that multi-label learning is an effective and
widely used learning paradigm. However, there are still
some problems which are hard to solve by using multi-label
learning. For example, an expression usually contains sev-
eral different emotional components. In some scenarios, the
learning tasks require us to know not only what emotions
are contained in an expression but also the importance of
these emotional components (Zhou, Xue, and Geng 2015).
To solve this kind of learning problem with label ambigu-
ity, a new machine learning paradigm called label distribu-
tion learning (LDL) (Geng, Smith-Miles, and Zhou 2010;
Geng and Ji 2014) has arisen and increasingly studied in the
past few years.

A growing number of studies (Geng and Ling 2017;
Hou et al. 2017) had tried to solve the problem of label am-
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biguity after the label distribution learning was presented.
Geng et al. (2010) proposed a method based on IIS-LDL
by transforming the original single label data set to the la-
bel distribution data set to solve the problem of age estima-
tion. Through this strategy, one face image can contribute
to both the learnings of its chronological age and adjacent
ages. By using neural network based on conditional prob-
ability, the conditional probability neural network (CPNN)
algorithm (Geng, Yin, and Zhou 2013) was proposed to
further improve the accuracy of age estimatio. The liter-
arue (Geng and Ji 2014) expanded the IIS-LDL algorithm
by using the quasi-Newton optimization algorithm, which
formed the BFGS-LDL algorithm. In order to solve the
problem of shortage and imbalance of training data, Geng
et al. (2015) proposed a method based on LDL for effec-
tive population estimation in public video surveillance. Yang
et al. (2015) developed a deeply label distribution learning
(DLDL) algorithm by combining the LDL with deep learn-
ing to deal with the apparent age estimation problem.

The methodology of LDL generally consists of three
parts: objective function, output model and optimization al-
gorithm. The classical LDL algorithm (Geng, Smith-Miles,
and Zhou 2010) adopted Kullback-Leibler (KL) divergence
as the objective function, the maximum entropy model as the
output model and the BFGS algorithm for model optimiza-
tion. After that, Geng et al. (2015) proposed the LDSVR al-
gorithm based on the MSVR algorithm (Tuia et al. 2011) and
label distribution learning to solve the problem that the out-
put of MSVR algorithm may be negative. Based on a linear
model, Xing et al. (2016) extended the maximum entropy
model of traditional LDL to a more general LDL model
family. The above-mentioned algorithms provided improved
performance to deal with the problem of label ambiguity
in the field of facial expression recognition, crowd count-
ing and age estimation. However, none of them took the po-
tentially important correlation between labels into account.
Investigating the correlation between labels may provide ad-
ditional information especially when the training data of
some labels are limited. The existing literature on solving
the label ambiguity problem exploited the label correlation
mainly in two different ways: (1) estimates the prior knowl-
edge of relationship between each two labels. For instance,
Zhou et al. (2016) solved the problem of text emotions clas-
sification using the emotional wheel (Paul 1992) to obtain
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a prior knowledge. (2) builds different models to compute
the correlation between each two labels. Huang et al. (2012)
proposed the MAHR approach based on the hypothesis that
the labels may provide complementary information to each
other if they are related. Accordingly this method, which is
able to automatically discover and exploit the label relation-
ship for multi-label learning. Huang and Zhou (2012) fur-
ther developed the ML-LOC approach to more accurately
reveal the local label correlation locally instead of globally
for improved multi-label learning. Zhang and Yeung (2013)
used the covariance matrix to simulate the label correlation
as a regularization term to solve the multi-label classification
problem. Unfortunately, most of the above algorithms were
focused on the multi-label learning but rarely studied in the
LDL framework. Based on this, we propose a novel label
distribution learning method by exploiting the label correla-
tion (LDLLC) in this paper. In LDLLC, the label correlation
is encoded into a distance to measure the similarity of any
two labels. For facilitating the learning process, we substi-
tute the distance between any two labels in label set to the
distance between the corresponding columns in the parame-
ter matrix. Based on six different evaluation criteria, we val-
idate the algorithm proposed in this paper. The experimen-
tal results demonstrate that the proposed LDLLC algorithm
achieves better prediction performance than other existing
LDL algorithms. Considering that LDL can be seen as an
extension of multi-label learning, we also compare LDLLC
algorithm with the common multi-label learning algorithms
based on five different evaluation criteria. The experimental
results can also demonstrate the effectiveness of our algo-
rithm.

Label distribution learning
Both single-label learning and multi-label learning can be
viewed as a special case of label distribution learning. In
single-label learning, a single label is assigned to an instance
and the possible output is either 0 (incorrectly labeled) or 1
(correctly label). In multi-label learning, each training in-
stance is associated with a relevant label set. From single-
label learning to multi-label learning, the size of the output
space of the learning process becomes increasingly larger.
Specifically, for a problem with n different labels, there are
n possible outputs for single-label learning, and 2n − 1 pos-
sible outputs for multi-label learning. Fig. 1 shows the deci-
sion regions of three learning paradigms for a learning prob-
lem with two labels. There are two possible labels (red and
yellow) in single-label learning while three possible labels
(red, yellow and orange) in multi-label learning. More im-
portantly, there are infinitely possible labels in label distri-
bution learning. Each point in Fig. 1 represents a decision
region for a label distribution, which is an extension of the
representation of discrete values to continuous values. The
output of label distribution learning is no longer a relevant
label set, but a label distribution.

LDL is an extension of single-label learning and multi-
label learning. Fig. 2 gives an label distribution example for
single-label learning, multi-label learning, and the general
case, respectively. For single-label learning (a), the output
can be converted into a label distribution output by setting

(a) Single-label
learning

(b) Multi-label
learning

(c) Label distri-
bution learning

Figure 1: The decision regions of three learning paradigms
for a learning problem with two labels.

(a) Single-label
learning

(b) Multi-label
learning

(c) Label distri-
bution learning

Figure 2: Three ways to label an instance.

the description degree of the correctly label of the instance
to 1 while the other is set to 0. For multi-label learning (b),
assuming a correct instance has two relevant labels, each of
the two labels by default describes 50% of the instance re-
spectively while the other is set to 0. Finally, LDL (c) rep-
resents a general case of label distribution, which illustrated
that label distribution is more general than both single-label
learning and multi-label learning, and thus can provide more
flexibility in the learning process and has more usage scenar-
ios.

The definition of LDL contains mainly three aspects:
firstly, each training instance is explicitly associated with a
label distribution, rather than a simple label or a relevant
label set; secondly, each label in the label distribution cor-
responds to a real value and the overall label distribution
will be mainly investigated; thirdly, the performance eval-
uation measures of previous learning algorithms with nu-
merical label indicators are still those commonly used for
single-label learning (e.g., classification accuracy, error rate,
etc.) or multi-label learning (e.g., hamming loss, one-error,
etc.). On the other hand, the performance of label distribu-
tion learning should be evaluated by the similarity or dis-
tance between the predicted label distribution and the real
label distribution, which will be further discussed in the fol-
lowing section.

Label Distribution Learning Exploiting Label
Correlations

Let X = Rm denote the input space and Y =
{y1, y2, · · · , yc} is the complete set of labels. The goal
of LDL is to learn a mapping function from the in-
stances to the label distributions. Given a training set S =
{(x1, D1), (x2, D2), · · · , (xn, Dn)}, where xi ∈ X is an
instance and Di = {dy1

xi
, dy2

xi
, · · · , dyc

xi
} is the label distribu-

tion associated with xi. We use the description degree dyx to

3311



represent the degree to which label y describes the instance
x. Without loss of generality, assume that dyx ∈ [0, 1], and
the label set is complete, i.e., using all the labels in the set
can always fully describe the instance. Then,

∑
y d

y
x = 1.

dyx can be represented by the form of conditional probabil-
ity, i.e., dyx = p(y|x). Now, the goal of LDL is to learn a
conditional probability mass function p(y|x) from S, where
x ∈ X and y ∈ Y . Suppose p(y|x) is a parametric model
p(y|x; θ), where θ is the parameter vector. Given the train-
ing set S, the goal of LDL is to find the θ that can generate a
distribution similar to Di given the instance xi. Many differ-
ent criteria can be used to measure the distance between two
distributions (Cha 2007), such as Squared χ2, Jefferys diver-
gence, Euclidean, Kullback-Leibler (KL) divergence and so
on. Here we use Kullback-Leibler divergence defined by

DJ(Qa‖Qb) =
∑
j

Qj
a ln

Qj
a

Qj
b

. (1)

Where Qj
a and Qj

b are the j-th elements of the two distribu-
tions Qa and Qb, respectively. The above formula calculates
the sum of all the distances between the description degrees
of the same label, i.e., the superscripts of Qa and Qb are
the same (i.e. j). One potential problem of the definition in
Eq. (1) is that the relationship between different labels is not
taken into account. In fact, some labels often appear together
while some often conflict to each other. Therefore, the label
correlations can be used as a new item in the objective func-
tion.

Accordingly, the best vector parameter θ∗ is determined
as follows

θ∗ = argmin
θ

∑
i

DJ(Di||Di) + λ1‖θ‖2F

+ λ2

∑
i

∑
j

sgn(ρθi,θj )Dis(θi, θj)

= argmin
θ

∑
i

∑
j

(dyj
xi
ln

d
yj
xi

p(yj |xi; θ)
) + λ1‖θ‖2F

+ λ2

∑
i

∑
j

sgn(ρθi,θj )Dis(θi, θj),

(2)

where Di is the ground truth label distribution of the i-
th instance and the Di is the predicted one by p(y|xi; θ),

ρθi,θj =
∑

k(θik−θik)(θjk−θjk)√∑
k(θik−θik)2

√∑
k(θjk−θjk)2

denotes the Pear-

son’s correlation coefficients between the i-th instance and
the j-th instance, sgn(x) denotes the sign function, and
Dis(θi, θj) denotes the distance between the i-th label and
the j-th label. Taking Euclidean for example, Dis(θi, θj) =√∑

k(θik − θjk)2. The second term is a regularizer to pre-
vent the model from overfitting. The third item considers
the correlation between different labels and replaces the dis-
tance between two labels in the label set by the distance be-
tween the corresponding columns in the parameter vector θ.
λ1 and λ2 are the balance factors.

As for p(y|x; θ), similar to previous works (Geng, Wang,
and Xia 2014; Geng 2016), we assume it follows a maxi-

mum entropy model (Berger, Pietra, and Pietra 1996), i.e.,

p(yk|xi; θ) =
1

Zi
exp(

∑
r

θkrx
r
i ), (3)

where Zi =
∑

k exp(
∑

r θkrx
r
i ) is the normalization factor,

xr
i is the r-th feature of xi, and θkr is an element in θ. Sub-

stituting Eq.(3) into Eq.(2) yields the objective function of
θ:

T (θ) =
∑
i

∑
j

dyj
xi
ln dyj

xi
−

∑
i

∑
j

dyj
xi

∑
r

θkrx
r
i

+
∑
i

ln
∑
k

exp(
∑
r

θkrx
r
i ) + λ1‖θ‖2F

+ λ2

∑
i

∑
j

sgn(ρθi,θj )

√∑
k

(θik − θjk)2.

(4)

The minimization of the function T (θ) can be effectively
solved by the limited-memory quasi-Newton method (L-
BFGS) (Yuan 1991). The basic idea of L-BFGS is to avoid
explicit calculation of the inverse Hessian matrix used in the
Newton method. L-BFGS approximates the inverse Hessian
matrix with an iteratively updated matrix instead of storing
the full matrix. Consider the second order Taylor series of
T (θ) at the current estimate of the parameter vector θ:

T (θ(l+1)) ≈ T (θ(l)) +∇T (θ(l))T�+
1

2
�TH(θ(l))�,

(5)
where � = θ(l+1) − θ(l) is the update step, ∇T (θ(l)) and
H(θ(l)) are the gradient and Hessian matrix of T (θ(l+1)) at
θ(l), respectively. The minimizer of Eq.(5) is

�(l) = −H−1(θ(l))∇T (θ(l)). (6)

The line search Newton method uses �(l) as the search di-
rection p(l) = �(l) and updates model parameters by

θ(l+1) = θ(l) + α(l)p(l), (7)

where the step length α(l) is obtained from a line search pro-
cedure to satisfy the strong Wolfe conditions (Nocedal and
Wright 2006):

T (θ(l) + α(l)p(l)) � T (θ(l)) + c1α
(l)∇T (θ(l))T p(l), (8)

|∇T (θ(l) + α(l)p(l))| � c2|∇T (θ(l))T p(l)|, (9)

where 0 < c1 < c2 < 1. The idea of L-BFGS is to avoid
explicit calculation of H−1(θ(l)) by approximating it with
an iteratively updated matrix B, i.e.

B(l+1) = (I − ρ(l)s(l)(u(l))T )B(l)(I − ρ(l)u(l)(s(l))T )

+ ρ(l)s(l)(s(l))T ,
(10)

where

s(l) = θ(l+1) − θl, (11)

u(l) = ∇T (θ(l+1))−∇T (θ(l)), (12)

ρ(l) =
1

s(l)u(l)
. (13)
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Algorithm 1: L-BFGS based LDLLC
Input: The training set S = {X,D} and the

convergence criterion ξ.
Output: p(y|x; θ).

1 Initialize the model parameter vector θ(0);
2 Initialize the inverse Hessian approximation B(0);
3 Compute ∇T (θ(0)) by Eq.(14);
4 l ← 0
5 repeat
6 Compute search direction ρ(l) ← −B(l)∇T (θ(l);
7 Compute the step length αl by a line search

procedure to satisfy Eq. (8) and (9);
8 θ(l+1) ← θ(l) + α(l)p(l);
9 Compute ∇T (θ(l+1)) by Eq. (14);

10 s(l) ← θ(l+1) − θl

11 u(l) ← ∇T (θ(l+1))−∇T (θ(l))

12 ρ(l) ← 1
s(l)u(l)

13 B(l+1) ← (I − ρ(l)s(l)(u(l))T )B(l)(I−
ρ(l)u(l)(s(l))T ) + ρ(l)s(l)(s(l))T

14 l ← l + 1

15 until ‖∇T (θ(l+1)) < ξ‖;
16 p(yk|xi; θ) ← 1

Zi
exp(

∑
r θkrx

r
i ).

As for the optimization of the objective function T (θ), the
computation of L-BFGS is mainly related to the first-order
gradient of T ′(θ), which can be achieved by

T (θ)

θkr
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

exp(
∑

r θkrx
r
i )x

r
i∑

k exp(
∑

r θkrx
r
i )

−
∑
i

dyi
xi
xr
i

+ λ2

∑
j

θkr − θjr√∑
r(θkr − θjr)2

+ 2λ1θkr if ρ(θk, θj) ≥ 0,∑
i

exp(
∑

r θkrx
r
i )x

r
i∑

k exp(
∑

r θkrx
r
i )

−
∑
i

dyi
xi
xr
i

− λ2

∑
j

θkr − θjr√∑
r(θkr − θjr)2

+ 2λ1θkr if ρ(θk, θj) < 0.

(14)

The L-BFGS-based LDLLC algorithm is described in Algo-
rithm 1.

LDL can be viewed as an extension of single-label learn-
ing and multi-label learning. This paper compares the LDL
algorithm with the common multi-label learning algorithm.
In order to implement this comparison, labels in the pre-
dicted distribution need to be divided into two sets, i.e, the
relevant and irrelevant sets. For this purpose, an extra virtual
label y0 is added into the label set, i.e., the extended label set
Y ′ = Y∪y0 = {y0, y1, y2, · · · , yc}. Using the new extended
label set in the training process, the optimal parameter vec-
tor θ∗ is learned. As y0 is the label that distinguishes the
relevant and irrelevant labels directly, it is initialized as the
threshold used in multi-label learning. Given an instance x′,

its label distribution is predicted by p(y|x′; θ∗). The inten-
sity value of y0 splits the predicted distribution into two sets.
The labels with the intensity value higher than y0’s are re-
garded as the relevant labels, and the rest labels are regarded
as irrelevant ones. Therefore, LDLLC in fact implements the
function of multi-label learning without the need of setting
the threshold manually.

Experiments
Datasets
The datasets used in the experiments were collected from
five biological experiments on the budding yeast Saccha-
romyces cerevisiae. There are 2465 yeast genes in total, each
of which is represented by an associated phylogenetic pro-
file vector of length 24. The labels correspond to the discrete
time points in different biological experiments, respectively.
The gene expression level (after normalization) at each time
point provides a natural measure of the description degree
of the corresponding label. There are 10 data sets in the se-
ries, and we just choose 8 of them with number of labels
greater than or equal to 4 since the datasets with less la-
bels lack information of label correlations. The details of the
eight datasets are summarized in Table 1.

Table 1: Statistics of the 8 datasets used in the experiments.

Dateset Alpha Cdc Elu Diau Heat Spo Cold Dtt
#Samples 2465 2465 2465 2465 2465 2465 2465 2465
#Features 24 24 24 24 24 24 24 24
#Labels 18 15 14 7 6 6 4 4

Evaluation Measures
In this paper, six measures are chosen as the evaluation mea-
sures for the LDL algorithms. The names and formulas of
the six measures are presented in Table 2, where Pi and Qi

are the i-th element of the true label distribution and the pre-
dicted distribution, respectively. For the four distance mea-
sures, “↓” indicates “the smaller the better”. For the two sim-
ilarity measures, “↑” indicates “the larger the better”.

As LDL can provide both the relevant labels and their de-
scription degrees, multi-label learning can be seen as a spe-
cial case of LDL because it only gives the labels as outputs.
Several typical evaluation criteria used in multi-label learn-
ing mainly contain Hamming loss, Ranking loss, OneError,
Coverage, Average Precision (Zhang and Zhou 2014), which
are summarized in Table 3. They can also be adopted to
evaluate the ability of LDL for distinguishing relevant labels
from irrelevant ones.

Hamming loss indicates how many times a label pair is
misclassified, i.e., a label not belonging to the example is
predicted or a label belonging to the example is not pre-
dicted. Ranking loss measures the fraction of reversely or-
dered label pairs, i.e. an irrelevant label is ranked higher than
a relevant label. One-error measures the fraction of examples
whose top-ranked label is not in the relevant label set. Cover-
age measures how many steps are needed to move down the
ranked label list so as to cover all the relevant labels of the
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Table 2: Evaluation measures for LDL algorithms.

Name Formula
D

is
ta

nc
e Euclidean Dis1 =

√
c∑

j=1
(Pj − Qj)2

Sφrensen Dis2 =

c∑
j=1

|Pj−Qj |

c∑
j=1

|Pj+Qj |

Squared χ2 Dis3 =
c∑

j=1

(Pj−Qj)
2

Pj+Qj

Kullback-Leibler(KL) Dis4 =
c∑

j=1

Pj ln
Pj
Qj

Si
m

ila
ri

ty Intersection Sim1 =
c∑

j=1
min(Pj , Qj)

Fidelity Sim2 =
c∑

j=1

√
PjQj

Table 3: Evaluation measures for MLL algorithms.

Name Formula
Hamming Loss hloss(h) = 1

P

∑P
i=1 |h(xi)�Yi|

One Error one− error(f) = 1
P

∑P
i=1[argmaxy∈Y f(xi, y)] /∈ Yi

Coverage Coverage(f) = 1
P

∑P
i=1 maxy∈Yi rankf (xi, y)− 1

Rank Loss
rloss(f) = 1

P

∑P
i=1

1

|Yi||Y i| · |R|, where

R = (y′, y′′)|f(xi, y
′) ≤ f(xi, y

′′) ∈ Yi × Y i

Average
Precision

Average(f) = 1
P

∑P
i=1

1
Yi

∑
y∈Yi

|Pi|
rankf (xi,y)

, where

Pi = y′|rankf (xi, y
′) ≤ rankf (xi, y), (y)

′ ∈ Yi

example. Average precision evaluates the average fraction of
the relevant labels ranked higher than a particular label . For
each evaluation metric, “↓” indicates “the smaller the better”
while “↑” indicates “the larger the better”.

Experiments setup
To demonstrate effectiveness of our proposed LDLLC al-
gorithm, we carried out extensive experimental compar-
isons. LDLLC is first compared with seven existing la-
bel distribution learning methods, i.e., PT-Bayes (Geng
and Ji 2014), PT-SVM (Geng, Wang, and Xia 2014), AA-
kNN (Geng, Smith-Miles, and Zhou 2010), AA-BP (Geng,
Yin, and Zhou 2013), IIS-LLD (Geng, Smith-Miles, and
Zhou 2010),BFGS-LLD (Geng, Yin, and Zhou 2013) and
EDL (Zhou et al. 2016). The parameter settings of algo-
rithms are summarized as follows. For PT-Bayes, maximum
likelihood estimation is used to estimate the Gaussian class-
conditional probability density functions. PT-SVM is imple-
mented as the “C-SVC” type in LIBSVM using the RBF ker-
nel with the parameters C = 1.0 and Gamma = 0.01. The
k in AA-kNN is set to 5. The number of hidden-layer neu-
rons for AA-BP is set to 60. For BFGS-LLD, the parameters
in Eqs. (8) and (9) are set to: c1 = 10−4 and c2 = 0.9. For
LDLLC, the parameters are set to: λ1 = 0.1 and λ2 = 0.01.

We also compare LDLLC with three widely used multi-
label learning methods, namely ML-KNN (Zhang and Zhou
2007), Rank-SVM (Andre and Jason 2002) and BP-MLL
(Zhang and Zhou 2006). Among compared algorithms, ML-
KNN is derived from the traditional k-nearest neighbor
(kNN) algorithm. Maximum a posteriori principle is used
to determine which label set is related to the given instance.
Rank-SVM provides a way of controlling the complexity of

the overall learning system while having a small empirical
error. The architecture of Rank-SVM is based on linear mod-
els of support vector machines. BP-MLL is derived from
the famous backpropagation algorithm through employing
a novel error function capturing the characteristics of multi-
label learning. For multi-label learning methods, the value
of k is set to 10 in ML-KNN. Rank-SVM uses the RBF ker-
nel with the cost parameter c equals to 1. For BP-MLL, the
number of hidden neurons in neural networks is 20% of the
number of features. The learning rate α is set to 0.05 and the
maximum times of iterations for training are 100.

Experimental Results
For each data set, we randomly partition the data into the
training (80%) and test (20%) sets for classifier calibration
and performance evaluation. Such precedure is repeated 10
times, and the average results as well as standard deviations
are caculated over the 10 repetitions. Table 4 summarizes the
average results of each compared algorithm on these eight
data sets in terms of different evaluation metrics. When two
or more algorithms obtain the same performance on one data
set for a given evaluation metric, the value of rank for these
algorithms are assigned with the average result of them. Fur-
thermore, the best performance among the 7 comparing al-
gorithms is shown in boldface.

The experimental results in Table 4 are in accordance with
the “average and standard deviation (ranking)” format given
here. Ranking refers to the prediction effect of 7 algorithms
in metrics. The smaller the value the better the performance.

From Table 4, we find that our proposed LDLLC algo-
rithm is superior to the other seven classical LDL algorithms
on four datasets. On data sets Elu, Spo and Dtt, LDLLC al-
gorithm also performs better than other algorithms on sev-
eral metrics. BFGS-LLD obtains the best result on data set
Diau. The PT-Bayes algorithm performs poorly on all eight
data sets. It is possible that the Gauss distribution assump-
tion in the PT-Bayes algorithm may not apply to complex
mapping models from features to label distributions. Various
algorithms often have different rankings on different evalua-
tion metrics which reflects the diversity of the six evaluation
measures. Thus, when comparing the prediction effects of
two algorithms on a new data set, six kinds of evaluation
metrics should be considered comprehensively.

The experimental results of performance comparison be-
tween the proposed approach and other multi-label learning
baseline methods are summarized in Table 5. The results in
Table 5 consistently indicate that the proposed LDLLC al-
gorithm performs better than the multi-label learning algo-
rithms on data sets Alpha, Cdc, Heat, and Dtt. For remain-
ing three data sets, LDLLC also achieves the best results on
four evaluation metrics. The multi-label learning can be real-
ized by setting up a virtual label in LDLLC. The description
degree of virtual label is used as the threshold to separate
all the labels into relevant labels and irrelevant labels. As a
sophisticated extension of multi-label learning, our LDLLC
method can not only divide relevant labels and irrelevant
ones but also get intensity information. This accordingly re-
sulted in improved experimental results.
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Table 4: Comparison results of different label distribution algorithms on eight datasets (mean±std(rank)).

data algorithm Euclidean↓ Sφrensen↓ Squared χ2 ↓ KL↓ Intersection↑ Fidelity↑

Alpha

LDLLC .0227±.0001(1) .0272±.0001(1) .0026±.0001(1) .0054±.0001(1) .9628±.0004(1) .9987±.0001(1)
PT-Bayes .2298±.0124(8) .3485±.0154(8) .3879±.0277(8) .5607±.0710(8) .6515±.0154(8) .8777±.0100(8)
PT-SVM .0276±.0006(5) .0445±.0009(5) .0071±.0003(5) .0071±.0003(5) .9565±.0009(5) .9981±.0001(5)
AA-kNN .0279±.0006(6) .0449±.0012(6) .0073±.0003(6) .0074±.0004(7) .9561±.0012(6) .9980±.0001(6)
AA-BP .0871±.0070(7) .1475±.0131(7) .1399±.0501(7) .0673±.0058(6) .8538±.0117(7) .9839±.0017(7)
IIS-LLD .0269±.0004(4) .0429±.0012(3) .0069±.0004(4) .0069±.0004(4) .9571±.0012(3) .9983±.0011(4)

BFGS-LLD .0251±.0004(2) .0408±.0011(2) .0063±.0008(2) .0063±.0004(2) .9574±.0009(2) .9985±.0011(2)
EDL .0260±.0011(3) .0429±.0022(4) .0067±.0006(3) .0068±.0006(3) .9570±.0022(4) .9983±.0002(3)

Cdc

LDLLC .0276±.0009(1) .0422±.0013(1) .0035±.0004(1) .0068±.0001(1) .9577±.0013(1) .9983±.0001(1)
PT-Baye .2399±.0103(8) .3455±.0111(8) .3853±.0210(8) .5374±.0503(8) .6545±.0111(8) .8778±.0075(8)
PT-SVM .0298±.0007(5) .0458±.0012(5) .0077±.0004(5) .0076±.0004(5) .9554±.0012(5) .9980±.0001(5.5)
AA-kNN .0301±.0009(6) .0462±.0013(6) .0080±.0004(6) .0079±.0004(6) .9538±.0013(6) .9980±.0001(5.5)
AA-BP .0769±.0081(7) .1192±.0109(7) .0842±.0281(7) .0511±.0121(7) .8829±.0134(7) .9879±.0051(7)
IIS-LLD .0290±.0010(4) .0445±.0015(3) .0073±.0005(4) .0072±.0005(4) .9556±.0015(4) .9982±.0012(4)

BFGS-LLD .0284±.0011(3) .0449±.0016(4) .0070±.0004(2) .0070±.0005(2) .9558±.0016(3) .9983±.0011(2)
EDL .0283±.0006(2) .0429±.0008(2) .0072±.0004(3) .0072±.0004(3) .9571±.0008(2) .9982±.0001(3)

Elu

LDLLC .0277±.0006(1) .0412±.0006(1) .0068±.0004(2) .0068±.0003(2) .9580±.0013(1) .9984±.0001(1)
PT-Bayes .2588±.0203(8) .3558±.0198(8) .4081±.0408(8) .6062±.1030(8) .6442±.0198(8) .8689±.0156(8)
PT-SVM .0293±.0008(3) .0438±.0012(3) .0068±.0005(3) .0068±.0005(3) .9562±.0012(3) .9983±.0002(3)
AA-kNN .0297±.0010(4) .0443±.0014(4) .0071±.0006(5) .0071±.0006(5) .9557±.0014(4) .9982±.0002(4)
AA-BP .0733±.0037(7) .1100±.0048(7) .0731±.0026(7) .0481±.0061(7) .8891±.0064(7) .9890±.0025(7)
IIS-LLD .0307±.0009(5) .0472±.0014(5) .0071±.0004(4) .0071±.0004(4) .9528±.0015(6) .9982±.0035(5)

BFGS-LLD .0308±.0009(6) .0475±.0012(7) .0075±.0004(6) .0073±.0003(6) .9552±.0017(5) .9979±.0009(6)
EDL .0289±.0005(2) .0431±.0008(2) .0067±.0003(1) .0067±.0003(1) .9569±.0007(2) .9983±.0001(2)

Diau

LDLLC .0541±.0022(3) .0596±.0026(3) .0132±.0005(2) .0130±.0010(2) .9404±.0026(3) .9962±.0002(4)
PT-Bayes .4027±.0183(8) .4177±.0170(8) .5280±.0281(8) .8512±.0772(8) .5823±.0170(8) .8230±.0107(8)
PT-SVM .0628±.0037(7) .0686±.0041(6) .0169±.0018(6) .0167±.0017(6) .9314±.0041(6) .9957±.0004(6)
AA-kNN .0567±.0019(4) .0622±.0022(4) .0145±.0011(4) .0145±.0010(4) .9378±.0022(4) .9963±.0003(3)
AA-BP .0802±.0051(6) .0863±.0059(7) .0276±.0013(7) .0291±.0069(7) .9142±.0067(7) .9929±.0031(7)
IIS-LLD .0539±.0031(2) .0593±.0032(2) .0144±.0014(3) .0141±.0013(3) .9407±.0003(2) .9964±.0036(2)

BFGS-LLD .0444±.0022(1) .0476±.0023(1) .0089±.0008(1) .0083±.0009(1) .9513±.0027(1) .9978±.0031(1)
EDL .0597±.0010(5) .0653±.0010(5) .0158±.0005(5) .0155±.0005(5) .9347±.0010(5) .9960±.0002(5)

Heat

LDLLC .0605±.0015(1) .0610±.0016(1) .0128±.0008(1) .0131±.0006(1) .9389±.0014(1) .9966±.0003(1)
PT-Bayes .4500±.0231(8) .4354±.0193(8) .5450±.0361(8) .8678±.1198(8) .5646±.0193(8) .8180±.0131(8)
PT-SVM .0625±.0023(3) .0627±.0022(2) .0141±.0010(2.5) .0141±.0010(2.5) .9373±.0022(2) .9964±.0003(2.5)
AA-kNN .0624±.0020(2) .0632±.0018(3) .0141±.0010(2.5) .0141±.0010(2.5) .9368±.0018(3) .9964±.0003(2.5)
AA-BP .0793±.0068(7) .0822±.0071(7) .0235±.0047(7) .0246±.0053(7) .9198±.0061(7) .9937±.0028(7)
IIS-LLD .0703±.0036(5) .0692±.0033(5) .0182±.0016(5) .0182±.0016(5) .9309±.0033(5) .9954±.0042(6)

BFGS-LLD .0728±.0031(6) .0791±.0029(6) .0188±.0016(6) .0186±.0015(6) .9304±.0034(6) .9961±.0048(5)
EDL .0629±.0016(4) .0633±.0017(4) .0143±.0008(4) .0143±.0008(4) .9366±.0017(4) .9963±.0003(4)

Spo

LDLLC .0806±.0019(1) .0830±.0019(1) .0222±.0007(1) .0236±.0013(2) .9169±.0019(1) .9939±.0003(2)
PT-Bayes .4038±.0162(8) .4030±.0134(8) .4972±.0246(8) .7172±.0840(8) .5971±.0134(8) .8342±.0095(8)
PT-SVM .0878±.0019(5) .0893±.0022(5) .0280±.0015(5) .0284±.0015(5) .9107±.0022(5) .9929±.0004(5)
AA-kNN .0879±.0030(6) .0899±.0024(6) .0286±.0020(6) .0286±.0002(6) .9096±.0034(6) .9927±.0005(6)
AA-BP .0979±.0041(7) .1012±.0038(7) .0344±.0038(7) .0359±.0039(7) .8982±.0037(7) .9906±.0010(7)
IIS-LLD .0863±.0041(4) .0861±.0036(3) .0251±.0036(3) .0252±.0022(3) .9139±.0036(3) .9937±.0005(3)

BFGS-LLD .0819±.0045(2) .0833±.0038(2) .0229±.0019(2) .0226±.0021(1) .9168±.0039(2) .9951±.0007(1)
EDL .0843±.0029(3) .0872±.0029(4) .0268±.0015(4) .0269±.0016(4) .9128±.0028(4) .9932±.0004(4)

Cold

LDLLC .0679±.0003(1) .0589±.0019(1) .0120±.0006(1) .0119±.0006(1) .9414±.0019(1) .9967±.0023(1)
PT-Bayes .5252±.0224(8) .4479±.0189(8) .5873±.0352(8) .9089±.1042(8) .5521±.0189(8) .7991±.0134(8)
PT-SVM .0753±.0080(4) .0654±.0069(5) .0147±.0033(4) .0146±.0033(4) .9346±.0069(5) .9963±.0008(4)
AA-kNN .0724±.0027(2) .0630±.0024(2) .0136±.0011(2) .0136±.0011(2) .9370±.0024(2) .9966±.0003(3)
AA-BP .0838±.0045(7) .0710±.0027(7) .0178±.0011(7) .0163±.0030(7) .9328±.0029(7) .9952±.0017(7)
IIS-LLD .0767±.0004(5) .0653±.0034(4) .0157±.0015(6) .0155±.0015(6) .9347±.0034(4) .9960±.0039(6)

BFGS-LLD .0745±.0004(3) .0641±.0035(3) .0139±.0013(3) .0143±.0015(3) .9348±.0035(3) .9968±.0036(2)
EDL .0771±.0018(6) .0668±.0016(6) .0154±.0009(5) .0153±.0009(5) .9332±.0016(6) .9961±.0003(5)

Dtt

LDLLC .0477±.0016(1) .0415±.0013(2) .0061±.0003(2) .0061±.0005(2) .9585±.0013(1) .9985±.0002(2)
PT-Bayes .4879±.0242(8) .4156±.0192(8) .5416±.0438(8) .9069±.1580(8) .5844±.0192(8) .8113±.0186(8)
PT-SVM .0516±.0029(5) .0447±.0024(5) .0071±.0009(6) .0071±.0009(6) .9553±.0024(5) .9982±.0003(6)
AA-kNN .0512±.0019(4) .0443±.0017(4) .0071±.0007(5) .0070±.0007(5) .9557±.0017(4) .9982±.0002(5)
AA-BP .0622±.0032(7) .0531±.0029(7) .0097±.0012(7) .0122±.0037(7) .9465±.0024(7) .9969±.0011(7)
IIS-LLD .0535±.0023(6) .0480±.0023(6) .0068±.0005(3) .0068±.0005(4) .9520±.0023(6) .9983±.0013(3)

BFGS-LLD .0495±.0019(2) .0409±.0017(1) .0058±.0005(1) .0054±.0004(1) .9584±.0023(2) .9989±.0010(1)
EDL .0508±.0022(3) .0440±.0018(3) .0069±.0007(4) .0068±.0008(3) .9560±.0018(3) .9982±.0003(4)

Conclusion
As a generalization of multi-label learning and single-label
learning, LDL can deal with label ambiguity problems by
considering more label informations. To further improve the
effectiveness of LDL, we expoited the label correlations and
proposed a novel label distribution learning method LDLLC.
The experimental results on several real data sets demon-

strate that the proposed algorithm is suitable for the label
distribution framework and can achieve good performances.
In the present study, we calculated the Pearson’s correlation
coefficients for estimating the correlation between labels. In
future work, we will try to find more accurate represention of
the correlation between labels to further improve the LDL.
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Table 5: Comparison results of different multi-label learning algorithms on eight datasets (mean±std(rank)).

data algorithm Hamming loss↓ Ranking loss↓ One Error ↓ Coverage↓ Average Precision↑

Alpha

LDLLC .4310±.0098(1) .3947±.0112(1) .3224±.0330(1) 15.2268±.1188(1) .6519±.0086(1)
ML-KNN .4380±.0100(2) .3972±.0115(2) .3320±.0335(2) 15.3320±.1192(3) .6498±.0094(2)

Rank-SVM .4564±.0170(4) .4258±.0205(4) .4691±.1157(4) 15.3967±.1836(4) .6185±.0236(4)
BP-MLL .4382±.0099(3) .4141±.0131(3) .3976±.0462(3) 15.3175±.1257(2) .6333±.0119(3)

Cdc

LDLLC .4218±.0101(1) .3968±.0104(1) .3272±.0229(1) 12.4837±0.0417(1) .6710±.0110(1)
ML-KNN .4371±.0149(2) .4220±.0169(3) .3400±.0296(2) 12.7080±0.2843(3) .6567±.0241(2)

Rank-SVM .4555±.0187(4) .4313±.0228(4) .3996±.0993(4) 12.8179±0.1330(4) .6473±.0268(4)
BP-MLL .4429±.0082(3) .4194±.0099(2) .3703±.0298(3) 12.4894±0.0549(2) .6535±.0107(3)

Elu

LDLLC .4162±.0179(1) .3811±.0070(1) .3240±.0043(1) 11.4760±0.0326(3) .6845±.0011(1)
ML-KNN .4181±.0161(2) .3866±.0083(2) .3248±.0125(2) 11.3260±0.0682(1) .6828±.0081(2)

Rank-SVM .4452±.0153(4) .0438±.0012(2) .3732±.0480(4) 11.6093±0.2428(4) .6612±.0100(4)
BP-MLL .4231±.0134(3) .3982±.0139(3) .3443±.0231(3) 11.4004±0.1080(2) .6757±.0113(3)

Diau

LDLLC .3295±.0157(2) .2721±.0191(1) .2065±.0280(1) 4.2679±0.1221(1) .7880±.0158(1)
ML-KNN .3293±.0107(1) .2787±.0133(2) .2199±.0255(2) 4.2707±0.0890(2) .7867±.0097(2)

Rank-SVM .3406±.0176(3) .3066±.0308(3) .2320±.0571(3) 4.5040±0.1313(3) .7662±.0288(3)
BP-MLL .4533±.0381(4) .4367±.0818(4) .4057±.2007(4) 4.9947±0.2741(4) .6808±.0669(4)

Heat

LDLLC .4205±.0096(1) .3914±.0154(1) .3650±.0176(1) 3.8293±0.0869(1) .7175±.0098(1)
ML-KNN .4383±.0085(2) .4078±.0114(2) .3837±.0239(2) 3.8417±0.0599(2) .7094±.0081(2)

Rank-SVM .4987±.0094(4) .5163±.0342(4) .5313±.0338(4) 4.2386±0.1192(4) .6354±.0190(4)
BP-MLL .4593±.0432(3) .4258±.0263(3) .3840±.0549(3) 3.8840±0.2109(3) .7026±.0248(3)

Spo

LDLLC .4211±.0198(1) .3981±.0243(1) .4098±.0331(2) 3.4411±0.1106(1) .7280±.0167(1)
ML-KNN .4447±.0325(3) .4217±.0268(3) .4080±.0317(1) 3.4800±0.1341(2) .7155±.0141(3)

Rank-SVM .5096±.0255(4) .4934±.0561(4) .5089±.0858(4) 4.0467±0.2704(4) .6382±.0427(4)
BP-MLL .4250±.0243(2) .4059±.0220(2) .4171±.0270(3) 3.5715±0.1167(3) .7163±.0143(2)

Cold

LDLLC .3740±.0393(1) .3450±.0375(1) .2640±.0536(1) 2.0240±0.1566(3) .7821±.0348(1)
ML-KNN .3876±.0168(3) .3559±.0181(3) .3171±.0354(3) 1.9411±0.0424(2) .7682±.0141(3)

Rank-SVM .3834±.0103(2) .3474±.0136(2) .3069±.0221(2) 1.9301±0.0391(1) .7772±.0085(2)
BP-MLL .4593±.0432(4) .4258±.0263(4) .3840±.0549(4) 3.8840±0.2109(4) .7026±.0248(4)

Dtt

LDLLC .4192±.0138(1) .3921±.0188(1) .3687±.0245(1) 2.0593±0.0611(1) .7535±.0107(1)
ML-KNN .4291±.0145(2) .3922±.0181(2) .3736±.0210(2) 2.0598±0.0566(2) .7511±.0114(2)

Rank-SVM .4380±.0359(3) .4203±.0228(3) .4520±.0157(3) 2.0880±0.0912(3) .7252±.0206(3)
BP-MLL .4924±.0089(4) .5055±.0593(4) .4667±.0754(4) 2.3321±0.1179(4) .6856±.0365(4)
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