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Abstract

Recently, deep residual networks have been successfully ap-
plied in many computer vision and natural language pro-
cessing tasks, pushing the state-of-the-art performance with
deeper and wider architectures. In this work, we interpret
deep residual networks as ordinary differential equations
(ODEs), which have long been studied in mathematics and
physics with rich theoretical and empirical success. From this
interpretation, we develop a theoretical framework on stabil-
ity and reversibility of deep neural networks, and derive three
reversible neural network architectures that can go arbitrarily
deep in theory. The reversibility property allows a memory-
efficient implementation, which does not need to store the ac-
tivations for most hidden layers. Together with the stability of
our architectures, this enables training deeper networks using
only modest computational resources. We provide both the-
oretical analyses and empirical results. Experimental results
demonstrate the efficacy of our architectures against several
strong baselines on CIFAR-10, CIFAR-100 and STL-10 with
superior or on-par state-of-the-art performance. Furthermore,
we show our architectures yield superior results when trained
using fewer training data.

1 Introduction

Deep learning powers many research areas and impacts var-
ious aspects of society (LeCun, Bengio, and Hinton 2015)
from computer vision (He et al. 2016; Huang et al. 2017),
natural language processing (Cho et al. 2014) to biology (Es-
teva et al. 2017) and e-commerce. Recent progress in design-
ing architectures for deep networks has further accelerated
this trend (Simonyan and Zisserman 2015; He et al. 2016;
Huang et al. 2017). Among the most successful architec-
tures are deep residual network (ResNet) and its variants,
which are widely used in many computer vision applica-
tions (He et al. 2016; Pohlen et al. 2017) and natural lan-
guage processing tasks (Oord et al. 2016; Xiong et al. 2017;
Wu et al. 2016). However, there still are few theoretical anal-
yses and guidelines for designing and training ResNet.

In contrast to the recent interest in deep residual networks,
system of Ordinary Differential Equations (ODEs), spe-
cial kinds of dynamical systems, have long been studied in
mathematics and physics with rich theoretical and empirical
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success (Coddington and Levinson 1955; Simmons 2016;
Arnold 2012). The connection between nonlinear ODEs and
deep ResNets has been established in the recent works of
(E 2017; Haber and Ruthotto 2017; Haber, Ruthotto, and
Holtham 2017; Lu et al. 2017; Long et al. 2017; Chang et
al. 2017). The continuous interpretation of ResNets as dy-
namical systems allows the adaption of existing theory and
numerical techniques for ODEs to deep learning. For ex-
ample, the paper (Haber and Ruthotto 2017) introduces the
concept of stable networks that can be arbitrarily long. How-
ever, only deep networks with simple single-layer convolu-
tion building blocks are proposed, and the architectures are
not reversible (and thus the length of the network is lim-
ited by the amount of available memory), and only simple
numerical examples are provided. Our work aims at over-
coming these drawbacks and further investigates the efficacy
and practicability of stable architectures derived from the
dynamical systems perspective.

In this work, we connect deep ResNets and ODEs more
closely and propose three stable and reversible architectures.
We show that the three architectures are governed by stable
and well-posed ODEs. In particular, our approach allows to
train arbitrarily long networks using only minimal memory
storage. We illustrate the intrinsic reversibility of these ar-
chitectures with both theoretical analysis and empirical re-
sults. The reversibility property easily leads to a memory-
efficient implementation, which does not need to store the
activations at most hidden layers. Together with the stability,
this allows one to train almost arbitrarily deep architectures
using modest computational resources.

The remainder of our paper is organized as follows. We
discuss related work in Sec. 2. In Sec. 3 we review the notion
of reversibility and stability in ResNets, present three new
architectures, and a regularization functional. In Sec. 4 we
show the efficacy of our networks using three common clas-
sification benchmarks (CIFAR-10, CIFAR-100, STL-10).
Our new architectures achieve comparable or even superior
accuracy and, in particular, generalize better when a limited
number of labeled training data is used. In Sec. 5 we con-
clude the paper.
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Figure 1: The Hamiltonian Reversible Block. First, the in-
put feature map is equally channel-wise split to Yj and Zj .
Then the operations described in Eq. 10 are performed, re-
sulting in Yj+1 and Zj+1. Finally, Yj+1 and Zj+1 are con-
catenated as the output of the block.

2 Related Work

Residual Neural Networks and Extensions

ResNets are deep neural networks obtained by stacking sim-
ple residual blocks (He et al. 2016). A simple residual net-
work block can be written as

Yj+1 = Yj + F(Yj ,θj) for j = 0, ..., N − 1. (1)
Here, Yj are the values of the features at the jth layer and θj

are the jth layer’s network parameters. The goal of the train-
ing is to learn the network parameters θ. Eq. (1) represents
a discrete dynamical system. An early review on neural net-
works as dynamical systems is presented in (Cessac 2010).

ResNets have been broadly applied in many domains in-
cluding computer vision tasks such as image recognition (He
et al. 2016), object detection (He et al. 2017), semantic seg-
mentation (Pohlen et al. 2017) and visual reasoning (Perez et
al. 2017), natural language processing tasks such as speech
synthesis (Oord et al. 2016), speech recognition (Xiong et
al. 2017) and machine translation (Wu et al. 2016).

Besides broadening the application domain, some ResNet
successors focus on improving accuracy (Xie et al. 2017;
Zagoruyko and Komodakis 2016) and stability (Haber and
Ruthotto 2017), saving GPU memory (Gomez et al. 2017),
and accelerating the training process (Huang et al. 2016).
For instance, ResNxt (Xie et al. 2017) introduces a homo-
geneous, multi-branch architecture to increase the accuracy.
Stochastic depth (Huang et al. 2016) reduces the training
time while increases accuracy by randomly dropping a sub-
set of layers and bypassing them with identity function.

Systems of Ordinary Differential Equations

To see the connection between ResNet and ODE systems
we add a hyperparameter h > 0 to Eq. (1) and rewrite the
equation as

Yj+1 −Yj

h
= F(Yj ,θj). (2)

For a sufficiently small h, Eq. (2) is a forward Euler dis-
cretization of the initial value problem

Ẏ(t) = F(Y(t),θ(t)), Y(0) = Y0. (3)

Thus, the problem of learning the network parameters, θ, is
equivalent to solving a parameter estimation problem or op-
timal control problem involving the ODE system Eq. (3).
In some cases (e.g., in image classification), Eq. (3) can
be interpreted as a system of Partial Differential Equations
(PDEs). Such problems have rich theoretical and computa-
tional framework, including techniques to guarantee stable
networks by using appropriate functions F , the discretiza-
tion of the forward propagation process (Ascher and Petzold
1998; Ascher 2010; Bellman 1953), theoretical frameworks
for the optimization over the parameters θ (Bock 1983;
Ulbrich 2002; Gunzburger 2003), and methods for com-
puting the gradient of the solution with respect to θ (Bliss
1919).

Reversible Architectures

Reversible numerical methods for dynamical systems allow
the simulation of the dynamic going from the final time to
the initial time, and vice versa. Reversible numerical meth-
ods are commonly used in the context of hyperbolic PDEs,
where various methods have been proposed and compared
(Nguyen and McMechan 2014). The theoretical framework
for reversible methods is strongly tied to issues of stabil-
ity. In fact, as we show here, not every method that is alge-
braically reversible is numerically stable. This has a strong
implication for the practical applicability of reversible meth-
ods to deep neural networks.

Recently, various reversible neural networks have been
proposed for different purposes and based on different ar-
chitectures. Recent work by (Dosovitskiy and Brox 2016;
Mahendran and Vedaldi 2015) inverts the feed-forward net
and reproduces the input features from their values at the
final layers. This suggests that some deep neural networks
are reversible: the generative model is just the reverse of
the feed-forward net (Arora, Liang, and Ma 2016). (Gilbert
et al. 2017) provide a theoretical connection between a
model-based compressive sensing and CNNs. NICE (Dinh,
Krueger, and Bengio 2015; Dinh, Sohl-Dickstein, and Ben-
gio 2016) uses an invertible non-linear transformation to
map the data distribution into a latent space where the result-
ing distribution factorizes, yielding good generative models.
Besides the implications that reversibility has on the deep
generative models, the property can be used for developing
memory-efficient algorithms. For instance, RevNet (Gomez
et al. 2017), which is inspired by NICE, develops a vari-
ant of ResNet where each layer’s activations can be recon-
structed from next layer’s. This allows one to avoid storing
activations at all hidden layers, except at those layers with
stride larger than one. We will show later that our physically-
inspired network architectures also have the reversible prop-
erty and we derive memory-efficient implementations.

3 Methods
We introduce three new reversible architectures for deep
neural networks and discuss their stability. We capitalize on
the link between ResNets and ODEs to guarantee stability
of the forward propagation process and the well-posedness
of the learning problem. Finally, we present regularization
functionals that favor smooth time dynamics.
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ResNet as an ODE

Eq. (3) interprets ResNet as a discretization of a differential
equation, whose parameters θ are learned in the training pro-
cess. The process of forward propagation can be viewed as
simulating the nonlinear dynamics that take the initial data,
Y0, which are hard to classify, and moves them to a final
state YN , which can be classified easily using, e.g., a linear
classifier.

A fundamental question that needs to be addressed is,
under what conditions is forward propagation well-posed?
This question is important for two main reasons. First, in-
stability of the forward propagation means that the solution
is highly sensitive to data perturbation (e.g., image noise or
adversarial attacks). Given that most computations are done
in single precision, this may cause serious artifacts and in-
stabilities in the final results. Second, training unstable net-
works may be very difficult in practice and, although impos-
sible to prove, instability can add many local minima.

Let us first review the issue of stability. A dynamical sys-
tem is stable if a small change in the input data leads to a
small change in the final result. To better characterize this,
assume a small perturbation, δY(0) to the initial data Y(0)
in Eq. (3). Assume that this change is propagated through-
out the network. The question is, what would be the change
after some time t, that is, what is δY(t)?

This change can be characterized by the Lyapunov expo-
nent (Lyapunov 1992), which measures the difference in the
trajectories of a nonlinear dynamical system given the ini-
tial conditions. The Lyapunov exponent, λ, is defined as the
exponent that measures the difference:

‖δY(t)‖ ≈ exp(λt)‖δY(0)‖. (4)

The forward propagation is well-posed when λ ≤ 0, and
ill-posed if λ > 0. A bound on the value of λ can be de-
rived from the eigenvalues of the Jacobian matrix of F with
respect to Y, which is given by

J(t) = ∇Y(t)F(Y(t)).

A sufficient condition for stability is

max
i=1,2,...,n

Re(λi(J(t))) ≤ 0, ∀t ∈ [0, T ], (5)

where λi(J) is the ith eigenvalue of J, and Re(·) denotes
the real part.

This observation allows us to generate networks that are
guaranteed to be stable. It should be emphasized that the
stability of the forward propagation is necessary to obtain
stable networks that generalize well, but not sufficient. In
fact, if the real parts of the eigenvalues in Eq. (5) are neg-
ative and large, λ � 0, Eq. (4) shows that differences in
the input features decay exponentially in time. This compli-
cates the learning problem and therefore we consider archi-
tectures that lead to Jacobians with (approximately) purely
imaginary eigenvalues. We now discuss three such networks
that are inspired by different physical interpretations.

The two-layer Hamiltonian network

(Haber and Ruthotto 2017) propose a neural network archi-
tecture inspired by Hamiltonian systems

Ẏ(t) = σ(K(t)Z(t) + b(t)),

Ż(t) = −σ(K(t)TY(t) + b(t)),
(6)

where Y(t) and Z(t) are partitions of the features, σ is an
activation function, and the network parameters are θ =
(K,b). For convolutional neural networks, K(t) and K(t)T

are convolution operator and convolution transpose operator
respectively. It can be shown that the Jacobian matrix of this
ODE satisfies the condition in Eq. (5), thus it is stable and
well-posed. The authors also demonstrate the performance
on a small dataset. However, in our numerical experiments
we have found that the representability of this “one-layer”
architecture is limited.

According to the universal approximation theorem
(Hornik 1991), a two-layer neural network can approxi-
mate any monotonically-increasing continuous function on
a compact set. Recent work (Zhang et al. 2017) shows that
simple two-layer neural networks already have perfect finite
sample expressivity as soon as the number of parameters ex-
ceeds the number of data points. Therefore, we propose to
extend Eq. (6) to the following two-layer structure:

Ẏ(t) = KT
1 (t)σ(K1(t)Z(t) + b1(t)),

Ż(t) = −KT
2 (t)σ(K2(t)Y(t) + b2(t)).

(7)

In principle, any linear operator can be used within the
Hamiltonian framework. However, since our numerical ex-
periments consider images, we choose Ki to be a convo-
lution operator, KT

i as its transpose. Rewriting Eq. (7) in
matrix form gives(
Ẏ

Ż

)
=

(
KT

1 0
0 −KT

2

)
σ
((

0 K1

K2 0

)(
Y
Z

)
+

(
b1

b2

))
.

(8)
There are different ways of partitioning the input features,
including checkerboard partition and channel-wise partition
(Dinh, Sohl-Dickstein, and Bengio 2016). In this work, we
use equal channel-wise partition, that is, the first half of the
channels of the input is Y and the second half is Z.

It can be shown that the Jacobian matrix of Eq. (8) satis-
fies the condition in Eq. (5), that is,

J = ∇(YZ)

(
KT

1 0
0 −KT

2

)
σ
((

0 K1

K2 0

)(
y
z

))

=

(
KT

1 0
0 −KT

2

)
diag(σ′)

(
0 K1

K2 0

)
, (9)

where diag(σ′) is the derivative of the activation function.
The eigenvalues of J are all imaginary (see the Appendix
for a proof). Therefore Eq. (5) is satisfied and the forward
propagation of our neural network is stable and well-posed.

A commonly used discretization technique for Hamilto-
nian systems such as Eq. (7) is the Verlet method (Ascher
and Petzold 1998) that reads

Yj+1 = Yj + hKT
j1σ(Kj1Zj + bj1),

Zj+1 = Zj − hKT
j2σ(Kj2Yj+1 + bj2).

(10)
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We choose Eq. (10) to be our Hamiltonian blocks and il-
lustrate it in Fig. 1. Similar to ResNet (He et al. 2016),
our Hamiltonian reversible network is built by first con-
catenating blocks to units, and then concatenating units to
a network. An illustration of our architecture is provided in
Fig. 2.

The midpoint network

Another reversible numerical method for discretizing the
first-order ODE in Eq. (3) is obtained by using central finite
differences in time

Yj+1 −Yj−1

2h
= F(Yj). (11)

This gives the following forward propagation

Yj+1 = Yj−1 + 2hF(Yj), for j = 1, . . . , N − 1, (12)

where Y1 is obtained by one forward Euler step. To guaran-
tee stability for a single layer we can use the function F to
contain an anti-symmetric linear operator, that is,

F(Y) = σ((K−KT )Y + b). (13)

The Jacobian of this forward propagation is

J = diag(σ′)(K−KT ), (14)

which has only imaginary eigenvalues. This yields the single
layer midpoint network

Yj+1 =

{
2hσ((Kj −KT

j )Yj + bj), j = 0,

Yj−1 + 2hσ((Kj −KT
j )Yj + bj), j > 0.

(15)
As we see next, it is straightforward to show that the mid-

point method is reversible (at least algebraically). However,
while it is possible to potentially use a double layer midpoint
network, it is difficult to ensure the stability of such network.
To this end, we explore the leapfrog network next.

The leapfrog network

A stable leapfrog network can be seen as a special case of
the Hamiltonian network in Eq. (7) when one of the kernels
is the identity matrix and one of the activation is the identity
function. The leapfrog network involves two derivatives in
time and reads

Ÿ(t) = −K(t)Tσ(K(t)Y(t)+b(t)), Y(0) = Y0. (16)

It can be discretized, for example, using the conservative
leapfrog discretization, which uses the following symmetric
approximation to the second derivative in time

Ÿ(tj) ≈ h−2(Yj+1 − 2Yj +Yj−1).

Substituting the approximation in Eq. (16), we obtain:

Yj+1 =

{
2Yj − h2KT

j σ(KjYj + bj), j = 0,

2Yj −Yj−1 − h2KT
j σ(KjYj + bj), j > 0.

(17)

Reversible architectures and stability

An architecture is called reversible if it allows the recon-
struction of the activations going from the end to the be-
ginning. Reversible numerical methods for ODEs have been
studied in the context of hyperbolic differential equations
(Nguyen and McMechan 2014), and reversibility was dis-
covered recently in the machine learning community (Dinh,
Krueger, and Bengio 2015; Gomez et al. 2017). Reversible
techniques enable memory-efficient implementations of the
network that requires the storage of the last activations only.

Let us first demonstrate the reversibility of the leapfrog
network. Assume that we are given the last two states, YN

and YN−1. Then, using Eq. (17) it is straight-forward to
compute YN−2:

YN−2 = 2YN−1 −YN

− h2KT
N−1σ(KN−1YN−1 + bN−1). (18)

Given YN−2 one can continue and re-compute the activa-
tions at each hidden layer during backpropagation. Simi-
larly, it is straightforward to show that the midpoint network
is reversible.

The Hamiltonian network is similar to the RevNet and can
be described as

Yj+1 = Yj + F(Zj),

Zj+1 = Zj + G(Yj+1),
(19)

where Yj and Zj are a partition of the units in block j;
F and G are the residual functions. Eq. (19) is reversible
as each layer’s activations can be computed from the next
layer’s as follows:

Zj = Zj+1 − G(Yj+1),

Yj = Yj+1 −F(Zj).
(20)

It is clear that Eq. (10) is a special case of Eq. (19), which
enables us to implement Hamiltonian network in a memory
efficient way.

While RevNet and MidPoint represent reversible net-
works algebraically, they may not be reversible in practice
without restrictions on the residual functions. To illustrate,
consider the simple linear case where G(Y) = αY and
F(Z) = βZ. The RevNet in this simple case reads

Yj+1 = Yj + βZj ,

Zj+1 = Zj + αYj+1.

One way to simplify the equations is to look at two time
steps and subtract them:

Yj+1 − 2Yj +Yj−1 = β(Zj − Zj−1) = αβYj ,

which implies that

Yj+1 − (2 + αβ)Yj +Yj−1 = 0.

These type of equations have a solution of the form Yj =
ξj . The characteristic equation is

ξ2 − (2 + αβ)ξ + 1 = 0. (21)

Define a = 1
2 (2 + αβ), the roots of the equation are ξ =

a±√
a2 − 1. If a2 ≤ 1 then we have that ξ = a±i

√
1− a2.
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Figure 2: The Hamiltonian Reversible Neural Network. It is the simple stacking of several Hamiltonian reversible blocks as
shown in Fig. 1 and pooling layer.

and |ξ|2 = 1, which implies that the method is stable and no
energy in the feature vectors is added or lost.

It is obvious that Eq. (21) is not stable for every choice of
α and β. Indeed, if, for example, α and β are positive then
|ξ| > 1 and the solution can grow at every layer exhibiting
unstable behavior. It is possible to obtain stable solutions if
0 < α and β < 0 and both are sufficiently small. This is the
role of h in our Hamiltonian network.

This analysis plays a key role in reversibility. For unstable
networks, either the forward or the backward propagation
consists of an exponentially growing mode. For computation
in single precision (like most practical CNN), the gradient
can be grossly inaccurate. Thus we see that not every choice
of the functions F and G lead to a reasonable network in
practice and that some control is needed if we are to have
a network that does not grow exponentially neither forward
nor backwards.

Arbitrarily deep residual neural networks

All three architectures we proposed can be used with arbi-
trary depth, since they do not have any dissipation. This im-
plies that the signal that is input into the system does not
decay even for arbitrarily long networks. Thus signals can
propagate through this system to infinite network depth. We
have also experimented with slightly dissipative networks,
that is, networks that attenuate the signal at each layer, that
yielded results that were comparable to the ones obtained by
the networks proposed here.

Regularization

Regularization plays a vital role serving as parameter tuning
in the deep neural network training to help improve general-
ization performance (Zhang et al. 2017). Besides commonly
used weight decay, we also use weight smoothness decay.
Since we interpret the forward propagation of our Hamilto-
nian network as a time-dependent nonlinear dynamic pro-
cess, we prefer convolution weights K that are smooth in
time by using the regularization functional

R(K) =

∫ T

0

‖K̇1(t)‖2F + ‖K̇2(t)‖2F dt,

where ‖·‖F represents the Frobenius norm. Upon discretiza-
tion, this gives the following weight smoothness decay as a
regularization function

Rh(K) = h
T−1∑
j=1

2∑
k=1

∥∥∥∥Kjk −Kj+1,k

h

∥∥∥∥
2

F

. (22)

4 Experiments

We evaluate our methods on three standard classification
benchmarks (CIFAR-10, CIFAR100 and STL10) and com-
pare against state-of-the-art results from the literature. Fur-
thermore, we investigate the robustness of our method as the
amount of training data decrease and train a deep network
with 1,202 layers.

Datasets and baselines

CIFAR-10 and CIFAR-100 The CIFAR-10 dataset
(Krizhevsky and Hinton 2009) consists of 50,000 train-
ing images and 10,000 testing images in 10 classes with
32 × 32 image resolution. The CIFAR-100 dataset uses the
same image data and train-test split as CIFAR-10, but has
100 classes. We use the common data augmentation tech-
niques including padding four zeros around the image, ran-
dom cropping, random horizontal flipping and image stan-
dardization. Two state-of-the-art methods ResNet (He et al.
2016) and RevNet (Gomez et al. 2017) are used as our base-
line methods.

STL-10 The STL-10 dataset (Coates, Ng, and Lee 2011) is
an image recognition dataset with 10 classes at image resolu-
tions of 96×96. It contains 5,000 training images and 8,000
test images. Thus, compared with CIFAR-10, each class has
fewer labeled training samples but higher image resolution.
We used the same data augmentation as the CIFAR-10 ex-
cept padding 12 zeros around the images.

We use three state-of-the-art methods as baselines for the
STL-10 dataset: Deep Representation Learning (Yang et al.
2015), Convolutional Clustering (Dundar, Jin, and Culur-
ciello 2015), and Stacked what-where auto-encoders (Zhao
et al. 2016).

Neural network architecture specifications

We provide the neural network architecture specifications
here. The implementation details are in the Appendix. All
the networks contain 3 units, and each unit has n blocks.
There is also a convolution layer at the beginning of the net-
work and a fully connected layer in the end. For Hamilto-
nian networks, there are 4 convolution layers in each block,
so the total number of layers is 12n + 2. For MidPoint and
Leapfrog, there are 2 convolution layers in each block, so
the total number of layers is 6n+2. In the first block of each
unit, the feature map size is halved and the number of filters
is doubled. We perform downsampling by average pooling
and increase the number of filters by padding zeros.
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Name Units Channels # Model Params (M) Accuracy

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

ResNet-32 5-5-5 16-32-64 0.46 0.47 92.86% 70.05%
RevNet-38 3-3-3 32-64-112 0.46 0.48 92.76% 71.04%
Hamiltonian-74 (Ours) 6-6-6 32-64-112 0.43 0.44 92.76% 69.78%
MidPoint-26 (Ours) 4-4-4 32-64-112 0.50 0.51 91.16% 67.25%
Leapfrog-26 (Ours) 4-4-4 32-64-112 0.50 0.51 91.92% 69.14%
ResNet-110 18-18-18 16-32-64 1.73 1.73 94.26% 73.56%
RevNet-110 9-9-9 32-64-128 1.73 1.74 94.24% 74.60%
Hamiltonian-218 (Ours) 18-18-18 32-64-128 1.68 1.69 94.02% 73.89%
MidPoint-62 (Ours) 10-10-10 32-64-128 1.78 1.79 92.76% 70.98%
Leapfrog-62 (Ours) 10-10-10 32-64-128 1.78 1.79 93.40% 72.28%
ResNet-1202 200-200-200 32-64-128 19.4 - 92.07% -
Hamiltonian-1202 (Ours) 100-100-100 32-64-128 9.70 - 93.84% -

Table 1: Main results for different architectures on CIFAR-10 and CIFAR-100. We compare our three dynamical system inspired
neural networks (Hamiltonian, MidPoint, and Leapfrog) with the state-of-the-art methods ResNet (He et al. 2016) and RevNet
(Gomez et al. 2017). Please note RevNet and our three architectures are much more memory-efficient than ResNet.

Methods Accuracy

Baselines (Yang et al. 2015) 73.15%
(Dundar et al. 2015) 74.1%
(Zhao et al. 2016) 74.3%

Ours Hamiltonian 85.5%
MidPoint 84.6%
Leapfrog 83.7%

Table 2: Main results on STL-10. All our three architectures
outperform the benchmark methods by about 10%.

Main Results and Analysis

CIFAR-10 and CIFAR-100 We show the main results of
different architectures on CIFAR-10/100 in Table 1. Our
three architectures achieve comparable performance with
ResNet and RevNet in term of accuracy using similar num-
ber of model parameters. Compared with ResNet, our archi-
tectures are more memory efficient as they are reversible,
thus we do not need to store activations for most layers.
While compared with RevNet, our models are not only re-
versible, but also stable, which is theoretically proved in Sec.
3. We show later that the stable property makes our models
more robust to small amount of training data and arbitrarily
deep.

STL-10 Main results on STL-10 are shown in Table 2.
Compared with the state-of-the-art results, all our architec-
tures achieve better accuracy.

Robustness to training data subsampling

Sometimes labeled data are very expensive to obtain. Thus,
it is desirable to design architectures that generalize well
when trained with few examples. To verify our intuition that
stable architectures generalize well, we conducted exten-
sive numerical experiments using the CIFAR-10 and STL-
10 datasets with decreasing number of training data. Our fo-
cus is on the behavior of our neural network architecture

Figure 3: Hamiltonian vs ResNet test accuracy on CIFAR10
with a small subset of training data.

in face of this data subsampling, instead of improving the
state-of-the-art results. Therefore we intentionally use sim-
ple architectures: 4 blocks, each has 4 units, and the number
of filters are 16− 64− 128− 256. For comparison, we use
ResNet (He et al. 2016) as our baseline. CIFAR-10 has much
more training data than STL-10 (50,000 vs 5,000), so we
randomly subsample the training data from 20% to 0.05%
for CIFAR-10, and from 80% to 5% for STL-10. The test
data set remains unchanged.

CIFAR-10 Fig. 3 shows the result on CIFAR-10 when de-
creasing the number examples in the training data from 20%
to 5%. Our Hamiltonian network performs consistently bet-
ter in terms of accuracy than ResNet, achieving up to 13%
higher accuracy when trained using just 3% and 4% of the
original training data.

STL-10 From the result as shown in Fig. 4, we see
that Hamiltonian consistently achieves better accuracy than
ResNet with the average improvement being around 3.4%.
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Figure 4: Hamiltonian vs ResNet test accuracy for STL10
with a small subset of training data.

Especially when using just 40% of the training data, Hamil-
tonian has a 5.7% higher accuracy compared to ResNet.

Training a 1202-layer Hamiltonian

To demonstrate the stability and memory-efficiency of the
Hamiltonian network with arbitrary depth, we explore a
1202-layer architecture on CIFAR-10. An aggressively deep
ResNet is also trained on CIFAR-10 in (He et al. 2016) with
1202 layers, which has an accuracy of 92.07%. Our result is
shown at the last row of Table 1. Compared with the origi-
nal ResNet, our architecture uses only a half of parameters
and obtains better accuracy. Since the Hamiltonian network
is intrinsically stable, it is guaranteed that there is no issue of
exploding or vanishing gradient. We can easily train an ar-
bitrarily deep Hamiltonian network without any difficulty of
optimization. The implementation of our reversible architec-
ture is memory efficient, which enables a 1202 layer Hamil-
tonian model running on a single GPU machine with 10GB
GPU memory.

5 Conclusion

We present three stable and reversible architectures that con-
nect the stable ODE with deep residual neural networks and
yield well-posed learning problems. We exploit the intrin-
sic reversibility property to obtain a memory-efficient im-
plementation, which does not need to store the activations at
most of the hidden layers. Together with the stability of the
forward propagation, this allows training deeper architec-
tures with limited computational resources. We evaluate our
methods on three publicly available datasets against several
state-of-the-art methods. Our experimental results demon-
strate the efficacy of our method with superior or on-par
state-of-the-art performance. Moreover, with small amount
of training data, our architectures achieve better accuracy
compared with the widely used state-of-the-art ResNet. We
attribute the robustness to small amount of training data to
the intrinsic stability of our Hamiltonian neural network ar-
chitecture.

6 Appendix

Proof: All eigenvalues of J in Eq. (9) are imaginary.

The Jacobian matrix J is defined in Eq. (9). If A and B are
two invertible matrices of the same size, then AB and BA
have the same eigenvalues (Theorem 1.3.22 in (Horn and
Johnson 2012)). If we define

J′ = diag(σ′)
(

0 K1

K2 0

)(
KT

1 0
0 −KT

2

)

= diag(σ′)
(

0 −K1K
T
2

K2K
T
1 0

)
:= DM, (23)

then J and J′ have the same eigenvalues. D is a diagonal
matrix with non-negative elements, and M is a real anti-
symmetric matrix such that MT = −M. Let λ and v be
a pair of eigenvalue and eigenvector of J′ = DM, then

DMv = λv, (24)

Mv = λD−1v, (25)

v∗Mv = λ(v∗D−1v), (26)

where D−1 is the generalized inverse of D. On one hand,
since D−1 is non-negative definite, v∗D−1v is real. On the
other hand,

(v∗Mv)∗ = v∗M∗v = v∗MTv = −v∗Mv, (27)

where ∗ represents conjugate transpose. Eq. 27 implies that
v∗Mv is imaginary. Therefore, λ has to be imaginary. As a
result, all eigenvalues of J are imaginary.

Implementation details

Our method is implemented using TensorFlow library
(Abadi et al. 2016). The CIFAR-10/100 and STL-10 exper-
iments are evaluated on a desktop with an Intel Quad-Core
i5 CPU and a single Nvidia 1080 Ti GPU.

For CIFAR-10 and CIFAR-100 experiments, we use a
fixed mini-batch size of 100 both for training and test data
except Hamiltonian-1202, which uses a batch-size of 32.
The learning rate is initialized to be 0.1 and decayed by a
factor of 10 at 80, 120 and 160 training epochs. The total
training step is 80K. The weight decay constant is set to
2 × 10−4, weight smoothness decay is 2 × 10−4 and the
momentum is set to 0.9.

For STL-10 experiments, the mini-batch size is 128. The
learning rate is initialized to be 0.1 and decayed by a factor
of 10 at 60, 80 and 100 training epochs. The total training
step is 20K. The weight decay constant is set to 5 × 10−4,
weight smoothness decay is 3× 10−4 and the momentum is
set to 0.9.
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