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Abstract

Sparse representation based classification (SRC) has gained
great success in image recognition. Motivated by the fact that
kernel trick can capture the nonlinear similarity of features,
which may help improve the separability and margin between
nearby data points, we propose Euler SRC for image classifi-
cation, which is essentially the SRC with Euler sparse repre-
sentation. To be specific, it first maps the images into the com-
plex space by Euler representation, which has a negligible
effect for outliers and illumination, and then performs com-
plex SRC with Euler representation. The major advantage of
our method is that Euler representation is explicit with no in-
crease of the image space dimensionality, thereby enabling
this technique to be easily deployed in real applications. To
solve Euler SRC, we present an efficient algorithm, which is
fast and has good convergence. Extensive experimental re-
sults illustrate that Euler SRC outperforms traditional SRC
and achieves better performance for image classification.

Introduction

Image classification is one of the active topics in pat-
tern recognition and machine learning. In many applica-
tions, each image is usually represented as a point in the
high-dimensional image space. However, many works have
demonstrated that the naturally generated images may re-
side on a lower dimensional manifold. Thus, it is benefi-
cial to first perform a dimensionality reduction (DR) prior
to utilizing any technique for image classification and re-
trieval. Principal component analysis (PCA) (Turk and Pent-
land 1991), linear discriminant analysis (LDA) (Belhumeur,
Hespanha, and Kriegman 1997), locality preserving projec-
tion (LPP) (Niyogi 2004) and neighborhood preserving em-
bedding (NPE) (He et al. 2005) are four of the most preva-
lent techniques for DR. PCA is an unsupervised technique
and used to extract the most expressive features. LDA is con-
sidered to be capable of extracting the most discriminating
features. Different from PCA and LDA, which preserve the
global geometric structure, LPP and NPE characterize the
local geometric structure of images.

Motivated by these methods, many related approaches
have been developed for dimensionality reduction, although
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the motivations of these methods are different, they em-
ploy squared �2-norm as the distance metric in the objec-
tive function to measure the similarity between images. It is
commonly known that squared �2-norm is not robust in the
sense that outlying measurements can arbitrarily skew the
solution from the desired solution (Ke and Kanade 2005;
Candès et al. 2011; Oh et al. 2016). To improve the ro-
bustness of subspace learning methods, some �1-norm based
subspace learning methods have been developed, which can
be broadly divided into two categories: �1-norm based PCA
technique and �1-norm based LDA technique. As can be eas-
ily derived from the name, this sort of DR algorithms em-
ploys l1 normal as the distance metric in the objective func-
tion to measure the similarity between data, where the rep-
resentatives include L1-PCA (Ke and Kanade 2005), PCA-
L1 (Kwak 2008), and LDA-L1 (Liu et al. 2016).

Another important area requiring further investigation is
the design of classifier for image classification. Nearest
neighbor (NN) classifier has been widely used in classifica-
tion stage by using Euclidean distance measure. It is easy
to see that Euclidean distance is very sensitive to shape
variation. To handle this problem, Li and Lu (Li and Lu
1999) proposed the nearest feature line (NFL) classifier. Mo-
tivated by the impressive results, Chien and Wu (Chien and
Wu 2002) proposed two robust classifiers: nearest feature
plane (NFP) and nearest feature space (NFS) to improve
face recognition system. Gao and Wang (Gao and Wang
2007) proposed center-based nearest neighbor classifier to
deal with pattern classification. Wang and Zhang (Wang and
Zhang 2004) proposed linear generalization subspace (LGS)
to achieve higher recognition rate using only limited train-
ing images. Zheng et al. (Zheng, Zhao, and Zou 2004) de-
veloped two classifiers (nearest neighbor line and nearest
neighbor plane) to improve the robustness of classification.

Recently, sparse representation has shown its supe-
rior performance in image classification and computer vi-
sion (Zhang et al. 2016; Wright et al. 2009; Gao, Tsang, and
Chia 2010). Wright et al. (Wright et al. 2009) proposed a
sparse representation based classification (SRC) algorithm
for face recognition, and obtained impressive results in ex-
periments. Inspired by SRC, sparse representation has been
widely used in image recognition and denoising. To improve
performance of SRC, kernel sparse representation has be-
come an active topic in image recognition (Harandi et al.
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2012; Gao, Tsang, and Chia 2010). Despite its relatively bet-
ter performance, an essential mapping from the image to a
high-dimensional hidden space required by those methods is
computational expensive, thus impeding their usage in real-
world applications.

Inspired by the fact that kernel trick can capture the non-
linear similarity of features, which can suppress outliers, we
propose Euler SRC for image classification. Euler SRC is
essentially the SRC in Euler space. It comes from the same
DR family tree as the kernel sparse representation, but they
are clearly different in the way of organizing mapping. More
specifically, Euler SRC first maps the images into the com-
plex space by Euler representation, which has a negligible
effect for outliers and illumination, and then performs com-
plex SRC with Euler representation. The main advantage of
our method is that Euler representation not only is explicit
but also does not increase the dimensionality of image space,
enabling the fast and simple computation. Extensive experi-
ments illustrate the effectiveness of proposed approach.

Sparse representation based classification

Classification is one of the particularly simple applications
for sparse representation. It assumes that the training sam-
ples from a single class do lie on a subspace. Thus, for any
test sample y ∈ Rm , it will approximately lie in the lin-
ear span of the samples, which has the same class label with
y. Assume that we have a new matrix X ∈ Rm×N for the
entire training set sampled from the C classes, then y can
be represented as a linear representation of the entire train-
ing samples. The corresponding coefficient vector s ∈ RN

can be obtained by solving the following objective func-
tion (Candès and Tao 2006).

min
s

‖s‖1 s.t. Xs = y (1)

where ‖·‖1 denotes the �1-norm, which counts the sum of
modulus of each element in a vector.

The objective function (1) illustrates that y can be exactly
represented. In real applications, data are noisy, implying
that it is impossible to exactly express y as a sparse super-
position of the training samples. In this case, the objective
function (1) is modified as follows (Wright et al. 2010).

min
s

1

2
‖Xs− y‖22 + α‖s‖1, α> 0 (2)

After obtaining the coefficient vector s by the objec-
tive function (2), SRC classifies the test sample y accord-
ing to residual error. To be specific, for each class i, let
δi : RN → RN be the characteristic function that selects
the coefficients associated with the ith class. δi(s) ∈ RN is
a new vector whose only nonzero entries are the entries in s
that are associated with class i. Then, we assign y to be the
jth class if

rj(y) = min
i

ri(y) = ‖y −Xδi(s)‖2 (3)

It is easy to see that SRC has a good classification per-
formance in image recognition, especially for images with
occlusion. As can be seen in the objective function (2), SRC
employs squared �2-norm as the distance metric in the first

term in the objective function (2). It is commonly known that
the variations between images, which have the same class la-
bel under different illumination and time, is larger than the
change of the image identity under the squared �2-norm dis-
tance metric. Thus, this affects the robustness of SRC and
reduces the flexibility of SRC. To solve this problem, we in-
troduce Euler SRC in the following section.

Euler SRC

Motivation

To achieve robustness, the contribution of distance metric to
the criterion function (2) should reduce the effect of large
distance. Motivated by the fact that kernel trick can capture
the nonlinear similarity of features, which can suppress out-
liers, we propose Euler SRC for image classification. Prior
to formulating the proposed Euler SRC, we first introduce
cosine kernel function, i.e., cosine distance metric and then
analyze its advantages.

Definition 1 (Fitch et al. 2005; Liwicki et al. 2013) Given
two arbitrary vectors xj and xq ∈ Rm, the cosine distance
metric between them is

d(xj ,xq) =
m∑
c=1

{1− cos (απ(xj(c)− xq(c)))} (4)

where xj(c) is the cth element of xj .
Let us consider two motivating examples in which differ-

ent dissimilarity measures are applied to the images shown
in Figure 1. Figure 1 shows one image, which is marked by
A, and the other eight images that are its 4 nearest neighbor
images having the same class label with it and its 4 near-
est neighbor images having different class labels with it. Ta-
ble 1 and Table 2 list the distance between A and the other
8 images under different distance metrics. As can be seen
in Figure 1, Table 1 and Table 2, the �2-norm associates a
smaller margin (8.6263-7.1618 = 1.1645). In contrast, the
use of the cosine-based measure results in a large margin
(488.2649-451.0045=37.2604). It shows that cosine distance
metric can help obtain a large margin. Thus, cosine distance
metric, which is defined in Eq. (4), is an effective kernel
function. It is not only robust to outliers but also suitable for
classification compared with the squared �2-norm.

Table 1: Comparison of normalized dissimilarity measures
between images having the same class label in Figure 1.

Dissimilarity A-B A-C A-D A-E
Euclidean 5.1609 5.7977 6.173 7.1618

Cosine-based 192.9056 296.278 320.8623 451.0045

Table 2: Comparison of normalized dissimilarity measures
between images having different class labels in Figure 1.

Dissimilarity A-F A-G A-H A-K
Euclidean 8.6263 8.7619 9.0132 9.0332

Cosine-based 488.2649 682.7639 570.5157 683.3511

Combining the aforementioned analysis, we can get the
following interesting conclusion:
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Figure 1: Original image and its 4 nearest images having the
same class label and its 4 nearest images having different
class labels with it. Images with the same shape belong to
the same person.

• First, the cosine distance metric enlarges the distance be-
tween all image so it can help obtain a large margin and
make it easy to realize classification.

• Second, the distance between the same class images was
enlarged a smaller multiple than the distance between
the different class images by the cosine distance metric.
Therefore, compared with Euclidean distance, cosine dis-
tance metric not only can help obtain a large margin but
also improve the separability between different class im-
age.

Combining the aforementioned analysis for cosine dis-
tance metric, we can easy build a robust formulation for
SRC. To be specific, we use cosine distance instead of
squared �2-norm as the distance metric in the image pixel
space.

By simple algebra, Eq. (4) becomes

d(xj ,xq)=
m∑
c=1

{1− cos (γπ(xj(c)− xq(c)))}

=
∥∥∥ 1√

2
(eiγπxj − eiγπxq )

∥∥∥
2

2

= ‖zj − zq‖22

(5)

where

zj =
1√
2

⎡
⎢⎣

eiγπxj(1)

...
eiγπxj(c)

⎤
⎥⎦ =

1√
2
eiγπxj (6)

is called Euler representation of xj .
Eq. (5) illustrates that cosine distance metric between

two images in pixel space is equivalent to squared �2-norm
between the corresponding two vectors with Euler repre-
sentation. Moreover, compared with cosine distance metric,
squared �2-norm is easy to be performed in solving the op-
timization problem. Thus, our proposed robust method first
maps the intensity values xj normalized in [0, 1] onto the
complex representation zj ∈ Cm and then performs com-
plex SRC in Euler space.

Euler SRC

Denote by A = 1√
2
eiαπX and b = 1√

2
eiγπy, according

to the aforementioned analysis, Euler SRC aims to seek the
coefficient vector z by solving the following objective func-
tion.

min
z

1

2
‖Az− b‖22 + α‖z‖1, α> 0 (7)

where ‖z‖22 is defined as ‖z‖22 = z∗z, where z∗ is the
complex conjugate transpose of z and ‖z‖1 is defined as
‖z‖1 =

∑m
i=1 |zi| with zi the ith component of z.

Before solving the objective function (7), we first intro-
duce the following definition.

Definition 2 (Fletcher 2013). Subgradient of ‖z‖1, de-
noted by ∂‖z‖1, as follows:

∂‖z‖1 =

{
u|ui =

zi
|zi| if zi �= 0, and |ui| ≤ 1 otherwise

}

(8)
Theorem 1 (Complex SRC for sparse coding): For the

following function

argmin
z

(‖b−Az‖22 + α‖z‖1) (9)

where matrix A and b are complex valued matrix and vector
respectively. The sparse representation z corresponding to
the input signal b can be iteratively solved by

z = |Z|A∗(A |Z|A∗ + αI)−1b (10)

where Z is a square diagonal matrix built upon the compo-
nents of vector z, i.e., Z = diag(z). |Z| is also a quare diag-
onal matrix whose diagonal elements are the abstract value
of the corresponding diagonal elements of Z.

Proof: The Lagrangian function of the problem (9) is

L(z) =
1

2
‖b−Az‖22 + α‖z‖1 (11)

The KKT condition for optimal solution of the problem
(11) specifies that the gradient of L w.r.t. zi must be zero,
i.e.,

∂L

∂z
= A∗(Az− b) + αu = 0 (12)

Note that, u is related to z.
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To get the root of the model (12), we adopt a fixed point
iteration algorithm to solve it. The core of fixed point algo-
rithm is to convert the equation to the form z = g(z).

According to the definition of subgradient of ‖z‖1, we
have

u = |Z|−1
z (13)

In Eq.(13), it may have 0
0 when the elements of Z have

zero. We only use it for the sake of subsequent derivation
and do not calculate it. Moreover, it will vanish in the final
representation (See Eq. (14)).

Substituting (13) into (12), and by simple algebra, we get

z = (A∗A+ α|Z|−1
)−1A∗b

= {(A∗A |Z|+ αI)|Z|−1}−1A∗b

= |Z| (A∗A |Z|+ αI)−1A∗b

(14)

According to (A∗A |Z|+αI)A∗ = A∗(A |Z|A∗+αI),
we have

(A∗A |Z|+ αI)−1A∗ = A∗(A |Z|A∗ + αI)−1 (15)

Combining (14) and (15) yields

z = |Z|A∗(A |Z|A∗ + αI)−1b (16)

As can be seen in Eq. (16), we can iteratively solve the
complex sparse vector of the model (9) by Eq. (16).

According to the fixed point iteration algorithm and Eq.
(16), we summarize the pseudo code for solving the objec-
tive function (7) in Algorithm 1.

Algorithm 1: Euler SRC algorithm

Input: Training Sample Matrix X ∈ Rm×N , Parameter
γ (0 < γ < 2), α(α > 0), t = 1, τ = 10−6.
Initialize z1 = 1.
Procedure
1. Map each column vector in X in [0,1].
2. Calculate A = 1√

2
exp(γ ∗ πi ∗X).

3. If m > N , calculate zt+1 by Eq. (14), otherwise,
calculate zt+1 by Eq. (16).

4. t = t+ 1, go to step 3 until
∥∥zt+1 − zt

∥∥
1
< τ .

5. Return zt.

Experiments

In this section, we validate our proposed method on four
databases (COIL20, AR, PIE and LFWcrop), and compare
it with the recently proposed algorithms SRC (Wright et al.
2009) and Riemannian Sparse Representation (RSR) (Ha-
randi et al. 2012). In the experiments, α = 0.5, PCA and
down-sampling are selected as preprocessing for each ap-
proach respectively, where PCA reduces dimensionality to
200. In Euler SRC, we set γ = 1.9 in the following experi-
ments.

Experiments on Image Classification

The AR database (Martinez 1998) contains over 4000 color
face images of 126 people, including frontal views of faces
with different facial expressions, lighting conditions and oc-
clusions. The pictures of 120 individuals (65 men and 55
women) are taken in two sessions (separated by two weeks).

Figure 2: Some samples in the AR dataset.

Figure 3: Some samples in the COIL20 dataset.

Figure 4: Some samples in the PIE dataset.

Figure 5: Some samples in the LFWCrop dataset.

Each session contains 13 color images, in which 6 of them
are with occlusion and the other 7 full facial images are
with different facial expressions and lighting conditions. In
the experiments, we manually cropped the face portion of
the image and then normalized it to 50×40 pixels. Figure 2
shows some normalized images of one person. We do three
group experiments in this database. Experiment 1: We con-
sider the corrupted training images with sunglasses. We se-
lect facial images (a)-(g) and image (h) with sunglasses for
training, and the remaining full facial images and the im-
ages with sunglasses, which include 2 images from session
one and 3 images from session two, for testing. In summary,
we have 960 training images and 1440 testing images. Ex-
periment 2: We consider the impact of occlusion images cor-
rupted by scarfs, which occlude about 40% of the face im-
age, for image classification. In the experiments, we select
images from (a) to (g) and image (k) per person for train-
ing, and images from (n) to (t) and image (x) per person for
testing. Thus, we again end up with 960 training images and
1440 testing images. Experiment 3: We consider the impact
of occlusion images corrupted by sunglasses and scarfs. In
this experiment, we select 7 full facial images from (a) to (g)
and two corrupted images (h) and (k) per person for training,
and the remaining images for testing. Thus, we have 1080
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Table 3: The average classification rate (%) and standard de-
viation on the AR dataset using PCA as a preprocessing.

Methods SRC RSR Euler SRC
Exp.1 80.00±0.49 81.26±0.39 82.98±0.42
Exp.2 77.74±1.12 81.29±0.33 83.63±0.83
Exp.3 78.72±0.19 79.90±0.20 81.96±1.15

Table 4: The average classification rate (%) and standard de-
viation on the AR dataset using down-sampling as a prepro-
cessing.

Methods SRC RSR Euler SRC
Exp.1 77.80±0.40 79.01±0.39 80.32±0.89
Exp.2 75.90±0.19 77.00±0.29 77.25±0.29
Exp.3 76.21±0.11 80.23±0.17 81.37±1.14

Table 5: The average classification rate (%) and standard de-
viation on the COIL20, PIE and LFWCrop datasets using
PCA as a preprocessing.

Methods SRC RSR Euler SRC
COIL20 98.71±0.77 98.93±0.27 99.28±0.50

PIE 96.76±1.55 97.01±1.23 97.74±1.53
LFWCrop 50.40±3.04 53.62±1.01 55.13±2.86

Table 6: The average classification rate (%) and standard de-
viation on the COIL20, PIE and LFWCrop datasets using
down-sampling as a preprocessing.

Methods SRC RSR Euler SRC
COIL20 99.05±0.60 99.51±0.31 99.63±0.29

PIE 96.72±1.64 97.03±0.91 97.99±1.82
LFWCrop 51.03±2.10 51.06±1.01 52.20±1.86

training images and 2040 testing images. All of the afore-
mentioned experiments are repeated 3 times.

The COIL20 database (Nene et al. 1996) includes 1440
color images of 20 objects (72 images per object). The ob-
ject has a wide variety of complex geometric and reflectance
characteristics. This database, called Columbia Object Im-
age Library (COIL-20), was used in a real-time 20 object
recognition system. Each object was placed in a stable con-
figuration at approximately the center of the turntable. The
turntable was then rotated through 360 degrees and 72 im-
ages were taken per object; one at every 5 degrees of rota-
tion. Some sample images of one object are shown in Figure
3. In this database, we randomly select 10 images per sub-
ject for training, and the remaining images for testing. All of
experiments are repeated 10 times.

The CMU PIE database (Sim, Baker, and Bsat 2002) con-
tains 68 subjects with 41368 face images as a whole. Face
images of each person are captured by 13 synchronized cam-
eras and 21 flashes, under 43 different illumination condi-
tions, and with 4 different expressions. In the experiment,
we select pose C05 (a nearly frontal pose) as gallery which

includes 68 persons and 49 images for each person. All im-
ages were manually aligned, cropped, and resized to 64×64
pixels. Some sample images of one person are shown in Fig-
ure 4. In this database, we randomly select 7 images per sub-
ject for training, and the remaining images for testing. All of
experiments are repeated 10 times.
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Figure 6: The average accuracy of Euler SRC vs. γ on the
COIL20 database
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Figure 7: Convergence curve of Euler SRC on four
databases.

The LFWCrop database (Sanderson and Lovell 2009) is
a cropped version of the Labeled Faces in the Wild (LFW)
dataset (Huang et al. 2007). In the vast majority of images,
almost all of the background is omitted. The extracted area
was then scaled to a size of 64x64 pixels. The cropped faces
in LFWCrop exhibit real-life conditions, including misalign-
ment, scale variations, in-plane as well as out-of-plane rota-
tions. Some sample images of one person are shown in Fig-
ure 5. In the experiment, we choose person who has more
than 20 photos but less than 100 photos as the sub-dataset,
which contains 57 classes and 1883 images. For each person,
we randomly choose ninety percent of images for training,
and the remaining images for testing. We repeat this process
10 times.
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Figure 8: Face recovery results of Euler SRC on the AR dataset.

Figure 9: Face recovery results of SRC on the AR dataset.

Table 3 and Table 4 list the average classification accuracy
and standard deviation on the AR dataset. Table 5 and Table
6 list the average classification accuracy and standard devi-
ation on the COIL20, PIE and LFWCrop datasets, respec-
tively. Figure 6 plots the recognition accuracy of Euler SRC
vs. parameter γ on the COIL20 database. Figure 7 shows the
convergence curve of Euler SRC on the AR, COIL20, PIE
and LFWCrop databases respectively.

Comparing the aforementioned experiments, we have the
several interesting observations as follows.

• Table 3 to Table 6 show that Euler SRC is overall supe-
rior to SRC and RSR. This is probably because that Euler
space can help improve the separability of data and ob-
tain a large margin for different classes. Moreover, SRC
and RSR are performed in image pixels space, which is
very sensitive to outliers and illumination.

• Figure 6 shows that when γ = 1.9, we get a best classifi-
cation accuracy on the COIL20 database. This is probably
because that Euler representation can well suppress out-
liers. It is consistent with (Liwicki et al. 2013). Figure 6
also illustrates that parameter gamma has a small effect
for the performance of Euler SRC.

• Figure 7 illustrates that our proposed iterative algorithm
monotonically decreases the objective function in each it-
eration and can get converged within a few iterations, al-
though we cannot prove it in theoretical analysis. We will
study it in our future work.

Experiments on Face Representation

To illustrate the robustness of Euler SRC, We evaluate Euler
SRC and SRC for face representation on the AR database
database. The training images is the same as that in the
aforementioned experiments in the AR dataset. The original
face images, recovered faces and error faces of Euler SRC
and SRC are described in Figure 8 and Figure 9, respec-
tively. As can be seen in Figure 8 and Figure 9, Euler SRC
well remove the occlusions from the noise images. It means
that Euler SRC is superior to SRC for image reconstruction.
The reason may be that Euler representation is more robust
to outliers than image pixels representation.

Conclusions

We present a robust Euler sparse representation, which is
called Euler SRC, for image classification. Different from
kernel SRC, Euler SRC maps the images into a Euler space
by explicit Euler representation and does not increase the di-
mensionality of image space. Thus, it is easy to realize Euler
SRC in real applications. We provide an algorithm to find
an exact sparse representation, which can best optimize the
objective function. Experiments on the AR, COIL20, PIE
and LFWCrop databases illustrate the advantages of the pro-
posed approach.
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