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Abstract

With the rapidly increasing popularity of deep neural net-
works for image recognition tasks, a parallel interest in gen-
erating adversarial examples to attack the trained models has
arisen. To date, these approaches have involved either directly
computing gradients with respect to the image pixels or di-
rectly solving an optimization on the image pixels. We gen-
eralize this pursuit in a novel direction: can a separate net-
work be trained to efficiently attack another fully trained net-
work? We demonstrate that it is possible, and that the gen-
erated attacks yield startling insights into the weaknesses of
the target network. We call such a network an Adversarial
Transformation Network (ATN). ATNs transform any input
into an adversarial attack on the target network, while being
minimally perturbing to the original inputs and the target net-
work’s outputs. Further, we show that ATNs are capable of
not only causing the target network to make an error, but can
be constructed to explicitly control the type of misclassifica-
tion made. We demonstrate ATNs on both simple MNIST-
digit classifiers and state-of-the-art ImageNet classifiers de-
ployed by Google, Inc.: Inception ResNet-v2.

With the resurgence of deep neural networks for many
real-world classification tasks, there is an increased interest
in methods to assess the weaknesses in the trained models.
Adversarial examples are small perturbations of the inputs
that are carefully crafted to fool the network into producing
incorrect outputs. Seminal work by (Szegedy et al. 2013)
and (Goodfellow, Shlens, and Szegedy 2014), as well as
much recent work, has shown that adversarial examples are
abundant, and that there are many ways to discover them.

Given a classifier f(x) : x ∈ X → y ∈ Y and
original inputs x ∈ X , the problem of generating untar-
geted adversarial examples can be expressed as the opti-
mization: argminx∗ L(x,x∗) s.t. f(x∗) �= f(x), where
L(·) is a distance metric between examples from the in-
put space (e.g., the L2 norm). Similarly, generating a tar-
geted adversarial attack on a classifier can be expressed as
argminx∗ L(x,x∗) s.t. f(x∗) = yt, where yt ∈ Y is some
target label chosen by the attacker.

Until now, these optimization problems have been solved
using three broad approaches: (1) By directly using opti-
mizers like L-BFGS or Adam (Kingma and Ba 2015), as

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proposed in (Szegedy et al. 2013) and (Carlini and Wagner
2016). (2) By approximation with single-step gradient-based
techniques like fast gradient sign (Goodfellow, Shlens, and
Szegedy 2014) or fast least likely class (Kurakin, Goodfel-
low, and Bengio 2016). (3) By approximation with itera-
tive variants of gradient-based techniques (Kurakin, Good-
fellow, and Bengio 2016; Moosavi-Dezfooli et al. 2016;
Moosavi-Dezfooli, Fawzi, and Frossard 2016). These ap-
proaches use multiple forward and backward passes through
the target network to more carefully move an input to-
wards an adversarial classification. Other approaches as-
sume a black-box model and only having access to the tar-
get model’s output (Papernot et al. 2016; Baluja, Covell, and
Sukthankar 2015; Tramèr et al. 2016). See (Papernot et al.
2015) for a discussion of threat models.

Each of the above approaches solved an optimization
problem such that a single set of inputs was perturbed
enough to force the target network to make a mistake.
We take a fundamentally different approach: given a well-
trained target network, can we create a separate, attack-
network that, with high probability, minimally transforms
all inputs into ones that will be misclassified? No per-sample
optimization problems should be solved. The attack-network
should take as input a clean image and output a minimally
modified image that will cause a misclassification in the tar-
get network. Further, can we do this while imposing strict
constraints on the types and amount of perturbations al-
lowed? We introduce a class of networks, called Adversarial
Transformation Networks, to efficiently address this task.

Adversarial Transformation Networks

In this work, we propose Adversarial Transformation Net-
works (ATNs). An ATN is a neural network that transforms
an input into an adversarial example against a target network
or set of networks. ATNs may be untargeted or targeted, and
trained in a black-box or white-box manner. In this work, we
will focus on targeted, white-box ATNs.

Formally, an ATN can be defined as a neural network:

gf,θ(x) : x ∈ X → x′ (1)

where θ is the parameter vector of g, f is the target network
which outputs a probability distribution across class labels,
and x′ ∼ x, but argmax f(x) �= argmax f(x′).
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Training. To find gf,θ , we solve the following:

argmin
θ

∑
xi∈X

βLX (gf,θ(xi),xi) + LY(f(gf,θ(xi)), f(xi))

(2)
where LX is a loss function in the input space (e.g., L2 loss
or a perceptual similarity loss like (Johnson, Alahi, and Fei-
Fei 2016)), LY is a specially-formed loss on the output space
of f (described below) to avoid learning the identity func-
tion, and β is a weight to balance the two loss functions. We
will omit θ from gf when there is no ambiguity.

Inference. At inference time, gf can be run on any input x
without requiring further access to f or more gradient com-
putations. This means that after being trained, gf can gener-
ate adversarial examples against the target network f even
faster than the single-step gradient-based approaches, such
as fast gradient sign, so long as ||gf || � ||f ||.

Loss Functions. The input-space loss function, LX ,
would ideally correspond closely to human perception.
However, for simplicity, L2 is sufficient. LY determines
whether or not the ATN is targeted; the target refers to the
user-specified class for which the adversary will cause the
classifier to output the maximum value. In this work, we fo-
cus on the more challenging case of creating targeted ATNs,
which can be defined similarly to Equation 1:

gf,t(x) : x ∈ X → x′ (3)

where t is the target class, so that argmax f(x′) = t. This
allows us to target the exact class the classifier should mis-
takenly believe the input is.

In this work, we define LY,t(y
′,y) = L2(y

′, r(y, t)),
where y = f(x), y′ = f(gf (x)), and r(·) is a reranking
function that modifies y such that yk < yt, ∀ k �= t.

Note that training labels for the target network are not re-
quired at any point in this process. All that is required is the
target network’s outputs y and y′. It is therefore possible to
train ATNs in a self-supervised manner, where they use un-
labeled data as the input and make argmax f(gf,t(x)) = t.

Reranking function. There are a variety of options for the
reranking function; this is a novel mechanism through which
we can impose strict constraints on the types and amounts of
perturbations permitted.

The simplest reranking is to set r(y, t) = onehot(t),
but other formulations make better use of the implicit sig-
nal in y to encourage better reconstructions. Our reranking
functions attempt to keep r(y, t) ∼ y. This is an impor-
tant, novel, aspect of our work: rather than solely enforcing
small perturbations by directly minimizing L2 changes of
the input pixels, we also penalize the ATN if the ranks of the
target-network’s outputs are changed (except for the targeted
class). In particular, we use r(·) that maintains the rank order
of all but the targeted class in order to minimize distortions
when computing x′ = gf,t(x).

Specifically, r(·) has the following form:

rα(y, t) = norm

({
α ∗maxy if k = t

yk otherwise

}
k∈y

)
(4)

α > 1 is an additional parameter specifying how much
larger yt should be than the current max classification.
norm(·) is a normalization function that rescales its input
to be a valid probability distribution.

Adversarial Example Generation

There are two approaches to generating adversarial exam-
ples with an ATN. The ATN can be trained to generate just
the perturbation to x, or it can be trained to generate an ad-
versarial autoencoding of x.

• Perturbation ATN (P-ATN): To just generate a pertur-
bation, it is sufficient to structure the ATN as a varia-
tion on the residual block (He et al. 2015): gf (x) =
tanh(x + G(x)), where G(·) represents the core func-
tion of gf . With small initial weight vectors, this structure
makes it easy for the network to learn to generate small,
but effective, perturbations.

• Adversarial Autoencoding (AAE): AAE ATNs are simi-
lar to standard autoencoders, in that they attempt to accu-
rately reconstruct the original input, subject to regulariza-
tion, such as weight decay or an added noise signal. For
AAE ATNs, the regularizer is LY . This imposes an addi-
tional requirement on the AAE to add some perturbation
p to x such that r(f(x′)) = y′.

For both ATN approaches, in order to enforce that x′ is a
plausible member of X , the ATN should only generate val-
ues in the valid input range of f . For images, it suffices to
set the activation function of the last layer to be the tanh
function; this constrains each output channel to [−1, 1].

Attacking MNIST Networks

To begin our empirical exploration, we train five networks
on the standard MNIST digit classification task (LeCun,
Cortes, and Burges 1998). The networks are trained and
tested on the same data; they vary only in the weight ini-
tialization and architecture, as shown in Table 1 (accuracies

Table 1: Baseline Accuracy of Five MNIST Classifiers

Architecture Accuracy
Classifier-Primary (Classifierp)
(5x5 Conv)→ (5x5 Conv)→ FC→ FC 98.6%

Classifier-Alternate-0 (Classifiera0)
(5x5 Conv)→ (5x5 Conv)→ FC → FC 98.5%

Classifier-Alternate-1 (Classifiera1)
(4x4 Conv)→ (4x4 Conv)→ (4x4 Conv)

→FC→FC
98.9%

Classifier-Alternate-2 (Classifiera2)
(3x3 Conv)→ (3x3 Conv)→ (3x3 Conv)

→FC→FC
99.1%

Classifier-Alternate-3 (Classifiera3)
(3x3 Conv) →FC→FC→FC 98.5%

2688



Figure 1: (Left) A simple classification network that takes
input image x. (Right) With the same input, x, the ATN
emits x′, which is fed into the classification network. In the
example shown, the input digit is classified correctly as a 3
(on the left). ATN7 takes x as input and generates a modified
image (3′). When 3′ is input into the classifier, it outputs a 7
as the highest activation and the previous highest classifica-
tion, 3, as the second highest (right).

range between 98.5 and 99.1%). Each network has a mix of
convolution (Conv) and Fully Connected (FC) layers. The
input is a 28x28 gray-scale image and the output is 10 logit
units. Classifierp and Classifiera0 use the same architecture,
only differing in the weight initialization. To begin, we will
use Classifierp as the target network for the experiments.

We attempt to create an Adversarial Autoencoding ATN
that can target a specific class given any input image. The
ATN is trained against a particular classifier as illustrated
in Figure 1. The ATN takes the original input image, x, as
input, and outputs a new image, x′, that the target classifier
should erroneously classify as t. We also add the reranking
constraint that the ATN should maintain the ordering of all
the other classes as initially output by the classifier. We train
ten ATNs against Classifierp – one for each target digit, t.

An example is provided to make this concrete. If a clas-
sifier is given an image, x3, of the digit 3, a successful
ordering of the outputs (from largest to smallest) may be
as follows: Classifierp(x3) → [3, 8, 5, 0, 4, 1, 9, 7, 6, 2]. If
ATN7 is applied to x3, when the resulting image, x′

3, is fed
into the same classifier, the following ordering of outputs is
desired (note that the 7 has moved to the highest output):
Classifierp(ATN7(x3)) → [7, 3, 8, 5, 0, 4, 1, 9, 6, 2].

Training ATNt proceeds as follows. The weights of
fully-trained-Classifierp are frozen and never change during
ATN training. Every training image, x, is passed through
Classifierp to obtain output y. As described in Equation 4,
we then compute rα(y, t) by copying y to a new value, yr,
setting yrt = α ∗ max(y), and then renormalizing yr to be
a valid probability distribution. This sets the target class, t,
to have the highest value in yr while maintaining the rela-
tive order of the other original classifications. In the MNIST
experiments, we empirically set α = 1.5.

Table 2: Average success of ATN0−9 at transforming an im-
age such that it is misclassified by Classifierp. As β is re-
duced, the ability to fool Classifierp increases. The misclas-
sification column is the percentage of times Classifierp la-
beled x′ as t.

Architecture Successful Attack

ATNa
FC → FC →
28x28 Image

69.1% (β=0.010)
84.1% (β=0.005)
95.9% (β=0.001)

ATNb

(3x3 Conv)→ (3x3 Conv) →
(3x3 Conv) →
FC → 28x28 Image

61.8% (β=0.010)
77.7% (β=0.005)
89.2% (β=0.001)

ATNc

(3x3 Conv)→ (3x3 Conv)→
(3x3 Conv) → Deconv:7x7
→ Deconv:14x14
→ 28x28 Image

66.6% (β=0.010)
82.5% (β=0.005)
91.4% (β=0.001)

Given yr, we can now train ATNt to generate x′ by mini-
mizing β ∗LX = β ∗L2(x

′,x) and LY = L2(y
′,yr) using

Equation 2. Though the weights of Classifierp are frozen,
error derivatives are still passed through them to train the
ATN. We explore three values of β to balance the two loss
functions. The results are shown in Table 2.

Experiments. We trained three ATN architectures for the
AAE task, and each was trained with three values of β
against all ten targets, t. The full 3 × 3 set of experiments
are shown in Table 2. The accuracies shown are the abil-
ity of ATNt to transform an input image x into x′ such that
Classifierp mistakenly classifies x′ as t. Each measurement
in Table 2 is the average of the 10 networks, ATN0−9.

Results. In Figure 2(top), each row is the transformation that
ATNt makes to digits that were initially correctly classified
as 0-9 (columns). E.g., in the top row, the digits 1-9 are now
all classified as 0. In all cases, their second highest classifi-
cation is the original correct classification (0-9).

The reconstructions shown in Figure 2(top) have the
largest β; smaller β values are shown in the bottom row.
The fidelity to the underlying digit diminishes as β is re-
duced. However, by loosening the constraints to stay similar
to the original input, the number of trials in which the trans-
former network is able to successfully “fool” the classifica-
tion network increases dramatically, as seen in Table 2. In-
terestingly, with β = 0.010, in Figure 2(second row), where
there should be a ‘0’ that is transformed into a ‘1’, no digit
appears. With this high β, no example was found that could
be transformed to successfully fool Classifierp. With the two
smaller β values, this anomaly does not occur.

Figure 3 provides a closer look at examples of x and x′
for ATNc with β = 0.005. A few points should be noted:

• The transformations maintain the large, empty regions of
the image. Unlike numerous previous adversarial stud-
ies, salt-and-pepper type noise was not created (Nguyen,
Yosinski, and Clune 2014; Moosavi-Dezfooli, Fawzi, and
Frossard 2016).
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Figure 2: Successful adversarial examples from ATNt

against Classifierp. Top is with the highest β = 0.010. Bot-
tom two are with β = 0.005 & 0.001, respectively. Note
that as β is decreased, the fidelity to the underlying digit
decreases. The column in each block corresponds to the cor-
rect classification of the image. The row corresponds to the
adversarial classification, t.

• In the majority of cases, the shape of the digit does not
change. This is the desired behavior: by training the net-
works to maintain ranks (other than the top), only minimal
changes should be made.

• Vertical-linear components of the original images are em-
phasized in several digits; it is especially noticeable in the
digits transformed to 1.

A novel aspect of ATNs is that though they cause the tar-
get classifier to output an erroneous top-class, they are also

Figure 3: Typical transformations made to MNIST digits
against Classifierp. Black digits on the white background are
output classifications from Classifierp. The bottom classifi-
cation is the original (correct) classification. The top classifi-
cation is the result of classifying the adversarial example. In
all of these images, the adversarial example is classified as
t = argmaxy′ while maintaining the second highest output
in y′ as the original classification, argmaxy.

Table 3: How much do the ranks of the top-5 outputs change
when presented with the adversarial image? In parentheses:
same statistic measured on all the outputs.

β:
0.010 0.005 0.001

ATNa 0.93 (0.99) 0.98 (1.04) 1.04 (1.13)
ATNb 0.81 (0.87) 0.83 (0.89) 0.86 (0.93)
ATNc 0.79 (0.85) 0.83 (0.90) 0.89 (0.97)

trained to ensure that the transformation preserves the exist-
ing output ordering of the target-classifier (other than the
top-class). For the examples that were successfully trans-
formed, Table 3 measures how much the classifier’s out-
puts change when presented with the adversarial image. The
first number in each cell shows how much the top-5 clas-
sifications of the original image moved, on average, when
presented with the adversarial image. The second numbers
show the same for all the positions (all measurements ex-
clude the intentional target misclassification).

Adversarial Transfer to Unseen Networks

So far, we have examined ATNs in the context of attacking
a single classifier. Do ATNs create adversarial examples that
generalize to other classifiers (Moosavi-Dezfooli et al. 2016;
Liu et al. 2016)? To test transfer, we take the adversarial
examples from the previously trained ATNs and test them
against Classifiera0,a1,a2,a3 (described in Table 1).

The results in Table 4 clearly show that the transforma-
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Figure 4: The ATN now has to fool three networks (of vari-
ous architectures), while also minimizing LX and maintain-
ing ranks of the outputs.

tions made by the ATN do not transfer; they are tied to the
network it is trained to attack. Even Classifiera0, which has
the same architecture as Classifierp, is not more susceptible
to the attacks than those with different architectures. Look-
ing at the second place correctness scores (in the same Ta-
ble 4), it may, at first, seem counter-intuitive that the condi-
tional probability of a correct second-place classification re-
mains high despite a low first-place classification. The rea-
son for this is that in the few cases in which the ATN was
able to successfully change the classifier’s top choice, the
second choice (the real classification) remained a close sec-
ond (i.e., the image was not transformed in a large manner),
thereby maintaining the high performance in the conditional
second rank measurement.

We can, however, explicitly make the ATN attack mul-
tiple networks. For this, we created an ATN that receives
training signals from multiple networks, as shown in Fig-
ure 4. As with the earlier training, the LX reconstruction
error remains. The new ATN was trained with classification
signals from three networks: Classifierp, and Classifiera1,2.
The training proceeds in exactly the same manner as de-
scribed earlier, except the ATN attempts to minimize LY for
all three target networks at the same time. The results are

Table 4: ATNb with β = 0.005 trained to defeat Classifierp.
Tested on 5 classifiers, without further training, to measure
transfer. “Rank-1” is the percentage of times t was the top
classification. “Rank-2 (cond)” measures how many times
the original top class (argmaxy) was correctly placed into
2nd place, when the 1st place was correct (conditional);
“Rank-2 (uncond)”: not conditional on 1st place being cor-
rect.

Classifier
Cp* Ca0 Ca1 Ca2 Ca3

rank 1 correct 83% 16% 16% 8% 29%
rank 2 correct (cond) 97% 85% 89% 85% 82%

rank 2 correct (uncond) 80% 16% 16% 8% 26%

shown in Table 5. First, examine the columns correspond-
ing to the networks that were used in the training (marked
with an *). Note that the success rates of attacking these
three classifiers are consistently high, comparable with those
when the ATN was trained with a single network. Therefore,
it is possible to learn a transformation network that modifies
images such that perturbation defeats multiple networks.

Next, we turn to the remaining two networks to which the
adversary was not given access during training. Although
the results do not match the networks used in training, there
is a large increase in success rates over those when the ATN
was trained with a single target network (Table 4). It is likely
that simultaneously training against larger numbers of target
networks at will further increase the transferability of the
adversarial examples; this is left for future exploration.

Table 5: ATNb retrained with 3 networks (marked with *).
(The same notation as Table 4 is used here).

Classifier
Cp* Ca0 Ca1* Ca2* Ca3

rank 1 correct 94% 35% 88% 83% 64%
rank 2 cor. (cond) 97% 88% 97% 96% 73%

rank 2 cor. (uncond) 91% 31% 85% 80% 47%

Attacking ImageNet Networks

We explore the effectiveness of ATNs on ImageNet (Deng et
al. 2009), which consists of 1.2 million natural images cate-
gorized into 1 of 1000 classes. The target classifier, f , used
in these experiments is a pre-trained state-of-the-art classi-
fier released by Google, Inc.: Inception ResNet v2 (IR2),
that has a top-1 single-crop error rate of 19.9% on the 50,000
image validation set, and a top-5 error rate of 4.9%. It is de-
scribed fully in (Szegedy et al. 2016)(Alemi 2016).

We trained AAE ATNs and P-ATNs to attack IR2; training
followed the same procedures as were described with the
MNIST experiments. IR2 takes as input images scaled to
299× 299 pixels of 3 channels each. To autoencode images
of this size for the AAE task, we use three different fully
convolutional architectures (Table 6):

• IR2-Base-Deconv, a small architecture that uses the first
few layers of IR2 and loads the pre-trained parameter val-
ues at the start of training the ATN, followed by deconvo-
lutional layers;

• IR2-Resize-Conv, a small architecture that avoids
checkerboard artifacts common in deconvolutional layers
by using bilinear resize layers to down-sample and
up-sample between stride 1 convolutions; and

• IR2-Conv-Deconv, a medium architecture that is a tower
of convolutions followed by deconvolutions.

For the perturbation approach, we use IR2-Base-Deconv
and IR2-Conv-FC. IR2-Conv-FC has many more parameters
than the other architectures due to the large fully-connected
layers. These cause the network to learn too slowly for the
autoencoding approach (AAE ATN), but can be used to learn
perturbations quickly (P-ATN).
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Figure 5: Adversarial diversity. Left 4 columns: successful adversarial examples for different target classes from a variety of
ATNs. From the left: Zebra, Binoculars, Soccer Ball, Volcano. Middle 2 columns: zoomed examples. Unlike existing adversarial
techniques where adversarial examples look similar, these adversarial examples exhibit a great deal of diversity. Consider (D),
in which the space shuttle is mistaken as a zebra, the ATN made the lines on the tarmac darker and more organic — evocative
of a zebra’s stripes. Yet clearly no human would mistake this for an image of a zebra. Similarly, in (A), the dog’s face has been
speckled with a few orange dots, and these are sufficient to convince IR2 that it is a volcano. Images A, B, and D are from AAE
ATN IR2-Conv-Deconv. Images C and F are from AAE ATN IR2-Resize-Conv. Image E is from P-ATN IR2-Conv-FC. Right
column: Adversaries generated by gradient based methods (FGS) shown for comparison. Note the qualitative properties: these
largely consist of additional noise, and no semantic information about the classifier is conveyed.

Training Details: All networks are trained with the same
hyper-parameters. For each architecture and task, we trained
four networks, one for each target class: binoculars, soccer
ball, volcano, and zebra. In total, 20 different ATNs were
trained to attack IR2. To find a good set of hyper-parameters
for these networks, a series of grid searches were conducted
through reasonable values for learning rate, α, and β, us-
ing only a single target (not all 4). Those training runs were
terminated after 0.025 epochs – an extremely short training
regime (only 1600 training steps with a batch size of 20).
Based on the parameter search, we set the learning rate to
0.0001, α = 1.5, and β = 0.01 for all of the networks
trained. All runs were trained for 0.1 epochs (6400 steps)
on shuffled training set images, using the Adam optimizer
and TensorFlow defaults. To avoid hand-picking the best re-
sults after the networks were trained, we pre-selected four
images from the unperturbed validation set to use for the fig-
ures in this paper prior to training. Once training completed,
we evaluated the ATNs by passing 1000 images from the val-

idation set through the ATN and measuring IR2’s accuracy
on those adversarial examples.

Table 7 shows the top-1 adversarial accuracy of the 20
model/target combinations. The AAE approach is superior
to the perturbation approach. Between 83-92% of the image
inputs are successfully transformed into adversarial exam-
ples in a single forward pass through the ATN. 1

The two types of ATNs generate very different attacks.
The examples generated using the perturbation approach
preserve more pixels in the original image, at the expense of
a small region of large perturbations. In contrast, the AAE
architectures distribute the differences across wider regions
of the image. As seen, with all three AAE networks, many
of the original high-frequency patterns are replaced with the

1With the selected hyper-parameters, the P-ATNs for Volcano
diverged during training, and the perturbations were far from the
image manifold. Nonetheless, we kept the hyper-parameters fixed
in these experiments to accurately represent the challenge of train-
ing P-ATNs. We were able to more reliably train P-ATNs for Vol-
cano with different hyper-parameters found during our grid search.
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Table 6: ImageNet ATN Architectures.

IR2-Base-Deconv
(3.4M parameters):

IR2 MaxPool 5a (35x35x192) → Pad (37x37x192)
→ Deconv (4x4x512, stride=2) → Deconv (3x3x256, stride=2)

→ Deconv (4x4x128, stride=2) → Pad (299x299x128)
→ Deconv (4x4x3) → Image (299x299x3)

IR2-Resize-Conv
(3.8M parameters):

Conv (5x5x128) → Bilinear Resize (0.5) → Conv (4x4x256)
→ Bilinear Resize (0.5) → Conv (3x3x512)
→ Bilinear Resize (0.5) → Conv (1x1x512)

→ Bilinear Resize (2)→ Conv (3x3x256)
→ Bilinear Resize (2) → Conv (4x4x128)
→ Pad (299x299x128) → Conv (3x3x3)

→ Image (299x299x3)

IR2-Conv-Deconv
(12.8M parameters):

Conv (3x3x256, stride=2) → Conv (3x3x512, stride=2)
→ Conv (3x3x768, stride=2)

→ Deconv (4x4x512, stride=2)
→ Deconv (3x3x256, stride=2)

→ Deconv (4x4x128, stride=2) → Pad (299x299x128)
→ Deconv (4x4x3) → Image (299x299x3)

IR2-Conv-FC
(233.7M parameters):

Conv (3x3x512, stride=2) → Conv (3x3x256, stride=2)
→ Conv (3x3x128, stride=2)

→ FC (512) → FC (268203) → Image (299x299x3)

Table 7: IR2 ATN Performance

P-ATN TOP-1 ACCURACY
BINOC. SOCCR. VOLC. ZEB.

IR2-Base-Deconv 66.0% 56.5% 0.2% 43.2%
IR2-Conv-FC 79.9% 78.8% 0.0% 85.6%

AAE-ATN TOP-1 ACCURACY
BINOC. SOCCR. VOLC. ZEB.

IR2-Base-Deconv 83.0% 92.1% 88.1% 88.2%

IR2-Resize-Conv 69.8% 61.4% 91.1% 80.2%
IR2-Conv-Deconv 56.6% 75.0% 87.3% 79.1%

high frequencies that encode the adversarial signal.
Though not shown in detail for space limitations, note

that the results obtained from IR2-Base-Deconv revealed
that the same network architectures perform substantially
differently when trained as P-ATNs and AAE ATNs. Since
P-ATNs are only learning to perturb the input, these net-
works excel at preserving the majority of the original image,
but the perturbations end up being focused along the edges

or in the corners of the image. The form of the perturbations
often manifests itself as “DeepDream”-like images, or small
ghost/edges images placed in high frequency areas (Mordv-
intsev, Olah, and Tyka 2015) (see Figures 5-E & 6-bottom
left). For P-ATNs, approximately the same perturbation, in
the same place, is used across all input examples. Placing
the perturbations there is less likely to disrupt the other top
classifications, thereby keeping LY lower. This is in stark
contrast to the AAE ATNs, which creatively modify a larger
portion of the input, in semantically interpretable manners,
as seen in Figures 5 & 6.

Discussion

Perhaps most importantly to ascertaining the weaknesses of
the targeted network, Figure 5 shows that ATNs are capable
of generating a wide variety of small perturbations that all
cause the targeted network to make mistakes. In Figure 5,
consider the zoomed example, D. In D, the space shuttle im-
age that is normally classified correctly is transformed into
one that is mistaken as a zebra. To accomplish this, the ATN
made the lines on the tarmac darker and more “organic”
— evocative of a zebra’s stripes. Given how much of the
image is (to humans) still visually about the Space Shut-
tle, this misclassification provides clear insights into what
mistakenly triggers the network’s Zebra response. Similarly,
in example A (Figure 5), the dog’s face has been speckled
with only a few orange dots. These few pixels are sufficient
to convince the very-well trained, state-of-the-art ImageNet
classifiers, that the image is of a volcano, despite the over-
whelming evidence of a dog. It is crucial to understand the
role of preserving the target-network’s output here; the vast
majority of the image remains intact, thus preserving the
majority of the target network’s classification probabilities
(the classifier’s output vector). Based on empirical studies,
had rank-preservation not been employed, image transfor-
mations would have been less constrained, and thereby sig-
nificantly more disruptive.

In comparison, previous adversarial example genera-
tion often produced qualitatively uniform results (though
achieved in a variety of manners). Many amounted to adding
what appears as “salt-and-pepper” type noise to the image,
generally concentrating the noise at pixels with large gra-
dient magnitude for the particular adversarial loss function.
To demonstrate, we also tackled the same problem with fast
gradient sign (FGS) using a perturbation magnitude of 0.15.
Note that FGS adversaries are untargeted: the goal is to
make the classifier make any mistake, not to target a partic-
ular class. Even with this easier goal, we found that IR2 was
far less susceptible to these attacks. IR2 was able to correctly
classify 51.2% of the FGS generated examples (including
the 4 examples shown in Figure 5) (right). When the pertur-
bation magnitude was increased to 0.5 (yielding unaccept-
ably noisy images), the ability to fool IR2 remained signif-
icantly lower than the rates in with ATNs. Most important,
however, is that even when FGS was successful, there is little
to be gleaned from the example generated. Though the pixel-
noise that FGS finds sometimes fools IR2, the ATNs produce
coherent features that are both interpretable and more suc-
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Figure 6: Architecture comparisons. Top 2: Adversarial au-
toencoding ATNs. Bottom 2: Perturbation ATNs. All net-
works here are trained with the same hyper-parameters,
apart from the target class, which varies among zebra, soccer
ball, and volcano. There are substantial differences in how
each transforms the input (see the areas within the magenta
circles). The P-ATNs make perturbations along the edges,
where they are less likely to disrupt the other top classifica-
tions. This contrasts the AAE ATNs, which creatively mod-
ify each input individually, as seen here and in Figure 5. In
the top 2 images, note the heavy reliance on the content of
the image and the placement of perturbations and the differ-
ences in the attack methods: large wavy lines on the dog’s
face, compared with the small speckled orange dots when
trained for volcano (right). Finally, for the P-ATNs, note how
small some of the perturbations are; yet, they are enough to
cause mistakes in a well-trained ImageNet classifier.

cessful in attacking a well trained network.2 (Hendrik Met-
zen et al. 2017) recently showed that it may be possible to
train a detector for previous adversarial attacks. From the
perspective of an attacker, then, adversarial examples pro-
duced by ATNs may provide a new way past defenses in the
cat-and-mouse game of security, since this somewhat unpre-
dictable diversity will likely challenge such approaches to
defense.

One possible explanation for the occurrence of the “mis-
leading” information in the high frequency regions of the
image can be seen in Figure 5: some of the AAE-ATNs

2In terms of speed, the timing of FGS to generate an adversarial
example was approximately 0.58 seconds / sample generated. For
IR2-Conv-Deconv, it was 0.16 seconds, for IR2-Resize-Conv and
IR2-Conv-FC the timing was 0.55 and 0.61s.

do not completely reconstruct the original image’s high
frequency data. The convolutional architectures have diffi-
culty exactly recreating edges from the input image, due
to spatial data loss introduced when down-sampling and
padding. Consequently, the LX loss leads the networks to
learn smooth boundaries in the reconstruction. Because the
high-frequency regions cannot be reconstructed fully, this
provides an interesting opportunity for the ATNs: they can
make perturbations in regions that have already lost their
high-frequency information. This strategy is visible in many
examples; for example, in the dog image, many networks
make minimal modification to the sky, but add orange pixels
around the edges of the dog’s face, exactly where the LX er-
ror would be high even in a non-adversarial reconstruction.

Conclusions and Future Work

Current methods for generating adversarial samples involve
a gradient descent procedure on individual input examples.
We have presented a fundamentally different approach to
creating an adversary: a separate neural network can be
trained to attack a target network. This network, an ATN,
operates by converting any input into an adversarial example
with high probability. Even on well trained state-of-the-art
ImageNet classifiers, ATNs could, in a single pass, transform
between 83-92% of image inputs into adversarial attacks.
ATNs are efficient to train, fast to execute (only a single for-
ward pass), and produces diverse, successful, adversarial ex-
amples that also reveal weaknesses in trained classifiers.

In the future, it will be interesting to measure the difficulty
of detecting ATN attacks compared to attacks generated by
previous adversarial techniques. This may provide a quanti-
tative metric into determining which methods produces the
most realistic examples. Extending this line of inquiry, ex-
ploring the use of a Generative Adversarial Networks as dis-
criminators during training may even further improve the re-
alism of the ATN outputs. Finally, an avenue not explored
here, but that may be important when access to the target
network is limited, is training ATNs in a black-box man-
ner, similar to recent work in (Tramèr et al. 2016), or using
REINFORCE (Williams 1992) to compute gradients for the
ATN using the target network simply as a reward signal.
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