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Abstract

Learning a test-time efficient predictor is becoming important
for many real-world applications for which accessing the nec-
essary features of a test data is costly. In this paper, we pro-
pose a novel approach to learn a linear predictor by introduc-
ing binary indicator variables for selecting feature groups and
imposing an explicit budget constraint to up-bound the total
cost of selected groups. We solve the convex relaxation of
the resulting problem, with the optimal solution proved to be
integers for most of the elements at the optima and indepen-
dent of the specific forms of loss functions used. We propose
a general and efficient algorithm to solve the relaxation prob-
lem by leveraging the existing SVM solvers with various loss
functions. For certain loss functions, the proposed algorithm
can further take the advantage of SVM solver in the primal to
tackle large-scale and high-dimensional data. Experiments on
various datasets demonstrate the effectiveness and efficiency
of the proposed method by comparing with various baselines.

Machine learning algorithms have been widely used in
many real-world applications, ranging from web-search
engines (Chapelle and Chang 2011), medical diagnosis
(Kononenko 2001) and computer vision (Vedaldi et al.
2009). A learning algorithm is able to achieve a good model
in the training phase by leveraging all the admissible time
and computational resources, but it can be costly to predict
a new example whose features are difficult to access. In this
paper, we are interested in the setting where the test-time
cost consists of the time to extract features for learning mod-
els of various tasks (e.g., classification and regression), the
extraction costs are associated to groups of features, and they
vary highly across groups.

The test-time efficient prediction problem is becoming
important in various domains (Reyzin 2011; Xu et al. 2013;
Hu et al. 2016). In the Yahoo! Learning to Rank Chal-
lenge (Chapelle and Chang 2011), each query-document
pair consists of 519 features. In the extraction phase, each
feature has an acquisition cost as a discrete value in the set
[1, 5, 20, 50, 100, 150, 200]. The cheapest features with cost
1 are those that can be acquired by looking up a table (such
as the statistics of a given document), while the most ex-
pensive ones typically involve term proximity scoring (Xu,
Weinberger, and Chapelle 2012). In medical diagnosis, a
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number of tests are usually requested to be performed and
the test results are used by doctors to give an accurate pre-
diction. The costs of tests can greatly vary in terms of money
and valuable time. Thus, it is important to be able to di-
agnose as well as possible without performing unnecessary
tests (Reyzin 2011). It is well known that one test usually
generates a group of features for the purpose of diagnosis,
which is associated to a single cost to perform the test. In
computer vision, the groups of features are commonly ex-
tracted from a single image by taking a number of visual
descriptors so as to describe elementary characteristics of
images such as the distribution of edges, dense and sparse
visual words (Vedaldi et al. 2009). Accessing these charac-
teristics has varying cost, and each one of them is generally
represented by a set of features (or group). The setting with
a uniform cost on each group of features is widely studied in
multiple kernel learning (MKL) (Sonnenburg et al. 2006).

To solve the test-time efficient prediction problems, we
propose to learn a linear predictor by imposing a budget con-
straint over the costs of selected features. By introducing an
indicator variable for each group of features, the total cost
for test-time prediction can be easily modeled and the groups
involved in the prediction can be selected simultaneously. In
addition, the cost based on single feature is the special case
of the cost for groups if each group only contains one fea-
ture. Instead of solving the integer programming, we solve a
convex relaxation of the proposed problem. Experiments on
various datasets demonstrate the effectiveness and efficiency
of the proposed method by comparing with baselines. The
contributions of this paper are as follows:

• We propose a novel formulation based on SVMs to learn
a test-time efficient predictor with an upper bound on the
total cost used to access groups of features in the test sam-
ple. The formulation directly handles groups of features,
which is naturally applied to the costs of single features.

• We theoretically prove that the proposed relaxed problem
has a solution pattern where most of variables are integers
at optima. This makes the budget constraint close to the
original constraint defined on the integer variables.

• The solution pattern of the indicator variables is indepen-
dent of loss functions, so the same pattern is applied to
different learning problems such as classification and re-
gression. Our theoretical results hold for general losses.
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• The resulting optimization problem is convex. We pro-
pose a general and efficient algorithm to solve it by lever-
aging the existing SVM solvers with various loss func-
tions. For certain loss functions, the proposed algorithm
can further take the advantage of SVM solver in the pri-
mal to tackle large-scale and high-dimensional data.

Related Work
Research on the problem of feature-efficient prediction has
proceeded with various strategies. Greiner et al. (2002) con-
sidered the problem of feature efficient prediction, where a
classifier must choose features to examine before predicting.
Cesa-Bianchi et al. (2011) studied how to efficiently learn
a linear predictor in the setting where the learner can ac-
cess only a few features per example. In the similar setting,
Schwing et al. (2011) trained a random forest to adaptively
select experts at test-time via a tradeoff parameter. Pelos-
sof et al. (2010) analyzed how to speed up margin-based
learning algorithm by stopping criterion when the outcome
is close to certain. Sun and Zhou (2013) considered how to
order base learner evaluations so as to save prediction time.

The test-time budget for learning a predictor model is
taken into account in this paper where costs are associated to
features. Reyzin (2011) showed that sampling from a weight
distribution of an ensemble yields a budgeted learner with
similar properties to the original ensemble in boosting. He
et al. (2012) trained an MDP for this task by jointly optimiz-
ing feature costs and errors. Xu et al. (2012) tackled a re-
lated feature efficient regression problem by training CART
decision trees with feature costs incorporated as part of the
impurity function. In a principled fashion, Xu et al. (2013)
proposed cost-sensitive tree of classifiers by constructing a
tree of classifiers to reduce the average test-time complex-
ity and maximize the performance, which was solved more
efficiently by using approximate submodularity (Kusner et
al. 2014). Wang et al. (2015) model the classification sys-
tem as a directed acyclic graph for reducing test-time ac-
quisition costs. Grubb and Bagnell (2012) presented to se-
quentially choose weak learner and vote weights so as to
greedily minimize a loss function per unit cost until a bud-
get runs out. Huang et al. (2015) improved on Reyzin’s ap-
proach by considering the feature budget during training,
and the proposed greedy method was actually optimize the
similar objective function as the work (Grubb and Bagnell
2012). Nan et al. (2016) proposed to prune a random forest
for resource-constrained prediction. The features in groups
that have costs have also been studied by Hu et al. (2016),
where orthogonal matching pursuit and forward regression
were extended to solve the group setting with costs. Differ-
ent from the above methods, we learn an optimal linear pre-
dictor in the training stage to satisfy each budget constraint
instead of using ensemble predictors. Moreover, our model
can naturally represent the group-based budgets and is com-
putationally much more efficient on large-scale and high-
dimensional data. In addition, our algorithm converges the-
oretically to an ε-optimal solution with a fast convergence.

Our model for learning a linear predictor by imposing a
test-time budget is closely related to feature selection using
multiple kernel learning (MKL) (Sonnenburg et al. 2006;

Rakotomamonjy et al. 2008). MKL has also been success-
fully used for feature selection (Xu et al. 2009), where a
real variable in [0, 1] is introduced to represent the selec-
tion of each feature and the total number of selected feature
is bounded by a budget. Similar technique also was used in
(Do, Kalousis, and Hilario 2009), but derived by optimizing
the error bound in controlling both the margin and the radius
of SVM. Feature generating machine (FGM) (Tan, Tsang,
and Wang 2014) proposed to solve the similar binary classi-
fication problem by the cutting plane method (Kelley 1960).
This budget constraint was also applied to optimize multi-
variate performance measurements (Mao and Tsang 2013).
However, all above methods put the budget on the total num-
ber of selected features, so they ignore the varied costs asso-
ciated to either features or groups of features. Our proposed
method directly models these costs and put the budget on
the total cost of the predictor. As a result, FGM is a special
case of our model, i.e., these costs are all ones. Moreover,
our method is natural to work for general loss functions.

Learning with a Test-time Budget

We first formulate the learning problem to learn a linear pre-
dictor with a test-time budget. After the theoretical analysis,
we then propose a general optimization algorithm for vari-
ous loss functions with guaranteed convergence.

Problem formulation with general loss function

Our training dataset consists of N input vectors {xi}Ni=1

with corresponding labels {yi}Ni=1 drawn from an unknown
distribution where xi ∈ R

D and either yi ∈ {−1, 1} for
binary classification or yi ∈ R for regression, ∀i, respec-
tively. We assume that features are extracted from raw data
in groups and the mth group of features has an acquisition
cost cm > 0, ∀m. Let xi = [φ1(xi);φ2(xi); . . . ;φM (xi)]
where φm(xi) ∈ R

gm is a subset of the ith input vector cor-
responding to the mth group. Further, we assume that groups
do not allow to share features, e.g.,

∑M
m=1 gm = D.

A budget B is defined as the upper bound of the total cost
used for test-time prediction, By introducing indicator vari-
able dm ∈ {0, 1} for the mth group, we can readily define
the total cost of the selected groups as

∑M
m=1 cmdm where

dm = 1 means the mth group is selected. The budget con-
strain is then formulated as

∑M
m=1 cmdm ≤ B. Since the

constraint is defined over integer variables, it is challenging
to optimize for general objectives. Here, we seek to relax ev-
ery integer constraint to a linear constraint dm ∈ [0, 1] and
propose the following optimization problem

min
d∈D′,w,b,f

1

2

M∑
m=1

||wm||2
dm

+ C

N∑
i=1

�(fi, yi) (1)

s.t. fi =
M∑

m=1

〈wm, φm(xi)〉+ b, ∀i,

M∑
m=1

cmdm ≤ B, 0 ≤ dm ≤ 1, ∀m,

where w = [wT
1 ; . . . ,w

T
M ] is the coefficient vector of the

linear predictor, f = [f1, . . . , fN ] with fi as the decision
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value of xi, and � is a generic loss function defined on fi
and yi. In the next section, we theoretically prove that the
optimal solution of problem (1) keeps most dms as integer
values at optima. Further, for dm = 0, wm = 0 prevents
the objective from infinity by letting ||wm||2

dm
= 0, but dm

cannot be zeros for all groups, otherwise fi = b, ∀i. In other
words, dm = 0 means that the mth feature group is not
used to calculate the decision value f . Moreover, minimiz-
ing ||wm||2

dm
differs from minimizing

∑
m dm||wm||2 where

dm = 0 always holds at the optima. Hence, problem (1) can
automatically select a number of groups such that the sum
of costs of these selected groups is less than B.

Theoretical analysis on optimality condition

Let d = [d1, . . . , dm]. To obtain the dual problem of (1), we
introduce dual variables α, λ ≥ 0,η ≥ 0,γ ≥ 0. The dual
problem based on the Lagrangian L(w,d, b,α, λ,η,γ) of
(1) is represented by a minimax problem as

max
α,λ,η,γ

min
w,d,b

{
1

2

M∑
m=1

||wm||2
dm

−
N∑

i=1

αi

( M∑
m=1

〈wm, φm(xi)〉 + b
)

+ λ
( M∑

m=1

cmdm − B
) − η

T
d + γ

T
(d − 1)

}

+ min
f

{
C

N∑
i=1

�(fi, yi) +
N∑

i=1

αifi

}

To simplify the above problem, the derivatives of the La-
grangian w.r.t. the primal variables, d,w, b, have to vanish,
which leads to KKT conditions

wm = dm

N∑
i=1

αiφm(xi),∀m (2)

N∑
i=1

αi = 0, (3)

−1

2

||wm||2
d2m

+ λcm − ηm + γm = 0,∀m (4)

λ

(
M∑

m=1

cmdm −B

)
= 0, (5)

ηmdm = 0,∀m (6)
γm(dm − 1) = 0,∀m (7)

λ ≥ 0,η ≥ 0,γ ≥ 0. (8)

In terms of (2) and (4), we have

−1

2
||

N∑
i=1

αiφm(xi)||2 + λcm − ηm + γm = 0, ∀m. (9)

According to (2), (3), (8) and (9), we obtain dual problem

max
α,λ≥0,γ≥0

− λB−γT1+min
f

{
C

N∑
i=1

�(fi, yi)+

N∑
i=1

αifi

}
(10)

s.t.
1

2
||

N∑
i=1

αiφm(xi)||2 ≤ λcm + γm, ∀m,

N∑
i=1

αi = 0.

As we see, the property of optimal values d is independent
of the specific form of loss functions, which is illustrated in
the following proposition.

Proposition 1. An optimal solution of d in (10) is ∀m,

dm =

⎧⎪⎨
⎪⎩

0, ηm > 0 or ηm = γm = 0 and λ = 0

1, γm > 0
B−∑

m �∈M cmdm

|M|cm , ηm = γm = 0 and λ > 0

where M = {m| 1
2cm

||∑N
i=1 αiφm(xi)||2 = λ > 0, ηm =

γm = 0, ∀m}. All the values dm can be either 0 or 1 except
those with m ∈ M.

Remark 1. In Proposition 1, any value dm in (0, 1)

will satisfy the condition 1
2cm

||∑N
i=1 αiφm(xi)||2 = λ >

0, ∀m ∈ M. Suppose that for m,m′ ∈ M, the given data
must have the following equality:

cm
c′m

=
||∑N

i=1 αiφm(xi)||2
||∑N

i=1 αiφ′
m(xi)||2

=
αTKmα

αTK′
mα

, (11)

where Km is the gram matrix over φm(xi), ∀i. In general,
equality (11) holds for a small number of features which is
observed in Table 2.

Remark 2. According to Proposition 1, the solution pat-
tern of d is not directly related to the specific form of the loss
function � defined in the model. In other words, the same
solution pattern of d is inherited by the model for various
learning problems based on different loss functions.

Reformulation for efficient optimization

We propose to solve problem (10) with a general loss func-
tion. It is well-known that solving problem (10) is challeng-
ing due to the quadratic constraints. Thus, we resort to an
equivalent reformulation by fixing d and obtain the duality
problem with respect to w and b by following the above sim-
ilar derivations.

Let S(α) = minf C
∑N

i=1 �(fi, yi) +
∑N

i=1 αifi. As a
result, problem (10) can be equivalently reformulated as a
semi-infinite linear programming problem given by

min
d,θ

θ : s.t.
M∑

m=1

cmdm ≤ B, 0 ≤ dm ≤ 1, ∀m (12)

S(α)− 1

2

M∑
m=1

dm||
N∑
i=1

αiφm(xi)||2 ≤ θ, ∀α : eTα = 0

where e is the vector with all ones. This can be solved by
the exchange method (Hettich and Kortanek 1993). Let a set
K = ∅. Specifically, at the kth iteration, we solve a subprob-
lem

max
α

S(α)− 1

2

M∑
m=1

dm||
N∑
i=1

αiφm(xi)||2 : s.t. eTα = 0. (13)

Let αk be the optimal solution of (13) and h(α,d) =

S(α)− 1
2

∑M
m=1 dm||∑N

i=1 αiφm(xi)||2. If h(αk,d) > θ,
we add the αk to the set K, otherwise the algorithm con-
verges. We then solve the linear programming

min
d,θ

θ : s.t.
M∑

m=1

cmdm ≤ B, 0 ≤ dm ≤ 1, ∀m (14)

h(αk,d) ≤ θ, ∀αk ∈ K.

According to Proposition 1, we know that many dm are ze-
ros at the optima when B is small. Therefore, d can be very
sparse. This is useful to tackle high-dimensional data.
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Loss functions for classification and regression

We consider loss functions for two different learning prob-
lems, i.e., classification and regression. By specifying a loss
function �, the key step is to solve the problem

min
f

C

N∑
i=1

�(fi, yi) +

N∑
i=1

αifi. (15)

Next, we take two specific loss functions as examples, and
discuss other losses briefly.

Binary classification. The squared hinge loss �2(fi, yi) =
max(0, 1 − yifi)

2 is widely used for classification. By
introducing slack variables ξi = max(0, 1 − yifi), the
Lagrangian function of (15) is written as L2(f , ξ) =

C
∑N

i=1 ξ
2
i +

∑N
i=1 αifi +

∑N
i=1 βi(1 − yifi − ξi) −∑N

i=1 τiξi where β ≥ 0 and τ ≥ 0 are multipliers. We
have the KKT conditions: ∂ξiL2 = 2Cξi − βi − τi = 0, ∀i,
∂fiL2 = αi−βiyi = 0, ∀i, βi ≥ 0, τi ≥ 0, ∀i. By substitut-
ing these conditions into (15), we obtain

S(α) = max
τi≥0

N∑
i=1

βi −
1

4C

N∑
i=1

(βi + τi)
2
: s.t.β ≥ 0, αi = βiyi∀i.

Since βi ≥ 0 and τi ≥ 0, the optimal values of τ should
be zeros, i.e., τi = 0, ∀i. To solve (13), we prefer to solve β
instead of α as

max
β

N∑
i=1

βi− 1

4C

N∑
i=1

β2
i − 1

2

M∑
m=1

dm||
N∑
i=1

βiyiφm(xi)||2 (16)

s.t.
N∑
i=1

βiyi = 0,β ≥ 0

which is equivalent to the dual problem of L2-regularized
L2-loss SVC (Fan et al. 2008), and its primal problem is

min
w

1

2
||w||2 + C

N∑
i=1

max(0, 1− yi(w
T x̂i + b))2, (17)

where x̂i = [
√
d1φ1(xi); . . . ;

√
dMφM (xi)]. According to

the above KKT conditions, we know that βi = 2Cξi. Hence,
we can recover dual variables according to primal variables.

Regression. We consider the squared ε-insensitive loss
function, �ε(fi) = max(0, |yi − fi| − ε)2 for regression
problems. Let ξ and ξ∗ be the slack variables to form the
constraints fi−yi ≤ ε+ξi, ξi ≥ 0, ∀i, yi−fi ≤ ε+ξ∗i , ξ

∗
i ≥

0, ∀i. The Lagrangian function of (15) using �ε can be writ-
ten as Lε(f , ξ, ξ

∗,β,β∗, τ , τ ∗) = C
∑N

i=1(ξ
2
i + (ξ∗i )

2) +∑N
i=1 αifi +

∑N
i=1 βi(fi − yi − ξi − ε) − ∑N

i=1 τiξi +∑N
i=1 β

∗
i (yi − fi − ξ∗i − ε)−∑N

i=1 τ
∗
i ξ

∗
i where multipliers

are β ≥ 0,β∗ ≥ 0, τ ≥ 0, τ ∗ ≥ 0. We have the following
KKT conditions: ∂ξiLε = 2Cξi − βi − τi = 0, ∀i, ∂ξ∗i Lε =
2Cξ∗i − β∗

i − τ∗i = 0, ∀i, ∂fiLε = αi + βi − β∗
i = 0, ∀i,

βi ≥ 0, τi ≥ 0, ∀i. By substituting the above conditions into
(15), we obtain the objective function given by

S(α) = max
τ≥0,τ∗≥0

N∑
i=1

(β∗
i − βi)yi − ε

N∑
i=1

(β∗
i + βi)

− 1

4C

N∑
i=1

[
(βi + τi)

2 + (β∗
i + τ∗

i )
2]

s.t. β ≥ 0,β∗ ≥ 0, αi = β∗
i − βi, ∀i.

Algorithm 1 Learning with test-time budget (LTB)
1: Input: Data X, label y, cost c, budget B, groups {φm}Mm=1.
2: Initial d, θ = −∞, K = ∅
3: repeat
4: Obtain αk by solving SVM problem in the form of either

primal or dual with the input
x̂i =

[√
dk1φ1(xi); . . . ;

√
dkMφM (xi)

]
5: if h(αk,dk) > θk then

6: K = K ∪ {αk}
7: else
8: Converge and exit
9: end if

10: Obtain dk+1 and θk+1 by solving problem (14) with K
11: until Convergence

Since multipliers are all non-negative, we have the optimal
solution τ = 0 and τ∗ = 0. As a result, we have the dual
variables βi = 2Cξi and β∗

i = 2Cξ∗i , ∀i. To solve (13), we
prefer to solve β instead of α as

max
β

yT (β∗ − β)−εeT (β∗ + β)− 1

4C
(||β∗||2+||β||2)

− 1

2

M∑
m=1

dm||
N∑
i=1

(β∗
i − βi)φm(xi)||2 (18)

s.t. eT (β∗ − β) = 0,β ≥ 0,β∗ ≥ 0

which is equivalent to the dual problem of L2-regularized
L2-loss SVR (Fan et al. 2008), and its primal problem is

min
w

1

2
||w||2 + C

N∑
i=1

max(0, |yi −wT x̂i − b| − ε)2 (19)

where x̂i = [
√
d1φ1(xi); . . . ;

√
dMφM (xi)]. According to

the above KKT conditions, we know that αi = β∗
i − βi =

2C(ξi − ξ∗i ) where ξi = max(0, fi − yi − ε) and ξ∗i =
max(0, yi − fi − ε). Hence, dual variables are able to be
recovered from primal solutions.

Discussion on generic loss functions According to the
derivations of our proposed model, the differentiation of
the given loss function � with respect to fi is not required.
Thus, our derivation is more general than the derivations
in MKL (Sonnenburg et al. 2006) where differentiable loss
functions are demanded for the existence of inverse func-
tion with respect to the decision value fi. As a result, non-
differential loss functions such as hinge loss, ε-insensitive
loss (Scholkopf and Smola 2001) and structured hinge loss
(Tsochantaridis et al. 2005) can be applied with related
derivations to get S(α) by solving (15). With a simple re-
placement of the loss function in (15) by a specified loss
function, our method can be extended for various learning
problems. This is also the key difference between our pro-
posed method and FGM, where FGM only works for binary
classification problems (Tan, Tsang, and Wang 2014).

Convergence and complexity analysis

Our proposed algorithm for learning with test-time budget
is summarized in Algorithm 1, which solves SVM problems
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and linear programming iteratively until convergence. For
convenience, we name the proposed algorithm as LTB. To
obtain α, the dual problem of SVMs can be solved by tak-
ing the relationship between α and β. For the loss functions
discussed above, we can solve the primal problems in a more
efficient way to obtain w and b, and then recover β and α
from these dual variables.

Let (dk, θk) be the optimal solution of problem (14),
and (d∗, θ∗) be the optimal solution of problem (12). Let
A = {α|∑N

i=1 αi = 0}, and Kk is the set K in kth iter-
ation of Algorithm 1. Let v(d) := supα∈A h(α,d) be the
value function. Let D = {d ∈ R

M |∑M
m=1 cmdm ≤ B, 0 ≤

dm ≤ 1, ∀m}. For convenience of discussing the conver-
gence properties, in the following, we assume:
Assumption 1. (1) For any loss function, both subprob-
lems (13) and (14) are solved exactly. (2) For any loss
function, S(α) is continuous for α ∈ A. (3) Set U =
{(αk,dk, θk)}∞k=1 generated by Algorithm 1 is bounded.
Proposition 2. For Algorithm 1, we always have

θk ≤ θk+1 ≤ θ∗, ∀k. (20)
Proof. Since the number of constraints in problem (14) is
monotonically increasing and Kk ⊂ A.

Theorem 1. (1) If there is k < ∞, such that v(dk) =
h(αk,dk) ≤ θk, then θk = θ∗. Especially, if αk ∈ Kk−1,
we have θk = θ∗. (2) Let (ᾱ, d̄, θ̄) be the limit of any conver-
gent subsequence {αkj ,dkj , θkj}∞kj=1 of U . If the algorithm
1 does not stop in finite steps, we have lim

kj→∞
θkj = θ∗. (3)

If the algorithm 1 does not stop in finite steps, for any ε > 0,
there exists k < ∞, such that θ∗ − ε ≤ θk ≤ θ∗, i.e., Algo-
rithm 1 always finds an ε-optimal solution in finite steps.

Some key properties of our proposed method are dis-
cussed in details. First, Algorithm 1 can be applied for gen-
eral loss functions with the same solution pattern of d shown
in Proposition 1. Second, solving problems (16) and (18)
directly to obtain α might not be efficient for large-scale
and high-dimensional problems. However, their correspond-
ing primal problems (17) and (19) can be solved efficiently,
e.g., solvers in Liblinear (Fan et al. 2008), and their dual
variables also can be recovered from primal solutions as dis-
cussed above. Third, the primal problems can be much more
efficient for large-scale and high-dimensional datasets due to
the sparsity of d since the input x̂i only contains the groups
with dm > 0 to obtain α, so the primal solver only takes a
small number of groups as the inputs. Similarly, the primal
variable w can be reduced to the subset of groups that sat-
isfies the test-time budget constraint, so the time complexity
of solving the primal problems is reduced significantly.

Experiments
Several experimental settings are examined, including both
binary classification and regression problems with a test-
time budget on the total cost over features where each cost
is associated to either a single feature or a group of features.
Before that, we present a general setting of these experi-
ments and the empirical analysis on the convergence and the
parameter sensitivity of the proposed algorithm.

Table 1: Datasets used in the experiments.
Dataset Train Test Dimension Problem
blogData 52,392 7,624 280 Regression
slice loc 42,800 10,700 385 Regression
Yahoo! 20,258 48,180 519 Classification
gisette 6,000 1,000 5,000 Classification
real-sim 35,582 8,894 20,958 Classification
news20.binary 15,998 3,998 1,355,191 Classification
E2006-log1p 16,087 3,308 4,272,227 Regression

Experimental setting

Seven real datasets in Table 1 are used in the experiments.
The Yahoo! includes the computational cost of each fea-
tures in [1, 5, 20, 50, 100, 150, 200] (Xu, Weinberger, and
Chapelle 2012). In total, 519 features are used. For the rest
of datasets, they do not include the cost, so the synthetic
costs are generated by drawing from the multinomial dis-
tribution with the probabilities of costs same as those in the
Yahoo! data. Both slice loc and blogData are freely available
from UCI Machine Learning Repository1 and the remain-
ing datasets are from LIBSVM datasets2. To further exam-
ine the performance of the proposed algorithm on the costs
of group-based features, we randomly partition the origi-
nal features into groups with 1, 000 features and possibly
one group with less then 1, 000 features by taking the same
multinomial distribution as above. Datasets, news20.binary
and E2006-log1p, with millions of features are used for
studying cost budget constraints over groups for binary clas-
sification and regression problems, respectively.

We compare our proposed method LTB with several
methods on the datasets listed in Table 1. The baseline meth-
ods include L2-regularized L2 loss SVC (in primal) with all
features (SVC) for binary classification and L2-regularized
L2 loss SVR (in primal) with all features (SVR) for regres-
sion (Fan et al. 2008), LTB with costs uniformly set as ones
(LTB-unif), cost sensitive tree of classifiers 3 (CSTC) (Xu
et al. 2013) for both binary classification and regression, and
feature group sequencing4 (FS) for regression problem (Hu
et al. 2016) 5. In the implementation, we take the primal
solvers of both SVC and SVR as the SVM solvers in LTB
for binary classification and regression, respectively.

The budgets are set to be a ratio ρ of the total cost in
a fixed range, i.e., ρ ∈ [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8]. Results of compared methods are reported by varying
the budgets. The evaluation criteria are the accuracy for clas-
sification problems and the mean squared error (MSE) for
regression problems. In the experiments, we tune the param-
eter C in the range [0.01, 0.1, 1, 10, 100] and fix the parame-
ter ε in SVR as 0.1. We also tune the parameters of baseline
methods so as to reach the same level of budgets and report

1https://archive.ics.uci.edu/ml/datasets.html
2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
3http://www.cse.wustl.edu/∼xuzx/research/code/CSTC.zip
4https://github.com/agrubb/vowpal wabbit/tree/omp-ext
5The OMP method is not reported in this paper because of the

inconvenient adaptation of this method onto our datasets. As re-
ported by authors, OMP has similar performance comparing to FS.
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Figure 1: Convergence analysis about the objectives of LTB
with respect to the number of iterations.
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Figure 2: Parameter sensitivity analysis on the objectives of
LTB with respect to the budgets by varying C.

the best results for fair comparisons.

Convergence and sensitivity analysis

We conduct experiments to study both convergence and pa-
rameter sensitivity of LTB. Figure 1 shows the convergence
results of LTB on two datasets. We can observe that the ob-
jective value of problem (12) monotonically increases when
the number of iterations increases, and Algorithm 1 usually
converges in less than 20 iterations. We also report the ex-
perimental results of LTB on the above two datasets in terms
of various budgets by varying the parameter C as shown in
Figure 2. The best results among various Cs are quite robust
with respect to the required budget. Meanwhile, the results
of LTB over all budgets are consistently good in the most of
parameter Cs. These experiments on both classification and
regression problems show that LTB converges very fast to
optimal solution, and is quite robust to C in a wide range.
The empirical observations are consistent with the theoreti-
cal convergence analysis of the proposed method.

Analysis on the learned weights

We study the effect of the budget parameter on the num-
ber of selected features obtained by LTB in terms of some
statistics on datasets, real-sim and blogData, including the
number of features with learned weights equal to 1, equal to
0, and in between 0 and 1. Table 2 shows these statistics in
terms of the varied cost ratio ρ. According to these results,
we have the following observations. First, we can see that
the increase of budget ratio ρ leads to the increase the num-
ber of selected features. The bigger the budget parameter is,
the larger number of features are selected. This implies that
the budget parameter indeed implicitly controls the number

Table 2: The statistics of the weights learned by LTB on real-
sim and blogData. The cost ratio is the proportion of the total
cost of all features. # one stands for the number of features
with weights equal to one; # zero stands for the number of
features with learned weights equal to zero; # (0,1) is the
number of features with weights between 0 and 1.
cost ratio ρ # one # zero # (0,1) total cost Accuracy

0.01 1374 19575 9 6958 94.25
0.1 5421 15526 11 68089 96.52
0.2 7829 13126 3 135602 96.78
0.3 9415 11541 2 203269 97.01
0.4 11391 9565 2 271211 97.23
0.5 13129 7827 2 338758 97.36
0.6 14573 6383 2 406507 97.28
0.7 16187 4770 1 474262 97.35
0.8 17605 3352 1 541997 97.37

(a) classification on real-sim

cost ratio ρ # ones # zeros # (0,1) total cost MSE
0.01 14 264 2 127 5.56
0.1 54 213 13 1162 5.39
0.2 107 163 10 2203 5.22
0.3 102 176 2 2898 5.13
0.4 165 114 1 3879 5.25
0.5 174 102 4 4937 5.28
0.6 188 89 3 5923 5.16
0.7 217 62 1 6773 4.89
0.8 237 42 1 7735 4.91

(b) regression on blogData

of selected features, which is consistent with the discussion
based on Proposition 1. Second, the weights learned by LTB
are most either 0 or 1, and few of them are values between 0
and 1. This agrees on the empirical discussion in Remark 1.

Regression

Experiments on regression problems are conducted on two
datasets, where each feature is associated to one cost. Figure
3 shows the experimental results in terms of MSE. Figures
3(a) and 3(b) demonstrate that LTB can achieve better accu-
racy than others with the same test-time budget, and closely
approximates to the best accuracy obtained by SVR using
all features with the best tuned C (the dashed line). More-
over, the MSE in terms of the number of selected features
is also reported on slice loc as shown in Figure 3(c). We
can see that LTB selects more features than LTB-unif for
the same test-time budget, which means that LTB puts more
emphasis on low-cost features than high-cost features. This
is further verified by recording the features and their costs,
which is summarized as a histogram shown in Figure 4(a),
where the costs are reported as the original costs of features
learned by LTB-unif. It is clear to see that LTB prefers to
select features with low cost. Furthermore, we record the
empirical time complexity in seconds shown in Figure 3(d),
which shows that LTB is much more efficient than CSTC
and FS. In summary, LTB performs better than others and
much more efficient when a fixed test time budget is given.
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Figure 3: The MSE of compared methods on two regression
datasets. (a)-(b) present the accuracy by varying the test-
time budget on blogData and slice loc, respectively. (c)-(d)
record the number of selected features and the CPU time of
compared methods on slice loc, respectively.
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Figure 4: The histograms over the costs of the selected fea-
tures by LTB and LTB-unif on two datasets with the test-
time budget in the bracket that obtains the best performance.

Classification

Experiments on binary classification problems are con-
ducted on three datasets, where each feature is associated
to one cost. Figure 5 shows the experimental results of com-
pared methods on the three datasets. Note that CSTC can-
not obtain results within 12 hours except Yahoo! data, so
we will not report the results of CSTC on the other two
datasets. Similar observations on regression problems can
be found for binary classification problems. In other words,
our proposed LTB for binary classification also prefers to se-
lect low-cost features in Figure 4(b) and is able to efficiently
approximate the best performance of SVC.

Group-based cost budget

Different from the aforementioned experiments, we here
verify our method in the setting of the cost associated to a
group of features. Figure 6 shows the performance of com-
pared methods on two high-dimensional datasets for both

The budget of costs
0 5000 10000

A
c
c
u
ra

c
y

89.5

89.6

89.7

89.8

89.9

90

90.1

90.2

LTB
LTB-unif
CSTC
SVC

The budget of costs
0 2000 4000 6000 8000 10000 12000

A
c
c
u
ra

c
y

80

82

84

86

88

90

92

94

96

98

LTB
LTB-unif
SVC

(a) Yahoo! (b) gisette

The budget of costs
×10

5
0 1 2 3 4 5

A
c
c
u
ra

c
y

91

92

93

94

95

96

97

98

LTB
LTB-unif
SVC

The number of selected features
0 500 1000 1500

A
c
c
u
ra

c
y

80

82

84

86

88

90

92

94

96

98

LTB
LTB-unif
SVC

(c) real-sim (d) # features on gisette

Figure 5: Classification accuracy of compared methods on
three binary classification datasets. (a)-(c) presents the accu-
racy by varying the test-time budget. (d) reports the accuracy
with respect to the number of selected features on gisette.
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Figure 6: The performance of compared methods based on
test-time budget over the costs of group-based features for
both classification and regression.

classification and regression problems. Since the dimension
of the two datasets is the size of millions, CSTC and FS
have issues on either memory or time cost, we only report
our methods and SVMs on all features. On news20.binary,
the same result as the previous experiments can be observe.
In addition, we find that the regression model based on test-
time budget works better than the best result of SVR. These
observations verify the effectiveness of the proposed LTB
method in the setting of group-based budget.

Conclusions

In this paper, we propose a novel model for learning a linear
predictor with a budget on the total cost of features where
each cost can correspond to either one single feature or a
group of features. Our model can incorporate any loss func-
tion without much added effort. An efficient optimization
method is proposed to solve the problem with general loss
functions. Two loss functions are specified as examples to
demonstrate the flexibility of our model for binary classifi-
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cation and regression. For these two losses, our algorithm
can be much more efficient by solving SVMs in primal. Ex-
periments on various sizes of real datasets demonstrate that
our model for learning a predictor with a budget is more ef-
fective and efficient than baseline methods.
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