
Approximate Vanishing Ideal via Data Knotting

Hiroshi Kera, Yoshihiko Hasegawa
Department of Information and Communication Engineering,

Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan

kera@biom.t.u-tokyo.ac.jp

Abstract

The vanishing ideal is a set of polynomials that takes zero
value on the given data points. Originally proposed in com-
puter algebra, the vanishing ideal has been recently exploited
for extracting the nonlinear structures of data in many appli-
cations. To avoid overfitting to noisy data, the polynomials
are often designed to approximately rather than exactly equal
zero on the designated data. Although such approximations
empirically demonstrate high performance, the sound alge-
braic structure of the vanishing ideal is lost. The present paper
proposes a vanishing ideal that is tolerant to noisy data and
also pursued to have a better algebraic structure. As a new
problem, we simultaneously find a set of polynomials and
data points for which the polynomials approximately vanish
on the input data points, and almost exactly vanish on the
discovered data points. In experimental classification tests,
our method discovered much fewer and lower-degree polyno-
mials than an existing state-of-the-art method. Consequently,
our method accelerated the runtime of the classification tasks
without degrading the classification accuracy.

1 Introduction
Bridging computer algebra and various applications such as
machine learning, computer vision, and systems biology has
been attracting interest over the past decade (Torrente 2008;
Laubenbacher and Sturmfels 2009; Li et al. 2011; Livni et al.
2013; Vera-Licona et al. 2014; Gao and Wang 2016). Bor-
rowed from computer algebra, the vanishing ideal concept
has recently provided new perspectives and has proven ef-
fective in various fields. Especially, vanishing ideal based
approaches can discover the nonlinear structure of given
data (Laubenbacher and Stigler 2004; Livni et al. 2013;
Hou, Nie, and Tao 2016; Kera and Hasegawa 2016; Kera and
Iba 2016). The vanishing ideal is defined as a set of polyno-
mials that always take zero value, i.e., vanishes, on a set of
given data points:

I(X) = {g ∈ P | g(x) = 0, ∀x ∈ X} , (1)

where X is a set of d-dimensional data points, and P is
a set of d-variate polynomials. A vanishing ideal can be
spanned by a finite set of vanishing polynomials (Cox, Lit-
tle, and O’shea 1992). This basis of the vanishing ideal can

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: (Left panel) Polynomials that approximately van-
ish on the data points (red dots) in VCA. (Right panel) Van-
ishing polynomials and data knots (blue circles) obtained by
the proposed method, which almost exactly pass the data
knots.

be viewed as a system to be satisfied by the input data points;
as such, it holds the nonlinear structure of the data. Exploit-
ing these properties, Livni et al. (2013) proposed Vanish-
ing Component Analysis (VCA), which extracts the com-
pact nonlinear features of the data to be classified, and en-
ables training by a simple linear classifier. The vanishing
ideal has also identified the underlying dynamics in limited
observations (Torrente 2008; Robbiano and Abbott 2010;
Kera and Hasegawa 2016). In these applications, monomials
consisting of models are inferred from the vanishing ideal of
the observations.

As the available data in many applications are exposed to
noise, it has been common to compute polynomials that ap-
proximately rather than exactly vanish on the data to avoid
the overfitting problem (Heldt et al. 2009; Fassino 2010;
Livni et al. 2013; Limbeck 2013). However, this approxima-
tion destroys the sound algebraic structure of the vanishing
ideal. For instance, as shown in the left panel of Fig. 1, a
set of approximately vanishing polynomials is no longer an
algebraic system because it possesses no common roots. In
other words, there is a tradeoff between preserving the alge-
braic soundness of the vanishing ideal and avoiding overfit-
ting to noise. Such a tradeoff has not been explicitly consid-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3399

ered in existing work.
In the present paper, we newly deal with this tradeoff by

addressing a vanishing ideal that is well tolerant to noisy
data while pursuing to preserve a sound algebraic structure.
Specifically, we introduce a new task that jointly discovers a
set of polynomials and summarized data points (called data
knots) from the input data. As shown in the right panel of
Fig. 1, the polynomials in this task avoid overfitting because
they approximately vanish on the original data, and preserve
the better algebraic structure of a vanishing ideal than those
by VCA because they intersect (and vanish) almost exactly
at the data knots.

To our knowledge, we present the first computation of
a vanishing ideal that handles both the given fixed points
and the jointly updated points. As the noise level increases,
the vanishing ideal of the given fixed data performs less
accurately because it requires a coarser approximation. If
the approximation remains fine, the computed vanishing
polynomials (especially the higher-degree polynomials) will
overfit to noise. To circumvent this problem, the proposed
method conjointly computes the vanishing polynomials and
the data knots. Assuming that lower-degree polynomials are
less overfitted to noise and better preserve the data structure,
our method generates the vanishing polynomials from lower
degree to higher degree while updating the data knots at each
degree. Consequently, overfitting by the higher-degree poly-
nomials is avoided. The data knots are updated by a nonlin-
ear regularization, which can be regarded as a generalization
of the Mahalanobis distance, which is commonly used in the
metric learning (Bellet, Habrard, and Sebban 2013). In a the-
oretical analysis, we also guarantee that the proposed algo-
rithm terminates and that in the extreme case, the generated
polynomials exactly (rather than almost) vanish on the data
knots.

Experiments confirmed that our methods generate fewer
and lower-degree polynomials than an existing vanishing
ideal-based approach. In different classification tasks, our
methods obtained a much more compact nonlinear feature
than VCA, reducing the test runtime. To verify that the ob-
tained data knots well represent the original data, we trained
a k-nearest neighbor classifier. Although the data knots are
far fewer than the original points, the classification accuracy
of the nearest neighbor classifier was comparable to that of
the baseline methods in most cases.

2 Related Work
Although our work addresses a new problem, several works
are closely related to the present study.

Fassino (2010) proposed a Numerical Buchberger–Möller
(NBM) algorithm that computes approximately vanishing
polynomials for the vanishing ideal of input data X . NBM
requires that each polynomial exactly vanishes on a set of
nearby data points Xε (called an admissible perturbation)
from X up to a hyperparameter ε. However, because the ad-
missible perturbations can differ among the approximately
vanishing polynomials, NBM does not generally output van-
ishing polynomials that vanish on the same points. In addi-
tion, NBM does not specify the admissible perturbations, but

only checks the sufficient condition of the existence of such
points.

Abbott, Fassino, and Torrente (2007) addressed a new
task of thinning out the data points as a preprocessing for
computing vanishing ideals afterward. Similar to clustering,
their approach computes the empirical centroids of the in-
put data. As thinning out and the vanishing-ideal compu-
tation are performed independently, the empirical centroids
do not necessarily result in compact, lower-degree vanishing
polynomials. In contrast, our method conjointly performs
the thinning out and vanishing-ideal computation in a sin-
gle framework. Note that both methods by Abbott, Fassino,
and Torrente and by us aim to reduce data points by summa-
rizing nearby points, which are different from the clustering
tasks that aim to group even distant points according to their
categories.

3 Preliminaries
Definition 1. (Vanishing Ideal) Given a set of d-dimensional
data points X , the vanishing ideal of X is a set of d-variate
polynomials that take zero values, (i.e., vanish) at all points
in X . Formally, the vanishing ideal is defined as Eq. (1).
Definition 2. (Evaluation vector, Evaluation matrix) Given
a set of data points X = {x1,x2, . . . ,xN} with N samples,
the evaluation vector of polynomial f is defined as

f(X) = (f(x1) f(x2) · · · f(xN))
� ∈ R

N .

Given a set of polynomials F = {f1, f2, ..., fs}, its evalua-
tion matrix is F (X) = (f1(X) f2(X) · · · fs(X)) ∈ R

N×s.
Definition 3. (ε-vanishing polynomial) Given a set of data
points X , a polynomial g is called an ε-vanishing polyno-
mial on X when the norm of its evaluation vector on X is
less than or equal to ε, i.e., ‖g(X)‖ ≤ ε, where ‖ · ‖ de-
notes the Euclidean norm of a vector. Otherwise, g is called
an ε-nonvanishing polynomial.

In the vanishing ideal concept, polynomials are identi-
fied with their evaluation on the points; that is, a polyno-
mial f is mapped to an N -dimensional vector f(X). Two
polynomials f and f̃ are considered to be equivalent if they
have the same evaluation vector, i.e., f(X) = f̃(X). When
f(X) = 0, f is a vanishing polynomial on X .

Another important relation between polynomials and their
evaluations is that the sum of the evaluation of polynomials
equals to the evaluation of the sum of the polynomials. More
specifically, the following relation holds for a set of polyno-
mials G = {g1, ..., gs} and coefficient vectors c ∈ R

s:
G(X)c = (Gc)(X),

where Gc =
∑s

i=1 cigi defines the inner product between a
set G and a coefficient vector c, with ci being the i-th entry
of c. Similarly, GC = {Gc1, ..., Gck} defines the multipli-
cation of G by a matrix C = (c1, · · · , ck). These special
inner products will be used hereafter.

4 Proposed Method
Given a set of data points X0, we seek a set of polynomi-
als G and data knots Z such that the polynomials in G ap-
proximately vanish on X0 and almost exactly vanish on Z.

3400

Algorithm 1 FindBasis

Require: C̃t, F
t−1, Z,X0, ε, δ

Ensure: Gt, Ft

1: # Compute residual space
2: Ct = C̃t − F t−1F t−1(Z)†C̃t(Z)
3:
4: # SVD for evaluation matrix on X0

5: Ct(X0) = U0D0V
�
0 = U0D0[Ṽ0 V

ε
0]

�
6:
7: # SVD for evaluation matrix on Z
8: Ct(Z)Vε

0 = UDV� = UD[Ṽ Vδ]�

9: Ct(Z)Ṽ0 = ÛEW� = ÛẼ[W̃ Wδ]�
10:
11: Gt = CtV

ε
0V

δ

12: Ft = CtṼ0W̃ ∪ CtV
ε
0Ṽ

13: # Divide each polynomial in Ft by the norm of its eval-
uation vectors on Z

14: return Gt, Ft

Specifically,

∀g ∈ G, ‖g(X0)‖ ≤ ε, ‖g(Z)‖ ≤ δ, (2)

where ε, δ are hyperparameters of the error tolerance that
requires g to be ε-vanishing on X0 and δ-vanishing on Z. In
our case, δ is set much smaller than ε.

Like many other methods that construct a vanishing ideal
basis, our polynomial construction starts from a degree-0
polynomial (i.e., constant), and increments the polynomial
degree in successive data fittings. For each degree t, the pro-
posed method iterates the following two steps:

1. Compute a set of approximately vanishing polynomials
Gt and a set of nonvanishing polynomials Ft.

2. Update the data knots such that the approximately vanish-
ing polynomials in Gt = ∪t

i=1Gi more closely vanish.
These steps constitute our technical contributions to the
field. In the former step, we newly introduce a vanishing
polynomial construction that handles two set of points X0, Z
with different approximation scales ε, δ. In the latter step, we
introduce a nonlinear regularization term that preserves the
nonlinear structure of data while updating Z.

In the following subsections, we first describe the poly-
nomial construction part (Step 1; Section 4.1) and the data-
knotting part (Step 2; Section 4.2). To improve the quality of
the vanishing polynomials and data knots, we propose an it-
erative update framework in Section 4.3. Finally, we present
our whole algorithm in Section 4.4.

4.1 Vanishing polynomial construction
Given a set of data points X0 and tentative data knots Z, we
here construct two polynomial sets Gt and Ft of degree t ≥
1. Gt is the set of degree-t polynomials that are ε-vanishing
on X0 and δ-vanishing on Z. Ft is a set of polynomials that
are not δ-vanishing on Z. Note that at this moment, we have
Gt−1 = ∪t−1

i=0Gi and F t−1 = ∪t−1
i=0Fi.

To obtain Gt and Ft, we first generate candidate degree-t
polynomials Ct based on the VCA framework. Multiplying

all possible combinations of polynomials between F1 and
Ft−1, we construct C̃t = {fg | f ∈ F1, g ∈ Ft−1}. Then,
Ct is generated as the residual polynomials of C̃t with re-
spect to F t−1 and their evaluation vectors.

Ct = C̃t − F t−1
(
F t−1(Z)†C̃t(Z)

)
,

where A† denotes the pseudo-inverse matrix of A. Note
that the second term is the inner product between F t−1

and F t−1(Z)†C̃t(Z), and not the evaluation of F t−1 on
F t−1(Z)†C̃t(Z). This step calculates the residual column
space of C̃t(Z) that is orthogonal to that of F t−1(Z).

Ct(Z) = C̃t(Z)− F t−1(Z)
(
F t−1(Z)†C̃t(Z)

)
.

In short, when evaluated on the data knots Z, the column
spaces of the residual polynomials Ct and the above poly-
nomials are orthogonal.

After generating Ct, degree-t nonvanishing polynomials
Ft and vanishing polynomials Gt are constructed by apply-
ing singular value decomposition (SVD) to Ct(X0):

Ct(X0) = U0D0V
�
0 ,

where U0 ∈ R
N×N and V0 ∈ R

|C|×|C| are orthogonal ma-
trices, and D ∈ R

N×|C| contains singular values only along
its diagonal. Multiplying both sides by V0 and focusing on
the i-th column, we obtain

Ct(X0)vi = σiui,

where vi and ui are the i-th columns of V0 and U0 respec-
tively, and σi is the i-th diagonal entry of D0. Moreover,
when σi ≤ ε, we have

‖gi(X0)‖ =
∥
∥(Ctvi)(X0)

∥
∥ =

∥
∥Ct(X0)vi

∥
∥ = ‖σiui‖ = σi,

meaning that polynomial gi := Ctvi is an ε-vanishing poly-
nomial on X0. We can regard vi as a coefficient vector of the
linear combination of the polynomials in Ct. Let us denote
V0 = (Ṽ0 V

ε
0), where Ṽ0 and Vε

0 are matrices correspond-
ing to the singular values exceeding ε and not exceeding ε,
respectively. For any unit vector v = Vε

0p ∈ span(Vε
0) ex-

pressed in terms of a unit vector p, a polynomial g = Ctv
satisfies

‖g(X0)‖ = ‖Ct(X0)v‖ = ‖Gt(X0)p‖ ≤ σεmax‖p‖ = σεmax ,

meaning that g = Ctv is an ε-vanishing polynomial, where
σεmax is the largest singular value not exceeding ε.

Next, we construct δ-vanishing polynomials in the above
polynomial space. This constraint problem is formulated as
follows:

min
(V̂δ)�V̂δ=I

‖Ct(Z)V̂δ‖F, s.t. span(V̂δ) ⊂ span(Vε
0),

where ‖ · ‖F denotes the Frobenius norm of a matrix. From
the discussion above, it can be reformulated as,

min
P�P=I

‖Ct(Z)Vε
0P‖F,

3401

since the column space of Vε
0 spans the coefficient vectors of

ε-vanishing polynomials on X0. This problem can be simply
solved by applying SVD to Ct(Z)Vε

0 and selecting the right
singular vectors corresponding to the singular values not ex-
ceeding δ. Supposing that SVD yields Ct(Z)Vε

0 = UDV�,
we denote V = (Ṽ Vδ), where Ṽ and Vδ are matrices
corresponding to the singular values exceeding δ and not
exceeding δ, respectively. The polynomials Gt that are ε-
vanishing on X and δ-vanishing on Z are then obtained as
follows:

Gt = CtV
ε
0V

δ.

Ft is constructed similarly, but consists of two parts.

Ft = CtṼ0W̃ ∪ CtV
ε
0Ṽ,

where W̃ is the counterpart of Ṽ for Ct(Z)Ṽ0. The left-part
polynomials are ε-nonvanishing on X0 and δ-nonvanishing
on Z, whereas the right-part polynomials are ε-vanishing on
X0 but δ-nonvanishing on Z. Following the VCA frame-
work, the polynomials in Ft are rescaled by their evaluation
vectors on Z to maintain numerical stability. The main gen-
erating procedures of Gt and Ft are summarized in Alg. 1.
For simplicity, we omit the step that constructs C̃t.

4.2 Data knotting
Given a set of points X and a set of vanishing polynomials
Gt up to degree t, we seek new data points Z for which the
polynomials in Gt more exactly vanish on Z while preserv-
ing the nonlinear structure of X . In the present paper, we
refer to these Z as data knots and the searching process as
data knotting (by analogy to ropes). As described later, we
iteratively update the data knots, so we designate the current
and updated data knots as X and Z, respectively.

First, we intuitively illustrate the concept in a simple case.
Let X to be a matrix whose i-th row corresponds to the i-th
point of X . Applying SVD, we have

X = UDV� = ŨD̃Ṽ� +UεDεV
�
ε , (3)

where U,V are orthonormal matrices, and D has the sin-
gular values only along its diagonal. The former and latter
terms define the principal and minor variances in the data,
respectively, regarding singular values exceeding ε and the
rest. Note that when X is mean-centralized, C1(X) = X.
We seek new data points for which the minor variance ide-
ally vanishes to a zero matrix while the principal variance is
preserved. In this linear case, the new points are simply de-
fined as Z = ŨD̃Ṽ�, where Z for Z is defined identically
to X.

However, discovering Z in nonlinear cases is not straight-
forward. In the degree-t case, Eq. (3) becomes

Ct(X) = ŨD̃Ṽ� +UεDεV
�
ε . (4)

As in the linear case, we seek Z such that Ct(Z) = ŨD̃Ṽ�.
To this end, we address the following minimization problem:

min
Z

∥∥Ct(Z)− ŨD̃Ṽ�∥∥
F
. (5)

Multiplying Eq. (4) by V and Vε respectively, we obtain

Ft(X) = Ft(Z),

Gt(Z) = O.

In the derivation, we used Ṽ�Ṽ = I, V�
ε Vε = I, and

Ṽ�Vε = O, where I is an identity matrix and O is a zero
matrix. From these relations, Eq. (5) is reformulated as,

min
Z

‖Gt(Z)‖F + λt‖Ft(Z)− Ft(X)‖F, (6)

where λt is a hyperparameter. It can be easily shown,

Ct(Z) = ŨD̃Ṽ� ⇐⇒ Ft(X) = Ft(Z), Gt(Z) = O.

See the supplementary material for the proof. Note that the
optimization problem of Eq. (6) can be factorized into a sub-
problem on each data point.

min
zi

‖Gt(zi)‖F + λt‖Ft(zi)− Ft(xi)‖F, (7)

where zi,xi are the i-th data point of Z,X , respectively.
Considering the polynomials up to degree t, Eq. (7) becomes

min
zi

t∑
k=1

‖Gk(zi)‖F +
t∑

k=1

λk‖Fk(zi)− Fk(xi)‖F. (8)

The first term encourage the polynomials in Gt to vanish
on zi, and the second term constrains the zi to nearby xi

with respect to F t. This formulation provides an interesting
insight:
Remark 1. The second term of Eq. (8) is a regularization
term that is equivalent to a nonlinear generalization of the
Mahalanobis distance.

The Mahalanobis distance between two data points x and
y of a mean-centralized matrix X is a generalization of the
Euclidean distance, where each variable is normalized by its
standard deviation, i.e., d(x,y) =

√
(x− y)�Σ†(x− y),

where Σ = X�X is an empirical covariance matrix. The
remark above holds because our Ft describes the nonlinear
principal variance of the current data knots X . For simplic-
ity, we consider only the linear case t = 1. In this case,
C1(X) is a mean-centralized X because it is the residual
with respect to F0 = 1/

√|X|. Adopting the notations in
lines 8 and 9 of Alg. 1, we let Ẽ and D̃ be submatrices of
E and D corresponding to singular values larger than δ. The
distance between two points x,y of the mean-centralized X
is then calculated as

‖F1(x)− F1(y)‖2

=
∥
∥x�

(
Ṽ0W̃Ẽ† Vε

0ṼD̃†
)− y�

(
Ṽ0W̃Ẽ† Vε

0ṼD̃†
)∥∥2

,

= (x− y)�Σ−1(x− y),

where

Σ−1 = Ṽ0W̃(Ẽ�Ẽ)−1W̃�Ṽ�0 +Vε
0Ṽ(D̃�D̃)−1Ṽ�Vε

0
�.

A straightforward calculation shows that Σ is the principal
variance of the empirical covariance matrix C1(X)�C1(X).

3402

Similarly, in nonlinear case t > 1, ‖Ft(x) − Ft(y)‖ is a
Mahalanobis distance with respect to principal variance of
Ct(X)�Ct(X). Therefore, the regularization term in Eq. (8)
can be regarded as a generalized Mahalanobis distance in
nonlinear cases (details are provided in the supplementary
material).

To optimize Eq. (8), quasi-Newton method with numeri-
cal gradient calculation was adopted in the present paper. We
restricted the Fk to lower-degree polynomials by assuming
that lower-degree structures holds sufficiently good structure
of data. Specifically, we took into account the regularization
terms up to the degree where the first vanishing polynomial
is found.

4.3 Exact Vanish Pursuit
Our original goal to discover the δ-vanishing polynomials
on the data knots cannot be achieved by simply applying
the data knotting to a fixed set of polynomials. In some
cases (e.g., when three polynomials never intersect at any
one instant), there may be no data knots on which the given
polynomials sufficiently vanish. To resolve this problem, we
introduce an iterative framework that alternatively updates
data knots and polynomials (Alg. 2).

Let us construct the degree-t polynomials Gt and Ft. At
this moment, we have polynomial sets with degree less than
t, Gt−1 and F t−1, and tentative data knots Z. Introducing
η > δ, we repeat the following steps.

1. Fixing Z, update Gt and Ft by Alg. 1. In this step, the
polynomials in Gt are ε-vanishing on X0 and η-vanishing
on Z.

2. Fixing F t, Gt, update the data knots Z by solving Eq. (8).

3. Decrease η.

This iteration terminates before η reaches δ when Gt be-
comes a set of δ-vanishing polynomials, Gt becomes an
empty set. The parameter η approaches to δ over the iter-
ations, and when η = δ then all the polynomials Gt are
δ-vanishing on Z and the algorithm terminates. Note that
in this case the polynomials in Gt−1 may be no longer δ-
vanishing on Z because Z has been updated. The next sub-
section introduces the reset framework, which resolves this
situation. The way of reducing η can affect the algorithm
result. In the present study, we decrease η in a pragmatic
way; we introduce a cooling parameter γ < 1. Generally, η
was updated by γη, but when the largest norm of the evalu-
ation vector of g ∈ G, then η was updated by that norm, i.e.,
η = min(γη,maxg∈G ‖g(Z)‖). The proper decrease of η is
left for future work.

The iterative framework introduced in this section is sum-
marized in Alg. 2. In this subroutine, the orders of the data
knotting and polynomial construction are reversed for easy
implementation in the latter sections.

4.4 Algorithm
This section describes the overall algorithm of the proposed
method (Alg. 3). The input are data points X0, the error tol-
erances ε, δ, and the regularization weight λ. The algorithm
outputs a set of polynomials G and data knots Z for which

Algorithm 2 ExactVanishPursuit

Require: Gt, F t, C̃t, Z,X0, ε, η, δ, λ
Ensure: Gt, Ft

1: while η > δ and Gt is not empty do
2: Update Z by solving Eq. (8);
3: if ∀g ∈ Gt, ‖g(Z)‖ ≤ δ then
4: break
5: end if
6: Decrease η;
7: Gt, Ft = FindBasis(C̃t, F

t−1, Z,X0, ε, η)
8: end while
9: return Gt, Ft

polynomials in G are ε-vanishing on X0 and δ-vanishing on
Z.

As it proceeds, the algorithm increments the degree of the
polynomials. The degree-0 polynomial sets are initialized to
G0 = {}, F0 = {f(·) = 1/

√|X|}, and the initial data knots
Z are set to X0. We also introduce an error tolerance param-
eter η, which is set to η = ε. Although we aim to discover
the δ-vanishing polynomials on Z, we first consider the η-
vanishing polynomials on Z, which is updated rather than
fixed. η is gradually decreased throughout the iterations, and
eventually reaches δ, thereby obtaining δ-vanishing polyno-
mials.

At degree-t, the algorithm proceeds through the follow-
ing four steps: (1) generate Gt and Ft by Alg. 1, where Gt

is a set of polynomials that are ε-vanishing on X0 and η-
vanishing on Z; (2) update Gt, Ft, and Z by Alg. 2 such
that the polynomials in Gt become δ-vanishing on Z; (3)
generate degree-(t + 1) candidate polynomials for the next
iteration; (4) check the termination conditions (reset or ad-
vance to the next degree). Reset restores all variables except
Z and η to the t = 1 stage. A reset is performed if there is
a δ-nonvanishing polynomial in G and the algorithm cannot
proceed to the next degree, i.e., when Ct is empty. The reset
system feedbacks the results of higher-degree polynomials
to lower-degree ones via the data knots Z. To our knowl-
edge, the reset system is unique to our method; all of the
existing methods appear to greedily construct the polynomi-
als from lower to higher degrees.

Termination is guaranteed when η reaches δ. To prove it,
first note that when η = δ, no data knotting occurs so Z is
fixed. To describe arbitrary polynomials on Z, we need col-
lect |Z| linearly independent polynomials in F , because the
polynomials are associated with R

|Z|-dimensional vectors.
In Alg. 1, the column space of the evaluations of candidate
polynomials Ct is orthogonal to that of F on Z. By its con-
struction, the column space of Ft(Z) approximately spans
the column space of Ct(Z). When |Ft| = 0, the algorithm
terminates; otherwise, the rank of F is strictly increased by
appending Ft. Therefore, the rank of F reaches |Z| after
a finite number of steps, and the algorithm terminates. As
η = δ, all polynomials in G are δ-vanishing polynomials on
Z.

Note that the output G is not necessarily a basis of the van-
ishing ideal for Z because polynomials that are δ-vanishing

3403

Algorithm 3 Main
Require: X0, ε, δ, λ
Ensure: G,Z

1: # Initializetoin
2: G = {}, F = F0 = {f(·) = 1/

√|X|}
3: C̃1 = Z = X0

4: η = ε, t = 1
5: loop
6: # Compute bases of degree-t polynomials
7: Gt, Ft = FindBasis(C̃t, F, Z,X0, ε, η)
8: Gt, Ft = ExactVanishPursuit(G ∪Gt, F ∪ Ft,

9: C̃t, Z,X0, ε, η, λ)
10: G = G ∪Gt, F = F ∪ Ft

11: Ct = {ftf1; ft ∈ Ft, f1 ∈ F1}
12:
13: if Ct is empty then
14: if ∀g ∈ G, ‖g(Z)‖ ≤ δ then
15: return Z,G
16: else
17: # Reset to degree 1
18: t = 1
19: G = {}, F = {f(·) = 1/

√
Z}

20: C1 = Z
21: Decrease η;
22: end if
23: else
24: t = t+ 1
25: end if
26: end loop

on Z but ε-nonvanishing on X0 are excluded from G. This
result is reasonable because the polynomials in G do not
well approximate the original data. In some cases, however,
we require a basis of the vanishing ideal. Such a basis can
be generated by applying existing basis generation methods
such as VCA to small data knots Z, which is much less com-
putationally costly than applying to X0.

5 Results
In this sections, we demonstrate that our method discovers a
compact set of low-degree polynomials and a few data knots
that well represent the original points. The proposed method
exhibits both noise tolerance and good preservation of the
algebraic structure. We first illustrate the vanishing polyno-
mials and data knots obtained on simple datasets as qual-
itative evaluation. In the next classification task, we show
that the polynomials output by out method avoid overfitting
and hold the useful nonlinear feature of data as observed in
VCA. Finally, we evaluate the representativeness of the data
knots by training k-nearest neighbor classifiers in the clas-
sification tasks. Note that classification tasks are adopted to
measure how well the proposed method can hold nonlinear
structure of data. The proposed method is not specially tai-
lored for classifications, and it can also contribute to other
tasks where vanishing ideal based approach has been intro-
duced.

5.1 Illustration with simple data
We applied our method and VCA with the same error tol-
erance to simple data perturbed by noise: three blobs with
different variances (60 points, 30% noise on one blob; 5%
noise on the remaining blobs), a single circle (30 sam-
ples, 5% noise), and a pair of concentric circles (50 sam-
ples, 2% noise). Here n% noise denotes zero-mean Gaus-
sian noise with n-standard deviation. The blobs were gener-
ated by adding noise at three distinct points. As shown in the
Fig. (2), each set of polynomials obtained by our method ex-
actly vanishes on the data knots, and approximately vanishes
on the input data points, while those by VCA only coarsely
intersect with each other. In Figs. 2(a) and 2(b), one blob
has much larger variance than the others. Whereas each blob
with small variance is represented by a single data knot, the
very noisy blob is represented by two knots; consequently,
polynomials obtained by our method almost exactly vanish
on the knots and approximately vanish over the whole blob.
In contrast, while the polynomials obtained by VCA are sim-
ilar to those by ours, they intersect with each other much
more coarsely. In Figs. 2(c), 2(d), 2(e), and 2(f), both our
method and VCA discovered the lowest algebraic structures
(a circle and a pair of concentric circles). In Fig. 2(c), our
method only outputs a circle since other polynomials that
approximately vanish on the original data do not sufficiently
vanish on the data knots. In Fig. 2(e), some polynomials dis-
covered by our method are different from those by VCA for
better preserving the algebraic structure. Note that the same
error tolerance is used for both our method and VCA. Thus,
the polynomials obtained by our method still approximately
vanish on the original points as those by VCA.

5.2 Compact lower-degree feature extraction
The vanishing polynomials obtained by our method com-
pactly hold the original data structure. To show this, we
compare our method with VCA in four classification tasks.
Bothe methods were tested by Python implementation on a
workstation with four processors and 8GB memory. Both
the proposed method and VCA adopt the feature-extraction
method of Livni et al. (2013):

F(x) =
(
· · · ,

∣∣∣g(1)i (x)
∣∣∣ , · · · ,

∣∣∣g(|Gi|)
i (x)

∣∣∣︸ ︷︷ ︸
Gi(x)�

, · · ·
)�

,

where Gi = {g(1)i , ..., g
(|Gi|)
i } denote the computed vanish-

ing polynomials of the i-th class. By its construction, the
feature F(x) of sample x in the i-th class should be a vec-
tor whose entries are approximately zero in the Gi part and
non-zero elsewhere. The classifier for the proposed method
and VCA was a linear Support Vector Machine (Cortes and
Vapnik 1995). The datasets were downloaded from UCI ma-
chine learning repository (Lichman 2013). The hyperparam-
eters were determined by 3-fold cross validation and the re-
sults were averaged over ten independent runs. In each run,
the datasets were randomly split into training (60%) and test
(40%) datasets.

The classification results are summarized in Table 1. The
proposed method achieved comparable classification accu-

3404

(a) (b) (c) (d) (e) (f)

Figure 2: A set of vanishing polynomials and data knots (blue circles) output by the proposed method (a,c,e) and VCA (b,d,f)
for simple data exposed to noise (red dots). The input data are (a,b) three blobs with different variance (c,d) a single circle, (e,f)
two concentric circles. To enhance visibility, not all of the polynomials are shown.

Table 1: Classification results
Accuracy [%] Test runtime [sec] #features #degree

Proposed VCA Proposed-hd VCA-hd Proposed VCA Proposed VCA Proposed VCA
Iris 0.96 0.95 0.75 0.59 3.6e-4 6.6e-4 14.9 62.8 1.5 2.0

Wine 0.98 0.98 0.94 0.67 7.6e-4 2.1e-3 100.5 592.9 1.7 2.3
Vehicle 0.80 0.80 0.53 0.60 1.6e-3 6.7e-2 121.5 4147.9 1.6 2.5
Vowel 0.92 0.93 0.80 0.35 1.5e-3 2.3e-3 191.0 267.6 1.5 1.8

Table 2: k-nearest neighbor classification
Data
knots

k-means
centroids

Original
points

Knotting
ratio

Iris 0.95 0.95 0.94 0.08
Wine 0.95 0.97 0.95 0.20

Vehicle 0.60 0.61 0.68 0.05
Vowel 0.76 0.79 0.96 0.53

racy to VCA, with much more compact features. The dimen-
sions of the feature vectors obtained by our method were
only 3–70% those of the VCA feature vectors. The degree
of the discovered polynomials was also lower in the pro-
posed method. Consequently, the test runtime was lower in
our method than in VCA. This result suggests that the pro-
posed method well preserves the data structure even after
data knotting. As we insisted in the introduction, higher-
degree polynomials can be sensitive to noisy data under tra-
ditional vanishing polynomial construction with fixed data
points. To confirm this, we also evaluated the methods by
restricting the polynomials for feature extraction to half of
them in the higher-degree part (Proposed-hd and VCA-hd).
As can be seen from Table 1, the higher-degree polynomials
by our method lead to much higher classification accuracy
than those by VCA, which suggests that our method pro-
vides noise-tolerant polynomials even in relatively higher
degree while VCA does not. An exception is the result for
the Vehicle dataset. In this case, our method provided greatly
compact features (only 2% dimension of those by VCA).
Thus the 50 % restriction at Proposed- may remove impor-
tant features that contribute much to the accuracy.

5.3 Evaluating data knots
In the proposed framework, data knotting greatly reduces
the number of original noisy data points, enabling lower-

degree vanishing polynomials. Here we evaluate the repre-
sentativeness of the data knots with the classification accu-
racy of the k-nearest neighbor classifier trained with data
knots. As baselines, we also trained classifiers with k-means
centroids and the original points as baselines. The number
of centroids for k-means clustering is set to the same num-
ber of data knots for each class. As the number of data knots
and k-means centroids are much smaller than the number of
original points, we set k = 1 in the classifiers. The other
training and testing settings were those of the previous sec-
tion.

The results are summarized in Table 2. The number ratio
between the data knots and original points, called the knot-
ting ratio, confirms the that the original data points were
condensed into far fewer points after the knotting. Train-
ing the classifier on few data knots achieves the comparable
accuracy of the classification with the k-means centroids,
supporting our argument that the data knots well represent
the original data. Note that the data knots are designed to
provide lower-degree vanishing polynomials while k-means
clustering is for simply summarizing nearby points. Com-
pared to the classification results with original data points,
those with data knots were comparable for the datasets with
fewer classes (Iris and Wine; 3 classes). However, the accu-
racy degrades for the datasets with more classes (four classes
in Vehicle and eleven classes in Vowel). In these datasets,
there can be more overlapped points across different classes,
resulting in accuracy degradation in ours and k-means. A
possible solution specially tailored for classification is to in-
troduce class-discriminative information to data knots. This
modification is an interesting future extension.

6 Conclusion and Future work
The present paper focused on the tradeoff between noise-
tolerance and better preserving an algebraic structure at the
vanishing ideal construction, which has not been explicitly

3405

considered before. We addressed a new problem to discover
a set of vanishing polynomials that approximately vanish on
the noisy input data and almost exactly vanish on the jointly
discovered representative data points (called data knots). In
the proposed framework, we introduced a vanishing polyno-
mial construction method that takes into account two differ-
ent point sets with different noise-tolerance scales. We also
linked the newly introduced nonlinear regularization term to
the Mahalanobis distance, which is commonly used in met-
ric learning. In experiments, the proposed method discov-
ered much more compact and lower-degree algebraic sys-
tems than the existing method.

Computing the vanishing polynomials that exactly vanish
on the data knots remains an open problem. Exactly van-
ishing polynomials are desired because they can be manip-
ulated by algebraic operations and combined with other al-
gebraic tools. For practical reasons (numerical implementa-
tion and optimization), our method returns exactly vanishing
polynomials in an extreme case only (δ = 0), which often
show poor performance in reality due to the numerical in-
stability. Another future work is to increase computational
efficiency. The proposed method is rather slower than VCA
in training runtime (see the supplemental material) due to
the optimization step for data knotting. Also, our method has
three main hyperparameters to be tuned (ε, δ, and λ), which
requires additional cost for the cross validation step. Empir-
ically, the most important hyperparameter is ε that defines
the error tolerance for the original data. Determining ε is
similar to determining the number of principal components
in Principal Component Analysis (PCA), while ε affects not
only selecting linear polynomials but also selecting nonlin-
ear polynomials. How to choose ε is still an open problem
for many vanishing ideal based approaches including ours.

Acknowledgement
This work was supported by JSPS KAKENHI Grant Num-
ber 17J07510. The authors would like to thank Hitoshi Iba,
Hoan Tran Quoc, and Takahiro Horiba of the University of
Tokyo for helpful conversations and fruitful comments.

References
Abbott, J.; Fassino, C.; and Torrente, M.-L. 2007. Thinning
out redundant empirical data. Mathematics in Computer Sci-
ence 1(2):375–392.
Bellet, A.; Habrard, A.; and Sebban, M. 2013. A survey on
metric learning for feature vectors and structured data. arXiv
preprint arXiv:1306.6709.
Cortes, C., and Vapnik, V. 1995. Support-vector networks.
Machine learning 20(3):273–297.
Cox, D.; Little, J.; and O’shea, D. 1992. Ideals, varieties,
and algorithms, volume 3. Springer.
Fassino, C. 2010. Almost vanishing polynomials for sets of
limited precision points. Journal of Symbolic Computation
45(1):19–37.
Gao, G., and Wang, C. 2016. Nonlinear discriminant anal-
ysis based on vanishing component analysis. Neurocomput-
ing 218(C):172–184.

Heldt, D.; Kreuzer, M.; Pokutta, S.; and Poulisse, H. 2009.
Approximate computation of zero-dimensional polynomial
ideals. Journal of Symbolic Computation 44(11):1566–
1591.
Hou, C.; Nie, F.; and Tao, D. 2016. Discriminative van-
ishing component analysis. In Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence, 1666–1672.
AAAI Press.
Kera, H., and Hasegawa, Y. 2016. Noise-tolerant algebraic
method for reconstruction of nonlinear dynamical systems.
Nonlinear Dynamics 85(1):675–692.
Kera, H., and Iba, H. 2016. Vanishing ideal genetic pro-
gramming. In Proceedings of the 2016 IEEE Congress on
Evolutionary Computation, 5018–5025. IEEE.
Laubenbacher, R., and Stigler, B. 2004. A computational al-
gebra approach to the reverse engineering of gene regulatory
networks. Journal of Theoretical Biology 229(4):523–537.
Laubenbacher, R., and Sturmfels, B. 2009. Computer al-
gebra in systems biology. American Mathematical Monthly
116(10):882–891.
Li, F.; Li, Z.; Saunders, D.; and Yu, J. 2011. A theory of
coprime blurred pairs. In Proceedings of the 2011 Interna-
tional Conference on Computer Vision, 217–224. Washing-
ton, DC, USA: IEEE.
Lichman, M. 2013. UCI machine learning repository.
Limbeck, J. 2013. Computation of approximate border
bases and applications. Ph.D. Dissertation, Passau, Univer-
sität Passau.
Livni, R.; Lehavi, D.; Schein, S.; Nachliely, H.; Shalev-
Shwartz, S.; and Globerson, A. 2013. Vanishing compo-
nent analysis. In Proceedings of The Thirteenth Interna-
tional Conference on Machine Learning, 597–605.
Robbiano, L., and Abbott, J. 2010. Approximate Commuta-
tive Algebra, volume 1. Springer.
Torrente, M.-L. 2008. Application of algebra in the oil in-
dustry. Ph.D. Dissertation, Scuola Normale Superiore, Pisa.
Vera-Licona, P.; Jarrah, A.; Garcia-Puente, L. D.; McGee, J.;
and Laubenbacher, R. 2014. An algebra-based method for
inferring gene regulatory networks. BMC systems biology
8(1):37–52.

3406

