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Abstract

Most existing robust principal component analysis (PCA) in-
volve mean estimation for extracting low-dimensional repre-
sentation. However, they do not get the optimal mean for real
data, which include outliers, under the different robust dis-
tances metric learning, such as �1-norm and �2,1-norm. This
affects the robustness of algorithms. Motivated by the fact
that the variance of data can be characterized by the variation
between each pair of data, we propose a novel robust for-
mulation for PCA. It avoids computing the mean of data in
the criterion function. Our method employs �2,p norm as the
distance metric to measure the variation in the criterion func-
tion and aims to seek the projection matrix that maximizes the
sum of variation between each pair of the projected data. Both
theoretical analysis and experimental results demonstrate that
our methods are efficient and superior to most existing robust
methods for data reconstruction.

Introduction

In real applications, we usually get the data such as face im-
ages and gene expressions with high-dimensionality. If we
directly analyze on these high-dimensional data, it will suf-
fer from the curse of dimensionality and cause performance
degradation with complexity computation. Thus, how to find
an effective representation for high-dimensional data has
been an active and fundamental problem in the fields of pat-
tern recognition and machine learning. For this task, dimen-
sionality reduction is an effective and successful approach.
It aims to seek a low-dimensional space such that class
distribution becomes more apparent which can improve
the robustness of subsequent analysis (Jiang et al. 2013;
Gao et al. 2017).

To analyze different data types, many dimensionality
reduction methods have been developed in the literature,
among which principal component analysis (PCA) and lin-
ear discriminant analysis (LDA) are two of the most rep-
resentative methods (Turk and Pentland 1991; Belhumeur,
Hespanha, and Kriegman 1997). Moreover, PCA is also usu-
ally used as a preprocessing step in almost dimensionality
methods including LDA. Thus, in this paper, we focus on
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how to improve robustness of PCA for dimensionality re-
duction. PCA aims to seek projection matrix such that the
projected data well reconstruct the original data in a least
squares sense. It is well known that least square criterion re-
markably enlarges the large distance, which results in sen-
sitivity of PCA to outliers and noise (Gao et al. 2013;
Shahid et al. 2015).

To handle this problem, many approaches have been de-
veloped. These methods can be broadly divided into two cat-
egories: nuclear norm based methods and L1-norm based
methods. Nuclear-norm based methods aim to seek clean
data with low-rank structure. The representative methods in-
clude robust PCA (RPCA) (Li, Ma, and Wright 2009) and
RPCA with graph (GRPCA) (Shahid et al. 2015). This kind
of methods does not get the low-dimensional representation,
in other words, they cannot be suitable for dimensionality
reduction. Different from nuclear norm based methods, �1-
norm PCA uses �1-norm instead of squared Euclidean dis-
tance as the distance metric in the criterion function of PCA.
There are two formulations for �1-norm based PCA. One
is L1-PCA, which minimizes the �1-norm reconstruction
error (Ke and Kanade 2005). It well improves the robust-
ness of PCA to oultiers, but it is difficult to solve L1-PCA
and does not have rotational invariance (Ding et al. 2006;
Gao et al. 2017; Wang and Gao 2017). Another is PCA-L1
that maximizes �1-norm covariance and has become an ac-
tive topic in pattern analysis (Kwak 2008; Wang et al. 2015;
Ju et al. 2015; Wang and Wang 2013).

Compared with traditional PCA, the aforementioned �1-
norm PCA methods effectively improve the robustness of
algorithms, but they involve the mean estimation of data,
which is calculated in the least squared sense. Some works
have witnessed that the mean in the least squared sense is
not optimal for other different distance metrics such as �1-
norm, �2,1-norm and nuclear norm (Oh and Kwak 2016;
He et al. 2011; Wang et al. 2017). This effects the robust-
ness of algorithms. To tackle this problem, some enhanced
robust PCA methods were proposed by simultaneously op-
timizing mean and projection matrix in the criterion func-
tion. For example, Nie et al. (Nie, Yuan, and Huang 2014)
simultaneously optimized mean and projection matrix by
maximizing �2,1-norm variance, which was extended to ro-
bust two-dimensional formulation with F-norm minimiza-
tion (Wang et al. 2017). However, all of them cannot ob-
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tain the global mean (Song, Woodruff, and Zhong 2017;
Luo et al. 2016) result in additional computation.

Recently, a novel robust PCA form (RPCA-AOM) was
proposed by maximizing the sum of projected differences
between each pair of data based on the �1-norm dis-
tance (Luo et al. 2016). It effectively avoids mean compu-
tation in solving the projection matrix. However, it has the
following limitations. First, RPCA-AOM does not well char-
acterize the geometric structure of data (Gao et al. 2017).
Second, it is not only time-consuming but also difficult to
solve the local optimal solution of RPCA-AOM. To avoid
the aforementioned problems, we develop a novel robust for-
mulation for PCA. Our method employs �2,p-norm as the
distance metric to measure the variation between data points
and seeks projection matrix by maximizing the sum of vari-
ations between each pair of the projected data. Our method
has the following advantages:

From the norm point of view, �2,p-norm and squared
�2-norm (Euclidean distance) have no essential difference.
Thus, our method retains traditional PCAs desirable prop-
erties. For example, our method has rotational invariance,
and the solution is related to the weighted covariance ma-
trix, which well characterizes the geometric structure of
data. Furthermore, compared with squared �2-norm, �2,p-
norm (0 < p < 2) can suppress the effect of outliers in
the criterion function, thus our method is robust to outliers.
Finally, compared with �1-norm optimization problem, �2,p-
norm optimization can be easily solved in real applications,
and our proposed algorithm has a closed form solution in
each iteration.

Principal Component Analysis Review

Assume that we have training images matrix X =
[x1,x2, · · · ,xn] ∈ Rd×n which includes n samples, where
xi ∈ Rd(i = 1, 2, ..., n) denote the ith training image, d is
the dimensionality of the samples space. PCA aims to seek a
transformation such that the projected data well reconstruct
the corresponding original data in a least squares sense. De-
note by W = [w1,w2, · · · ,wk] ∈ Rd×k the projection ma-
trix which spans a k(k < d)-dimensional subspace, it can be
obtained by the model (1).

min
WTW=Ik,m

n∑

i=1

∥∥(xi −m)−WWT (xi −m)
∥∥2
2

(1)

where m denotes the mean of the training data. Ik is a k-
dimensional identity matrix.

For each data point, we have∥∥(xi −m)−WWT (xi −m)
∥∥2
2
+

∥∥WT (xi −m)
∥∥2
2

=

‖(xi −m)‖22. Suppose that the mean m is known, then
‖(xi −m)‖22 is constant. Thus, by simple algebra, the
problem (1) can be reformulated as the maximization of
variance in the projected space, i.e. the model (2).

max
WTW=Ik,m

n∑

i=1

∥∥WT (xi −m)
∥∥2
2

(2)

As can be seen in the models (1) and (2), the estimation
of mean m is very important for solving projection matrix

W. By setting the derivative of the problem (1) with respect
to m to zero, the optimal mean is m = x = 1

n

∑n
i=1 xi.

In the model (1) or (2), the squared large distance will
remarkably dominate the solution. Thus, the objective func-
tion (1) or (2) is not robust in the sense that outlying mea-
surements can skew the solution from the desired solution.
To handle this problem, many robust methods have been de-
veloped for dimensionality reduction, one of the most repre-
sentative methods is PCA-L1 (Kwak 2008). It aims to solve
the projection matrix W by the model (3).

max
WTW=Ik

n∑

i=1

∥∥WTxi

∥∥
1

(3)

where the samples xi = xi − x(i = 1, 2, · · · , n) denote the
centered data corresponding to xi.

In the model (3), x is estimated under the squared �2-norm
distance metric. However, it is incorrect due to the fact that
the optimal mean of training data is different under differ-
ent distance metrics (Oh and Kwak 2016; Nie, Yuan, and
Huang 2014; Wang et al. 2017). This affects the robustness
of algorithm. To tackle this problem, Nie et al. (Nie, Yuan,
and Huang 2014) integrated mean calculation in the criterion
function and solved projection matrix by

max
WTW=Ik,m

n∑

i=1

∥∥WT (xi −m)
∥∥
2

(4)

In the model (4), there are two unknown parameters W
and mean m, which are related to each other, thus it needs
to alternatively update them. This usually causes error accu-
mulation. Moreover, it is difficult to get the optimal mean in
real applications. To tackle this problem, Luo et al. (Luo et
al. 2016) proposed RPCA-AOM whose objective function is

max
WTW=Ik

n∑

i,j

∥∥WT (xi − xj)
∥∥
1

(5)

Compared with the models (3) and (4), the model (5) ef-
fectively avoids the mean computation. However, it has the
following limitations. First, RPCA-AOM does not obtain
the optimal solution (Markopoulos, Karystinos, and Pados
2014). Second, it needs to solve �1-norm optimization prob-
lem that is difficult. Third, it is not clear whether �1-norm
relates to the covariance matrix, which characterizes the ge-
ometric structure.

Robust PCA with non-greedy l2,p-norm

maximization

Motivation and Objective function

In this section, we consider a general case that the mean of
the data is not zero, and propose a novel robust PCA based
on l2,p-norm distance metric learning which not only avoids
mean estimation but also well characterizes the geometric
structure. For a better representation, we first introduce the
following theorem.

Theorem 1 (Luo et al. 2016): The objective function (1)
and the following objective function are equivalent.

max
WTW=I

∑

i,j

∥∥WT (xi − xj)
∥∥2
2

(6)
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As can be seen in the model (6), squared �2-norm remark-
ably enlarges the role of outliers in the criterion function.
This makes the model (6) not robust to outliers that deviate
significantly from the rest of data. To handle this problem,
the contribution of distance metric in the criterion function
(6) should reduce the effect of outliers. Moreover, we hope
to obtain a robust low-dimensional subspace that well char-
acterizes the geometric structure. Compared with squared
�2-norm, which is used in traditional PCA, both �2-norm
and �1-norm can weaken the effect of outliers, but, from the
norm point of view, �2-norm and squared �2-norm have no
essential difference. This illustrates that �2-norm not only is
robust to outliers but also helps retain PCA’s nice properties
such as well geometric structure and rotational invariance.
Herein, we extend �2-norm to a generalized form �2,p-norm
(0 < p < 2) and then use �2,p-norm as the distance metric.

Combining the aforementioned analysis, we aim to seek
the projection matrix W by solving the model (7).

max
WTW=Ik

∑

i,j

∥∥WT (xi − xj)
∥∥p
2

(7)

where 0 < p < 2.
As can be seen in (7), our proposed objective automati-

cally avoids the estimation of mean. Compared to the model
(5), our method needs to solve �2,p-norm optimization prob-
lem, which is easy to solve. Moreover, �2,p-norm can fur-
ther suppress the effect of outliers in the criterion function.
Thus our method is robust to outliers. Finally, solution of our
method relates to weighted covariance matrix, which well
characterizes the geometric structure of data.

Algorithm

In this section, we propose an efficient iterative algorithm to
solve the problem (7). By simple algebra, we have

∥∥WT (xi − xj)
∥∥p
2

=
∑

i,j

∥∥WT (xi − xj)
∥∥2
2
sij

=
∑

i,j

tr((WT (xi − xj))(W
T (xi − xj))

T
)sij

=2tr(WTXLXTW)

=2tr(WTH)

(8)

where L=D−S, H = XLXTW. S is a symmetric matrix
whose elements are sij =

∥∥WT(xj − xj)
∥∥p−2

2
, and D is

diagonal matrix whose diagonal elements are dii =
∑
j

sij .

Substituting Eq. (8) into the objective function (7), our
objective function (7) finally becomes

argmax
WTW=Ik

tr(WTH) (9)

We can see that matrix H is dependent on the target vari-
able W, so that Eq. (9) cannot be directly solved. But if H is
known, Eq. (9) can be easily solved. After obtained W, the
value of H can be updated correspondingly, which inspires

us to solve the model (9) in an alternative way. Before solv-
ing the model (9) with the known H, we first introduce two
theorems as follows.

Theorem 2: For the same order matrix X, Y, we have

tr(XTY) ≤ ‖X‖F ‖Y‖F (10)

with equality if and only if X or Y is a multiple of the other.
Proof:

tr(XTY) = (vec(X))T vec(Y) (11)

According to Cauchy-Schwarz inequality, we have

(vec(X))T vec(Y) ≤ ‖vec(X)‖2‖vec(Y)‖2
= ‖X‖F ‖Y‖F (12)

Comparing inequalities (11) and (12) yields

tr(XTY) ≤ ‖X‖F ‖Y‖F (13)

Theorem 3: Denote by UΣVT the compact singular
value decomposition of H ∈ Rm×n, then W = UVT is
the solution of the following objective function

argmax
WTW=Ik

tr(WTH) (14)

where VTV = UTU = Ik , Σ ∈ Rk×k is a nonsingu-
lar diagonal matrix whose elements on diagonal are singular
values λj of matrix H. k = rank(H) .

Proof:

tr(WTH) = tr(WTUΣVT )
= tr(UΣ1/2Σ1/2VTWT )

(15)

According to Theorem 2, we have

tr(WTH) ≤ ∥∥UΣ1/2
∥∥
F

∥∥Σ1/2VTWT
∥∥
F

=
∥∥Σ1/2

∥∥
F

∥∥Σ1/2
∥∥
F

(16)

Equality holds only when

Σ1/2UT = Σ1/2VTWT (17)

which satisfies W = UVT .
Now, we consider how to solve the objective function (9).

Denote the compact singular value decomposition (SVD) of
matrix H by

H = UΣVT (18)
where VTV = UTU = Ik , Σ ∈ Rk×k is a nonsingu-
lar diagonal matrix whose elements on diagonal are singular
values λj of matrix H.

According to theorem 3, we have that the optimal solution
of the objective function (9) is

W = UVT (19)

According to the aforementioned analysis, we can see
that the solution of our model (7) is dependent on H =
XLXTW, where XLXT is an adaptive weighted covari-
ance matrix, which well characterizes geometric structure of
data. We summarize the pseudo code of solving our model
(7) in algorithm 1.
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Algorithm 1 Algorithm to solve the objective function (7)

Input: data set
{
xi ∈ Rd : i = 1, 2, · · · , n} , k.where xi

is normalized.
Initialize W(1) ∈ Rd×k which satisfies WTW = Ik,
t = 1.
repeat

1. For all training samples, calculate s(t)ij and d
(t)
ii by Eq.

(8), i.e., s(t)ij =
∥∥WT (xi − xj)

∥∥p−2

2
|W=W(t) , d(t)ii =

∑
j

s
(t)
ij .

2. Calculate L(t) = D(t) − S(t).
3. Calculate H(t)= XLXTW|W=W(t) .
4. Calculate the singular value decomposition (SVD) of
matrix H(t) by H(t) = U(t)Q(V(t))T .
5. Solve W(t+1) = argmax tr

(
WTH(t)

)
by Eq.

(19). i.e. W(t+1) = U(t)(V(t))T .
6. Update t: t← t+ 1.

until noChange is true
Output: W(t+1) ∈ Rd×k

Convergence analysis

Theorem 4: Algorithm 1 will converge to a local optimal
solution of the objective function (7).

Proof: The Lagrangian function of the problem (7) is:

L(W) =
∑

i,j

∥∥WT (xi − xj)
∥∥p
2
− tr(ΛT (WTW − I))

(20)
where the Lagrangian multiplies Λ = (Λpq) for enforcing
the orthonormal constrains WTW = I. The KKT condition
for optimal solution specifies that the gradient of L must be
zero, i.e.,

∂L

∂W
= p

∑

i,j

(xix
T
i W − xix

T
j W)sij −WΛ = 0 (21)

By simple algebra, we have

p
∑

i,j

(xix
T
i W − xix

T
j W)sij = WΛ (22)

According to step 5 in Algorithm 1, we find the optimal
solution of the objective function (9). Thus the converged
solution of Algorithm 1 satisfies the KKT condition of the
problem (9). The Lagrangian function of the problem (9) is

L2(W) = 2tr(WTH)− tr(ΛT
1 (W

TW − I)) (23)

where H =
∑
i,j

(xixi
TW − xixj

TW)sij .

Taking the derivative of Eq. (23) w.r.t. W and setting it to
zero, we have

H = WΛ1 (24)
Eq. (24) is formally similar to Eq. (22). The main dif-

ference between Eq. (22) and Eq. (24) is that W of H is
known in each iteration in Algorithm 1. Suppose we obtain
the optimal solution W∗ in the (t + 1)-th, thus, we have

W(t) = W∗ = W(t+1). According to the definition of sij ,
we can see that Eq. (24) is the same as Eq. (22) in this case.
It means that the converged solution of Algorithm 1 satisfies
the KKT condition of Eq. (7), i.e.,

∂L

∂W

∣∣∣∣
W=W∗

= 0 (25)

Thus, the converged solution of Algorithm 1 is a local
solution of Eq. (7).

Experimental Analysis

In this section, we verify the effectiveness of our method
(p=0.5, 1 and 1.5) and compare the reconstruction error of
the proposed approach with robust PCA with non-greedy l1-
norm maximization (RPCA) (Nie et al. 2011), optimal mean
robust PCA (RPCA-OM) (Nie, Yuan, and Huang 2014), and
avoiding optimal mean robust PCA(RPCA-AOM ) (Luo et
al. 2016), respectively.

Experimental Setup

In the experiments, we validate our approach in four face
databases (ORL, COIL20, UMIST and LFWCrop). In each
database, we normalize each initial feature of image into [0,
1] and randomly select 20% images and randomly place a
1/4 size of occlusion in the selected images. Furthermore, we
use the following reconstruction error to measure the quality
of dimensionality reduction method:

e =
1

n

n∑

i=1

∥∥xclean
i −WWTxclean

i

∥∥
2

(26)

where n is the number of training data, W is the learned
projection matrix. xi

clean is the i-th clean training sample.

Reconstruction error comparison for robust PCA

The ORL database (Anton et al. 1996) contains ten differ-
ent images of each of 40 distinct subjects with the reso-
lution 32x32 and illumination changes. For some subjects,
the images were taken at different times, facial expressions
(open/closed eyes, smiling) and facial details (glasses). All
the images were taken against a dark homogeneous back-
ground with the subjects in an upright, frontal position (with
tolerance for some side movement). Some sample images
of this database are shown in Figure 1. In our experiments,
we randomly selected half of the images from each object
to form the training set and the remaining images as testing
set.

The UMIST (Phillips, Bruce, and Soulie 2012) database
consists of 380 face images of 20 objects, each category con-
tains 19 pictures. All the images were taken in 19 different
postures. For each category, each image was normalized to
112×92 pixels. Some sample images of this database are
shown in Figure 2. In this database, we randomly selected
10 images per person as the training set, and the remaining
images for testing.

The COIL20 (Nene et al. 1996) database includes 1440
color images of 20 objects (72 images per object). Each
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Figure 1: Some samples in the ORL dataset. The second row
is noised images.

Figure 2: Some samples in the UMIST dataset. The second
row is noised images.

object, of size 64x64 pixels,was placed in a stable config-
uration at approximately the center of the turntable. The
turntable was then rotated through 360 degrees and 72 im-
ages were taken per object, one at every 5 degrees of rota-
tion. Some sample images of this database are shown in Fig-
ure 3. In this database, we randomly selected 20 images of
each class as the training images, and the remaining images
for testing.

The LFWCrop database (Sanderson and Lovell 2009) is
a cropped version of the Labeled Faces in the Wild (LFW)
dataset, keeping only the center portion of each image (i.e.
the face). The extracted area was then scaled to a size of
64x64 pixels. The selection of the bounding box location
was based on the positions of 40 randomly selected LFW
faces. As the location and size of faces in LFW was deter-
mined through the use of an automatic face locator (detec-
tor), the cropped faces in LFWCrop exhibit real-life condi-
tions, including misalignment, scale variations, in-plane as
well as out-of-plane rotations. Some sample images of this
database are shown in Figure 4. In the experiments, we chose
person who have more than 20 photos but less than 100 pho-
tos as the sub-dataset, which contains 57 classes and 1883
images. In the sub-dataset, we randomly selected ninety per-
cent of images per person for training, and the remaining
images for testing.

Table 1 lists reconstruction error versus different dimen-
sions of four methods on four databases. Table 2 lists the
average reconstruction error and the corresponding standard
deviation of four methods on four databases. Table 3 lists the
average time-consuming of each methods on the Coil20 and
ORL databases. Figure 5 presents the convergence curve of
our method on four databases. Figure 6 presents the recon-
struction error of our method under different values of p on
the Coil20 dataset.

• RPCA is overall inferior to the other three methods. The
main reason is that RPCA use the fixed mean, which is not
optimal under the �1-norm distance metric. This affects
the robustness of RPCA.

• RPCA-AOM is overall superior to RPCA-OM. This may

Figure 3: Some samples in the COIL20 dataset. The second
row is noised images.

Figure 4: Some samples in the LFWCrop dataset. The sec-
ond row is noised images.
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Figure 5: Convergence curve of our method on four
databases.

be that RPCA-AOM avoids mean computation in the cri-
terion function, while RPCA-OM cannot obtain the opti-
mal mean. However, in some cases, RPCA-AOM is infe-
rior to RPCA-OM. This is probably because that solution
of RPCA-OM relates to covariance matrix that character-
izes the geometric structure, while RPCA-AOM does not.

• Our method is overall superior to the other three meth-
ods on all databases. This is probably because that our
method not only avoids mean estimation but also relates
to the adaptive weighted covariance matrix, which well
characterizes the geometric structure of data.

• As can be seen in Table 1, Table 2 and Figure 6, our
method has better performance when p is small in most
cases. This is probably because that it can further suppress
the effect of outliers when p is small.

• Figure 5 illustrates that our method quickly converges
(about five steps) and has local optimal solution. Table
3 illustrates that our method is faster than RPCA-OM and
RPCA-AOM, which involve mean calculation.
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Table 1: Reconstruction error versus different dimensions of four methods on four databases. The best reconstruction result
under each dimension is bolded.

COIL20

Dimension 10 15 20 25 30 35 40 45 50
RPCA 0.9709 0.9441 0.9321 0.8983 0.8662 0.8418 0.8118 0.7818 0.7462

RPCA-OM 0.9080 0.8960 0.8792 0.8704 0.8543 0.8406 0.8184 0.7789 0.7305
RPCA-AOM 0.9644 0.95.9 0.8850 0.8700 0.8460 0.8335 0.8144 0.7931 0.7578
P=0.5(our) 0.8169 0.8060 0.7909 0.7771 0.7685 0.7534 0.7206 0.7082 0.6937
P=1(our) 0.8407 0.8065 0.7951 0.7779 0.7663 0.7509 0.7394 0.7190 0.7070

P=1.5(our) 0.8457 0.8205 0.7984 0.7894 0.7723 0.7514 0.7350 0.7031 0.6894

ORL

Dimension 10 15 20 25 30 35 40 45 50
RPCA 0.9874 0.9808 0.9758 0.9511 0.9465 0.9237 0.9047 0.8984 0.8929

RPCA-OM 0.9731 0.9655 0.9580 0.9439 0.9323 0.9185 0.9143 0.9060 0.8973
RPCA-AOM 0.9791 0.9372 0.9213 0.8952 0.8758 0.8686 0.8565 0.8524 0.8459
p=0.5(our) 0.8741 0.8690 0.8632 0.8581 0.8492 0.8434 0.8283 0.8137 0.8037
p=1(our) 0.8701 0.8601 0.8546 0.8446 0.8384 0.8311 0.8267 0.8177 0.8110

p=1.5(our) 0.8795 0.8736 0.8671 0.8527 0.8446 0.8327 0.8214 0.8149 0.8010

UMIST

Dimension 10 15 20 25 30 35 40 45 50
RPCA 0.9748 0.9511 0.9276 0.9155 0.8969 0.8806 0.8565 0.8460 0.8301

RPCA-OM 0.9494 0.9297 0.9053 0.8995 0.8909 0.8690 0.8541 0.8407 0.8344
RPCA-AOM 0.9561 0.9444 0.9235 0.9122 0.8758 0.8643 0.8383 0.8268 0.8176
p=0.5(our) 0.8873 0.8718 0.8522 0.8465 0.8285 0.8068 0.7989 0.7853 0.7708
p=1(our) 0.9063 0.8979 0.8834 0.8799 0.8731 0.8548 0.8487 0.8230 0.8030

p=1.5(our) 0.9087 0.8894 0.8774 0.8597 0.8533 0.8275 0.8141 0.8031 0.7855

LFWCrop

Dimension 10 15 20 25 30 35 40 45 50
RPCA 0.8557 0.8135 0.8052 0.7919 0.7804 0.7543 0.7416 0.7252 0.7062

RPCA-OM 0.9528 0.9439 0.9174 0.8976 0.8519 0.8152 0.7117 0.6642 0.5480
RPCA-AOM 0.9463 0.8885 0.8705 0.8342 0.7729 0.7487 0.7202 0.7101 0.6975
p=0.5(our) 0.6848 0.6645 0.6486 0.6297 0.6100 0.5939 0.5831 0.5505 0.5102
p=1(our) 0.6872 0.6804 0.6599 0.6502 0.6307 0.6250 0.6002 0.5630 0.5525

p=1.5(our) 0.6874 0.6762 0.6696 0.6481 0.6210 0.5836 0.5665 0.5468 0.5206

Table 2: The average reconstruction error and the corresponding standard deviation of four methods on four databases.

Methods RPCA RPCA-OM RPCA-AOM p=0.5(our) p=1(our) p=1.5(our)
ORL 0.8882±0.0092 0.8870±0.0099 0.8689±0.0155 0.8141±0.0119 0.8125±0.0119 0.8069±0.0145

COIL20 0.7680±0.0348 0.7389±0.0253 0.7569±0.0128 0.6830±0.0098 0.6888±0.0104 0.6836±0.0235
UMIST 0.8415±0.0130 0.8493±0.0104 0.8314±0.0221 0.8032±0.0206 0.7996±0.0236 0.8069±0.0177

LFWCrop 0.7117±0.0411 0.5458±0.0208 0.6827±0.0209 0.5443±0.0257 0.5290±0.0196 0.5288±0.0279

Table 3: Average Time Consuming Of Each Method On
ORL and Coil20 Databases (Measured In Minutes.)

Database RPCA RPCA RPCA Our
-OM -AOM method

Coil20 10.31 19.79 312.12 17.81
±0.05 ±0.72 ±2.08 ±0.33

ORL 0.44 1.78 14.25 0.92
±0.02 ±0.10 ±0.17 ±0.02

Conclusion

In this paper, we present a novel robust PCA formulation for
dimensionality reduction. Our method employs l2,p-norm as
the distance metric to measure variance and learns the pro-
jection matrix by maximizing the variance between each pair
of data. Compared with most existing robust PCA methods,
our proposed method not only avoids estimating the optimal

mean and but also well characterizes the geometric structure
of data. We provide an efficient iteration algorithm, which
has a close-form solution in each iteration, to solve the local
optimal solution. Experimental results on LFWCrop, ORL,
COIL20, and UMIST databases illustrate the superiority of
our method.

Acknowledgements

This work is supported by National Natural Science Foun-
dation of China under Grant 61271296 and 61773302, and
the 111 Project of China (B08038).

References

Anton, B.; Fein, J.; To, T.; Li, X.; Silberstein, L.; and Evans,
C. J. 1996. Immunohistochemical localization of orl-1 in the
central nervous system of the rat. Journal of Comparative Neu-
rology 368(2):229–251.

3609



p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
ec

on
st

ru
ct

io
n 

Er
ro

r

0.5

0.55

0.6

0.65

0.7

0.75

Figure 6: Reconstruction error vs. p on the Coil20 dataset.

Belhumeur, P. N.; Hespanha, J. P.; and Kriegman, D. J. 1997.
Eigenfaces vs. fisherfaces: Recognition using class specific lin-
ear projection. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 19(7):711–720.
Ding, C.; Zhou, D.; He, X.; and Zha, H. 2006. R1-pca:rotational
invariant l1-norm principal component analysis for robust sub-
space factorization. In International Conference on Machine
Learning, 281–288.
Gao, Q.; Gao, F.; Zhang, H.; Hao, X.; and Wang, X. 2013.
Two-dimensional maximum local variation based on image eu-
clidean distance for face recognition. IEEE Trans. Image Pro-
cessing 22(10):3807–3817.
Gao, Q.; Ma, L.; Liu, Y.; Gao, X.; and Nie, F. 2017.
Angle 2dpca: A new formulation for 2dpca. IEEE
Transactions on Cybernetics Digital Object Identifier:
10.1109/TCYB.2017.2712740.
He, R.; Hu, B.; Zheng, W.; and Kong, X. 2011. Robust principal
component analysis based on maximum correntropy criterion.
IEEE Transactions on Image Processing 20(6):1485–1494.
Jiang, B.; Ding, C.; Luo, B.; and Tang, J. 2013. Graph-laplacian
pca: Closed-form solution and robustness. In Computer Vision
and Pattern Recognition, 3492–3498.
Ju, F.; Sun, Y.; Gao, J.; Hu, Y.; and Yin, B. 2015. Image outlier
detection and feature extraction via l1-norm-based 2d proba-
bilistic pca. IEEE Trans. Image Processing 24(12):4834–4846.
Ke, Q., and Kanade, T. 2005. Robust l1-norm factorization in
the presence of outliers and missing data by alternative convex
programming. In In Proc. Computer Vision and Pattern Recog-
nition, volume 1, 739–746.
Kwak, N. 2008. Principal component analysis based on l1-
norm maximization. IEEE Trans. Pattern Anal. Mach. Intell.
30(9):1672–1680.
Li, X.; Ma, Y.; and Wright, J. 2009. Robust principal compo-
nent analysis? Journal of the ACM 58(3):1–79.
Luo, M.; Nie, F.; Chang, X.; Yang, Y.; Hauptmann, A.; and
Zhang, Q. 2016. Avoiding optimal mean robust pca/2dpca with
non-greedy l1-norm maximization. In International Joint Con-
ference on Artificial Intelligence, 1802–1808.
Markopoulos, P.; Karystinos, G.; and Pados, D. A. 2014. Op-

timal algorithms for-subspace signal processing. IEEE Trans.
Signal Processing 62(19):5046–5058.
Nene, S. A.; Nayar, S. K.; Murase, H.; Nene, S. A.; Nayar,
S. K.; and Murase, H. 1996. Columbia object image library
(coil-20).
Nie, F.; Huang, H.; Ding, C.; Luo, D.; and Wang, H. 2011.
Robust principal component analysis with non-greedy l1-norm
maximization. In International Joint Conference on Artificial
Intelligence, 1433–1438.
Nie, F.; Yuan, J.; and Huang, H. 2014. Optimal mean robust
principal component analysis. In International Conference on
Machine Learning, 1062–1070.
Oh, J., and Kwak, N. 2016. Generalized mean for robust prin-
cipal component analysis. Pattern Recognition 54:116–127.
Phillips, J.; Bruce, V.; and Soulie, F. F. 2012. Face recognition:
From theory to applications. Columbia University.
Sanderson, C., and Lovell, B. C. 2009. Multi-region probabilis-
tic histograms for robust and scalable identity inference. In In-
ternational Conference on Biometrics, volume 5558, 199–208.
Springer.
Shahid, N.; Kalofolias, V.; Bresson, X.; and Bronstein, M.
2015. Robust principal component analysis on graphs. In IEEE
International Conference on Computer Vision, 2812–2820.
Song, Z.; Woodruff, D. P.; and Zhong, P. 2017. Low rank ap-
proximation with entrywise l1-norm error. In The ACM Sigact
Symposium, 688–701.
Turk, M., and Pentland, A. 1991. Eigenfaces for recognition.
Cognitive Neurosci. 3(1):71–86.
Wang, Q., and Gao, Q. 2017. Two-dimensional pca with f-norm
minimization. In Association for the Advancement of Artificial
Intelligence(AAAI), 2718–2724.
Wang, H., and Wang, J. 2013. 2dpca with l1-norm for si-
multaneously robust and sparse modeling. Neural Networks
46(10):190–198.
Wang, R.; Nie, F.; Yang, X.; Gao, F.; and Yao, M. 2015. Ro-
bust 2dpca with non-greedy l1-norm maximization for image
analysis. IEEE Transactions on Cybernetics 45(5):1108–1112.
Wang, Q.; Gao, Q.; Gao, X.; and Nie, F. 2017. Optimal
mean two-dimensional principal component analysis with f-
norm minimization. Pattern Recognition 68(2):286–294.

3610


