
Learning Across Scales — Multiscale
Methods for Convolution Neural Networks

Eldad Haber,1,2 Lars Ruthotto,2,3 Elliot Holtham,2 Seong-Hwan Jun4

1 Dept. of Earth and Ocean Science, University of British Columbia, Vancouver, Canada eldadhaber@gmail.com
2 Xtract Technologies, Vancouver, BC, Canada, elliot@xtract.tech

3 Dept. of Mathematics and Computer Science, Emory University, Atlanta, GA, USA, lruthotto@emory.edu
4 Dept. of Statistics, University of British Columbia, Vancouver, Canada, seong.jun@stat.ubc.ca

Abstract

In this work, we establish the relation between optimal con-
trol and training deep Convolution Neural Networks (CNNs).
We show that the forward propagation in CNNs can be in-
terpreted as a time-dependent nonlinear differential equa-
tion and learning can be seen as controlling the parameters
of the differential equation such that the network approx-
imates the data-label relation for given training data. Us-
ing this continuous interpretation, we derive two new meth-
ods to scale CNNs with respect to two different dimensions.
The first class of multiscale methods connects low-resolution
and high-resolution data using prolongation and restriction of
CNN parameters inspired by algebraic multigrid techniques.
We demonstrate that our method enables classifying high-
resolution images using CNNs trained with low-resolution
images and vice versa and warm-starting the learning pro-
cess. The second class of multiscale methods connects shal-
low and deep networks and leads to new training strategies
that gradually increase the depths of the CNN while re-using
parameters for initializations.

1 Introduction

We consider the problem of designing and training Convo-
lution Neural Networks (CNNs). CNNs have been a ma-
jor field of research over the last years, after showing re-
markable success, e.g., in classifying images of hand writ-
ing, natural images, videos (see, e.g., LeCun and Bengio;
Krizhevsky, Sutskever, and Hinton; LeCun, Kavukcuoglu,
and Farabet (1995; 2012; 2010) and references therein). This
success has resulted in thousands of research papers and a
few celebrated software packages.

Despite their success, CNNs are not fully understood,
and in fact, tuning network architecture and parameters
can be very hard in practice. Often many trial-and-error
experiments are required to find a CNN that is effective
for a specific class of data. In addition to the computa-
tional costs associated with those experiments, in many
cases, small changes to the network can yield substantial
changes in the learning performance. To overcome the dif-
ficulty of learning, systematic approaches using Bayesian
optimization have been proposed to infer the best architec-
ture (see Hernández-Lobato et al. (2016)).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Crucial design parameters in CNN are the network ar-
chitecture and, currently, the resolution of the image data.
Changing any of those parameters in the training or predic-
tion phase can severely affect the performance of the CNN.
For example, CNNs are typically trained using images of a
fixed resolution, and classifying images of a different res-
olution requires interpolation. This can be computationally
expensive, particularly on resource-limited systems or if the
data represents videos or high-resolution 3D images as is
common in applications, e.g., in medical imaging and geo-
sciences (see Jiang, Trundle, and Ren; Karpathy et al. (2010;
2014)).

In this paper, we derive a framework that allows scaling
CNNs across image resolution and network depth and thus
enables multiscale learning. As a backbone of our methods,
we present an interpretation of deep CNNs as an optimal
control problem involving a nonlinear time-dependent dif-
ferential equation. This understanding leads structure that is
very common in fields such as path planning, data assimi-
lation, and nonlinear Kalman filtering (see, e.g., Biegler et
al. (2009) and reference therein).

We present new methods for scaling CNNs from low- to
high-resolution image data and vice versa. We propose an
algebraic multigrid approach to adapt the coefficients of the
convolution kernel across scales and demonstrate the impor-
tance of this step. Our method allows multiscale learning
using image pyramids, where the network is trained at dif-
ferent resolutions. Such a process is known to be very ef-
fective in other fields, giving rise to computational savings
and adding robustness to local minima (see, e.g., Moder-
sitzki; Haber and Modersitzki; ans A. Ratcliffe et al. (2004;
2004; 2013)). Our new method also enables one to classify
low-resolution images using networks that have been de-
signed for and trained using high-resolution images without
interpolation of the coarse scale image to finer scales.

We also present a method for scaling the number of layers
in a deep CNN. Our method uses the interpretation of the
forward propagation in CNN as a discretization of a time-
dependent nonlinear differential equation. In our framework,
the number of layers corresponds to the number time steps.
This observation motivates the use of multilevel learning al-
gorithms that accelerate the training of deep networks by
solving a series of learning problems from shallow to deep
architectures.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3142

The rest of this paper is structured as follows. In the next
section, we show the connection between optimal control
of time-dependent differential equations and training CNNs.
This connection allows us to introduce the continuous prob-
lem at the heart of our approach. In Sec. 3 we present mul-
tiscale methods connecting CNNs across image resolutions
and depths. In Sec. 4 we demonstrate the potential of our
methods using image classification benchmarks. Finally, in
Sec. 5 we summarize the paper.

2 CNNs Meet Optimal Control
We demonstrate the similarity of training deep convolution
neural networks and optimal control of a time-dependent
nonlinear partial differential equation. First, we derive a con-
tinuous interpretation of the spatial convolution and the for-
ward propagation. Second, we discuss the remaining com-
ponents of CNNs and present the continuous optimal control
problem and its discretization.

For brevity, we focus on image classification and as-
sume we are given training data consisting of discrete d-
dimensional images x(1),x(2), . . . ,x(m) ∈ IRn and cor-
responding labels c(1), c(2), . . . , c(m) ∈ IR�. As common
in image processing, we interpret the image data as a dis-
cretization of a continuous function x : Ω → IR at the cell-
centers of a rectangular grid on the domain Ω ⊂ IRd with n
equally sized pixels of edge length h.In this paper, we con-
sider d = 2.

Continuous Forward Propagation Model. We show that
the forward propagation in Residual Neural Networks
(ResNN) proposed in (He et al. 2016b) can be seen as a
nonlinear differential equation. A simple way to write the
forward propagation of a discrete image x ∈ IRn through a
ResNet is

yk+1 = yk + δtF (yk,θk),

y0 = Lx, ∀k = 0, 1, . . . , N.
(1)

Here, N is the number of layers in the CNN, y0 ∈ IRnf

are the input features, y1, . . . ,yN are the hidden layers,
and yN+1 are the output layers. The matrix L maps the in-
put image into the feature space IRnf . This matrix can be
”learned” or fixed. The parameters θk will be determined by
the ”learning” process. We generalize the original ResNet
model by adding the parameter δt > 0, which helps derive
the continuous interpretation below (δt = 1 gives the origi-
nal formulation).

In CNN, the function F contains a convolution and θ con-
sists of the convolution weights and bias. This leads to the
explicit expression

F (y, s,b) = σα (K(s)y + b) . (2)
Here K(s) is a convolution matrix, which is a circulant ma-
trix that represents the convolution and depends on the sten-
cil or convolution kernel, s ∈ IRns , b ∈ IRN is a bias vec-
tor and σα is an activation function. Next, we interpret the
depth of the network in a continuous framework. We start by
rewriting the forward propagation (1) as

yk+1 − yk

δt
= σα(K(sk)yk + bk). (3)

The left hand side of the above equation is a finite difference
approximation to the differential operator ∂ty with step size
δt. While the approximation used in the original ResNet (us-
ing δt = 1) is valid if features change sufficiently slowly,
the obtained dynamical system can be chaotic if the features
change quickly. Having a chaotic system as a forward prob-
lem implies that one can expect difficulties when consider-
ing the learning problem (see, e.g., discussion in Haber and
Ruthotto (2017)).

To obtain a fully continuous formulation of the forward
propagation, we note that the convolution weights s can be
seen as a discretization of continuous functions s : Ω → IR
whose support is limited to a small region around the origin.
This allows to interpret K(s)y as a discretization of s ∗ y.
Upon taking the limit δt→ 0 in (3) we obtain the continuous
forward propagation process

ẏ(t) = σα (s(t) ∗ y(t) + b(t)) , y(0) = Lx, (4)

for all t ∈ [0, T], where T is the final time correspond-
ing with the output layer. General stability theory of ordi-
nary differential equations (ODEs) applies for this process
as discussed by Haber and Ruthotto (2017). The continu-
ous interpretation also offers other computational benefits,
e.g., reversible and memory free implementation (Chang et
al. 2017a).

Given the continuous forward propagation in (4) we inter-
pret (3) as a forward Euler discretization with a fixed time
step size of δt. The discrete forward propagation is stable as
long as the real parts of the eigenvalues of the convolution
and the time steps are sufficiently small. We note that there
are numerous methods for time integration, some of which
provide superior stability of the forward propagation (see,
e.g., Ascher (2010) for details).

Optimal Control Formulation. Having discussed for-
ward propagation, we now briefly review the classification
problem and summarize the continuous and discrete formu-
lation of the learning problem.

The hypothesis or classification function, which predicts
the label for each data using the values at the output layer,
yN+1, can be written as

cpred = g(hdW�yN+1 + μ), (5)

where the columns of W ∈ IRnf×� are classification
weights and μ ∈ IR� are biases for the respective classes.
Commonly used choices are softmax, least-squares, logis-
tic regression, or support vector machines. We have general-
ized the common notation by adding the parameter hd that
allows to interpret W�yN+1 as a midpoint rule applied to
the standard L2 inner product (wj , y)L2

=
∫
Ω
wj(r)y(r)dr

for a sufficiently regular function wj : Ω→ IR. The jth col-
umn of W is the discretization of wj at the cell-centers of
the grid. This generalization allows us to adjust the weights
across image resolutions.

For training data consisting of continuous functions
x(1), . . . , x(m) and labels c(1), . . . , c(m), learning corre-

3143

sponds to solving the optimal control problem

min
w,μ,s,b

1

m

m∑
j=1

S(g((w, y(j)(T))L2
+ μ), c(j))

+R(w, μ, s, b) s.t. y(j) satisfies (4).

Here S is a loss function measuring the mismatch between
the predicted (e.g., cross entropy) and known label and R is
a regularization function that penalizes undesired features in
the parameters and avoids overfitting. Typically, the problem
is not solved to a high accuracy, and low accuracy solutions
are sufficient. A validation set is often used to determine the
stopping criteria for the optimization algorithm. For com-
pleteness we note that a discrete version of the optimal con-
trol problem is

min
W,μ,sk,bk

1

m

m∑
j=1

S(g(hdW�y(j)
N+1 + μ), c(j))

+R(W, μ, s1,2,...,N , b1,2,...,N)

s.t. y
(j)
k+1 = y

(j)
k + δtσa(K(sk)y

(j)
k + bk),

y
(j)
0 = Lx(j), ∀j = 1, . . . ,m.

(6)

Note that for simplicity we have ignored the pooling layer,
although it can be added in general (see, e.g., Springenberg
et al. (2014) for a discussion on the necessity of pooling).

3 Multiscale Methods

We present new methods for scaling deep CNNs along two
dimensions: First, we discuss restriction and prolongation
of convolution operators as a way to scale CNNs along im-
age resolution. Second, we present a method for scaling the
depth of the network, which simplifies initialization and ac-
celerates training.

From High-Resolution to Low-Resolution. Assume first
that we are given some image data, yh, on a mesh with pixel
size h and a stencil, sh that operates on this image. Assume
also that we would like to apply the fine mesh convolution
to an image, yH , given on a coarser mesh with pixel size
H > h. In other words, the goal is to find a stencil sH
for which the coarse mesh convolution is equivalent to re-
fining the image data and applying fine mesh convolution
with sh. This problem is well-studied in the multigrid lit-
erature (see Trottenberg, Oosterlee, and Schuller (2000) for
details).

Our method for restricting the stencil follows the alge-
braic multigrid approach (see, e.g., Trottenberg, Oosterlee,
and Schuller (2000) for details and alternative approaches
using re-discretization). Assume the following connection
between the fine mesh image, yh, and the coarse mesh im-
age yH

yH = Ryh and ỹh = PyH . (7)

Here, P is a prolongation matrix, R is a restriction matrix,
and ỹh is an interpolated coarse scale image on the fine
mesh. A typical assumption is that RP = γI for some γ,

which depends on the dimensionality of the problem. The
interpretation is that the coarse scale image is obtained us-
ing some linear transformation from the fine scale image
(e.g., by averaging). Conversely, an approximate fine scale
image can be obtained from the coarse scale image by inter-
polation. This interpretation easily extends to 3D or spatio-
temporal data, e.g., videos.

Let Kh(sh) be the sparse matrix that represents the con-
volution on the fine scale. This matrix operates on a vec-
torized image and is equivalent to convolving the vector yh

with the stencil, sh. The matrix is circulant and sparse with
a few non-zero diagonals. Our goal is to build a coarse scale
convolution, KH that operates on a vector yH and is con-
sistent with the operation of Kh on a fine scale vector yh.
Using the prolongation and restriction we obtain that

KHyH = RKhPyH . (8)

That is, given yH we first prolong it to the mesh h, then oper-
ate on it with the matrix Kh, which yields a vector on mesh
with pixel size h. Finally, we restrict the result to the coarse
mesh with pixel size H . This implies that the coarse scale
convolution matrix can be expressed as KH = RKhP. This
construction of the coarse mesh operator is independent of
the specific choice of the interpolation/restriction operators.
Furthermore, assuming that the stencil, sH is constant on
the coarse mesh (i.e., it is not changing on the mesh as com-
monly assumed in CNN), it is straightforward to evaluate
it without generating the matrix KH , as commonly done in
algebraic multigrid.
Example 1. To demonstrate the concept of adapting the
convolution operators across different resolutions using the
following simple example illustrated in Fig. 1. We select an
image from the MNIST data set (bottom left) and convolve it
with the fine mesh convolution parameterized by the stencil

sh =

(−0.89 −2.03 4.30
−2.07 0.00 −2.07
4.39 −2.03 1.28

)

obtaining the image in the bottom right panel of Fig. 1. Now,
by restricting the weights using the algebraic multigrid ap-
proach, we obtain that on a coarse mesh the weights are

sH =

(−0.48 −0.17 0.82
−0.15 −0.80 0.37
0.84 0.40 0.07

)
.

These weights are used to convolve the coarse scale image
(top left panel of Fig. 1) resulting in the filtered image on the
top right panel of Fig. 1. Looking at the weights obtained
on the coarse mesh, it is evident that they are significantly
different from the fine scale weights. It is also evident from
the fine and coarse images that adjusting the weights on the
coarse mesh is necessary to satisfy (8).

The interpretation of images and convolution weights as
continuous functions, allows us to work with different image
resolutions. This has two significant consequences. First, as-
sume that we have trained our network on some fine scale
images and that we are given a coarse scale image. Rather
than interpolating the image to a fine mesh (which can

3144

∗

∗

pr
o
lo
n
g
at
io
n

re
st
ri
ct
io
n

fine convolution

coarse convolution

Figure 1: Fine mesh vs. coarse mesh convolution.

Algorithm 1 Multigrid Prolongation
1: Restrict the images nc times
2: Initialize stencils, biases, and classifier
3: for i = nc : −1 : 1 do
4: Solve (6) on mesh i from its initial point
5: Prolong the stencils to level i− 1
6: Prolong the classifier weights to level i− 1
7: end for

be memory intensive and computationally expensive), we
transform the stencils to a coarse mesh and use the coarse
mesh stencils to classify the coarse scale image. Such a pro-
cess can be particularly efficient when considering the clas-
sification of videos on mobile devices where expanding the
video to high-resolution can be computationally prohibitive.
A second consequence is that we can train the network on a
coarse mesh and then interpolate the result to a fine mesh. As
we see next, this allows us to use a process of image pyra-
mid or multi-resolution for the solution of the optimization
problem that is at the heart of the training process.

From Low-Resolution to High-Resolution. Understand-
ing how to move between different scales allows us to con-
struct efficient algorithms that use inexpensive coarse mesh
representations of the problem to initialize the problem on
finer scales. This is similar to the classical image pyramid
process and multilevel methods that are used in applica-
tions that range from full waveform inversion to shape from
shading (see Haber and Modersitzki (2004) and Zhang et
al. (1999), resp.). The idea is to solve the optimization prob-
lem on a coarse mesh first in order to initialize fine grid pa-
rameters. The algorithm is summarized in Alg. 1.

Solving each optimization problem on coarser meshes is
cheaper than solving the problem on finer meshes. In fact,
when an image is coarsened by a factor of two, each con-
volution step is four times cheaper in 2D and eight times
cheaper in 3D. Ideally, this leads to linear complexity of the
problem (Trottenberg, Oosterlee, and Schuller 2000).

In order to apply such algorithms in our context, we need
to address the transformation of the coarse scale operator
to a fine scale one. This process is different from classical

multigrid where the operator on a fine mesh is given, and
a coarse scale representation is desired. As previously dis-
cussed, we use the classical multigrid result to transform a
fine mesh operator to a coarse one

KH = RKhP. (9)

In the standard multigrid implementation, one has a hold on
the fine scale operator Kh, and the goal is to compute the
coarse scale operator KH . In our application, throughout the
mesh continuation method, we are given the coarse mesh
operator, and we aim at computing the fine mesh operator.
In principle, there is no unique fine scale operator given a
coarse scale one; however, assuming that the fine scale oper-
ator is a convolution with a fixed-sized stencil (as common in
CNN), there is a unique solution. This is a classical result of
Fourier analysis of multigrid methods (Trottenberg, Ooster-
lee, and Schuller 2000). Since (9) represents a linear connec-
tion between Kh and KH , we extract n2

K equations (where
nK is the size of each convolution stencil) that connect the
fine scale convolutions to the coarse scale ones. For a convo-
lution stencil of size 32 and linear prolongation/restriction,
this is a 9×9 linear system that can be easily solved to obtain
the fine scale convolution. A standard multigrid result is that
this linear system is well-posed. Assuming that the coarse
mesh is a nK × nK stencil and that the interpolation is lin-
ear, the fine mesh stencil is also a nK × nK stencil which is
uniquely determined from the coarse mesh stencil.

From Shallow to Deep Networks. We now consider scal-
ing the number of layers in the network as another way to
use the continuous framework. In our case, we gradually in-
crease the number of layers keeping the final time T constant
in order to accelerate learning by re-using parameters from
shallow networks to initialize the learning problem for the
deeper architecture. Note that the number of layers in the
network corresponds to the number of discretization points
in the discrete forward propagation. Similar ideas have been
used in multigrid by Bornemann and Deuflhard (1996) and
image processing by Modersitzki (2009).

To solve a learning task in practice, we first solve the
learning problem (6) using a network with only a few layers.
Subsequently, we prolongate the estimated parameters of the
forward propagation to initialize the optimization problem
for the next network that features, e.g., twice as many layers.
To be specific, we interpolate the weights of the network pa-
rameters in time to obtain initial guesses at the newly added
layers. In our experiments, we use linear interpolation. How-
ever, the method can be extended to higher-order schemes.
We repeat this process until we reach the desired network
depth.

Besides realizing some obvious computational savings
on shallower networks, the main motivation behind our ap-
proach is to obtain good starting guesses for the next level.
This is key since, while deeper architectures offer more flex-
ibility to model complicated data-label relation, deeper net-
works are notoriously difficult to initialize. Also, good ini-
tialization results in faster convergence rates of second-order
learning algorithms.

3145

10 20 10 20 10 20 10 20 10 20 10 20
0

0.1

0.2

0.3
2 layers 4 layers 8 layers 16 layers 32 layers 64 layers

iterations

ob
j
fu
nc
ti
on

random initialization
multilevel prolongation

Figure 2: Multilevel results for MNIST problem.

4 Experiments

Classification of Across Resolutions. We demonstrate
that using the continuous formulation we can classify low-
resolution images using CNNs trained on high-resolution
images and vice versa. Here, no additional learning is per-
formed and, e.g., classifying the low-resolution images does
require neither interpolation nor high-resolution convolu-
tions. This is important for efficient classification of high-
resolution data on resource-limited devices.

We consider the MNIST dataset and independently train
two networks with two layers each using the coarse and
fine data, respectively. The MNIST dataset that consists of
60,000 labeled images each with 28 × 28 pixels. Since the
images are rather coarse, we use only two levels. To ob-
tain coarse scale images, the fine scale images are convolved
with a Gaussian and restricted to a coarse mesh using the op-
erator introduced above. This yields a coarse mesh data con-
sisting of 14 × 14 images. We randomly divide the datasets
into a training set consisting of 50, 000 images, and a vali-
dation set consisting of 10, 000 images. In all experiments,
we choose a CNN with identical layers, tanh activation
function, and a softmax classifier. For optimization, we use
the following Block-Coordinate-Descent (BCD) method:
Each iteration consists of one Gauss-Newton step with sub-
sampled Hessian to update the forward propagation parame-
ters and five inexact Newton steps to update the weights and
biases of the classifier. To avoid overfitting and stabilize the
process, we enforce spatial smoothness of the classification
weights and smoothness across layers for the propagation
parameters through derivative-based regularization as also
suggested by Haber and Ruthotto (2017).

The validation accuracy on their native resolution is
around 98.28% and 98.18% for the coarse and fine scale
network, respectively. Next, we prolongate the classification
weights and apply the multigrid prolongation to the convo-
lution kernels from the coarse network to the fine resolution
using the strategy outlined in Sec. 3. Using only the results
from the coarse level and no training on the fine level, we
get a validation accuracy of 91.0%. For comparison, using
the original convolution kernels (i.e., without prolongation
of the kernel weights) gives a validation accuracy of only
61.0%. Next, we restrict the classification weights and con-
volution kernel of the network trained on fine data as de-
scribed in Sec. 3. This results in a validation accuracy of
94.9% (compared to 84.1% without restricting the kernels).
We note that no coarse-scale training is performed.

20 40 60 72 20 40 60 68

10
20
30
40
50
60
70
80 coarse level, 112x112 fine level, 224x224

epochs

cl
as
si
fic
at
io
n
er
ro
r
in

%

coarse-to-fine, test
coarse-to-fine, training
fine only, test
fine only, training

Figure 3: ImageNet-10 Results. Comparison of training and
validation accuracy for fine-mesh training using 224 × 224
images (blue) and our coarse-to-fine approach trained also
on 112× 112 (red).

Shallow to Deep Training. We solve a sequence of train-
ing problems using the MNIST example for CNNs whose
depths increase in powers of two from two layers up to 64.
For each CNN, we estimate the parameters using 20 iter-
ations of the BCD. Except for the number of layers, all
parameters are chosen as above. We compare the conver-
gence properties of the learning algorithm using random and
the multiscale initialization described in Sec. 3, which uses
the prolongated network parameters from the previous level.
The validation accuracy can be seen in Fig.2. Expectedly,
the initial guesses provided by the multiscale process have a
lower value of the loss function and higher validation accu-
racy. For the deeper networks, where training is most costly,
the optimal accuracy is reached after only a few iterations
using the multiscale method while for random initialization
more iterations are needed to achieve a comparable accu-
racy.

Multiscale CNN Training on ImageNet. We compare
multiscale training to training only the fine mesh CNN.
We select ten categories from the ImageNet dataset (Rus-
sakovsky et al. 2015). ImageNet consists of images that are
of varying dimensions and hence, as in He et al. (2016a), we
pre-process the images to be of dimension 224×224. The
image quality is sufficient to visually recognize the objects
in the images, and the discrete images appear smooth, i.e.,
free of block artifacts. This yields a non-trivial training prob-
lem which we aim to solve using our multigrid approach.
For each category, there are 1,300 images. We randomly di-
vide the data into 10,000 training images and 3,000 test im-
ages. We use ResNet-34 architecture as described by He et
al. (2016a) with two differences, first, the first CNN kernel
is of dimension 3×3×64 rather than 7×7×64 and second,
we did not use the fully connected layer. Instead, we directly
connect the output of the average pooling to the classifica-
tion layer with softmax activation. The average pooling ren-
ders the dimension of the penultimate layer independent of
the dimension of the input layer.

For coarse-scale training, we restrict the 224×224 images
to a 112× 112 mesh and train ResNet-34 on the coarse data
and use the results to initialize the fine-scale training (see
Sec. 3). For comparison, we also train the CNN using the
original image data. Fig. 3 and Tab. 1 show that the multi-

3146

fine-scale only coarse-to-fine
runtime [sec] 59,122±7,540 43,882±3, 476

validation acc. 76.47±0.93% 82.67±0.93%

Table 1: Average runtime and validation accuracy for
ImageNet-10 example for five different splits.

scale approach results in considerable reduction in the num-
ber of epochs and runtime. We use early stopping to stop
training if the loss does not improve for 10 epochs. To en-
sure that this is not a phenomenon that is specific to the given
train-test data split, we repeated the experiment five times
using different splits.

5 Conclusions

In this work, we use the connection between optimal con-
trol and training CNNs to enable learning across scales. We
show how this mathematical framework can be used to scale
deep CNNs along two dimensions: Image resolution and
depth. While the obtained multiscale approaches are new in
deep learning, they are commonly used for the numerical
solution of related optimal control problems, e.g., in image
processing and parameter estimation.

Our method for connecting low- and high-resolution im-
ages is unique in that it scales the parameter of the net-
work rather than interpolating the image data to different
resolutions. To this end, we present an algebraic multigrid
approach for computing convolution stencils that are con-
sistent with coarse- and fine-scale images. We exemplified
the benefit of our approach in two ways in Sec. 4. First, we
show that CNNs trained on fine resolution images can be
adapted and used to classify coarse-scale images and vice
versa. Our method is advantageous when computational re-
sources are limited, and the interpolation of images or videos
is not practical. Second, we show that it is possible to use a
coarse representation of the images to learn the convolution
kernels and – after prolongation – use the weights to classify
high-resolution images.

Our example in Sec. 4 shows that scaling the number of
layers of the CNN can improve and accelerate the training
of deep networks through initialization using results from
shallow ones. In our experiment, this drastically reduces the
number of iterations for the deep networks where cost-per-
iteration is high. Similar results have also been observed in
a follow-up study (Chang et al. 2017b)

6 Acknowledgements

This work is supported in part by the US National Science
Foundation (NSF) award DMS 1522599.

References

Ascher, U. 2010. Numerical methods for Evolutionary Dif-
ferential Equations. Philadelphia: SIAM.
Biegler, L. T.; Ghattas, O.; Heinkenschloss, M.; Keyes, D.;
and van Bloemen Waanders (Editors), B. 2009. Real-Time
PDE-Constrained Optimization. SIAM, Philadelphia.

Bornemann, F. A., and Deuflhard, P. 1996. The cascadic
multigrid method for elliptic problems. Numerische Mathe-
matik 75(2):135–152.
Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David
Begert, and Elliot Holtham. Reversible architectures for
arbitrarily deep residual neural networks. abs/1709.03698,
2017.
Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and
David Begert. Multi-level Residual Networks from Dynam-
ical Systems View. abs/1710.10348, 2017.
Haber, E., and Modersitzki, J. 2004. Multilevel methods
for image registration. SIAM J. on Scientific Computing
27:1594–1607.
Haber, E., and Ruthotto, L. 2017. Stable architectures
for deep neural networks. Inverse Problems 10.1088/1361-
6420/aa9a90.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep residual
learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
770–778.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity map-
pings in deep residual networks. In European Conference on
Computer Vision, 630–645. Springer.
Hernández-Lobato, J. M.; Gelbart, M. A.; Adams, R. P.;
Hoffman, M. W.; and Ghahramani, Z. 2016. A gen-
eral framework for constrained bayesian optimization using
information-based search. volume 17, 1–53.
Jiang, J.; Trundle, P.; and Ren, J. 2010. Medical image anal-
ysis with artificial neural networks. Computerized Medical
Imaging and Graphics 34:617631.
Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar,
R.; and Fei-Fei, L. 2014. Large-scale video classification
with convolutional neural networks. In CVPR.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. 2012. Im-
agenet classification with deep convolutional neural net-
works. Advances in neural information processing systems
61:10971105.
LeCun, Y., and Bengio, Y. 1995. Convolutional networks
for images, speech, and time series. The handbook of brain
theory and neural networks 3361:255258.
LeCun, Y.; Kavukcuoglu, K.; and Farabet, C. 2010. Con-
volutional networks and applications in vision. IEEE In-
ternational Symposium on Circuits and Systems: Nano-Bio
Circuit Fabrics and Systems 253256.
Modersitzki, J. 2004. Numerical Methods for Image Regis-
tration. Oxford.
Modersitzki, J. 2009. FAIR: Flexible Algorithms for Image
Registration. Philadelphia: SIAM.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of Com-
puter Vision (IJCV) 115(3):211–252.
Springenberg, J. T.; Dosovitskiy, A.; Brox, T.; and Ried-

3147

miller, M. A. 2014. Striving for simplicity: The all con-
volutional net. CoRR abs/1412.6806.
Trottenberg, U.; Oosterlee, C. W.; and Schuller, A. 2000.
Multigrid. Academic press.
Warner, M.; Ratcliffe, M. W.; Nangoo, T.; Morgan, J.;
Umpleby, A.; Shah, N.; Vinje, V.; Štekl, I.; Guasch, L.; Win,
C.; Conroy, G.; and Bertrand, A. 2013. Anisotropic 3d full-
waveform inversion. GEOPHYSICS 78(20):59–80.
Zhang, R.; Tsai, P.-S.; Cryer, J.; and Shah, M. 1999. Shape
from shading: A survey. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 21-8:690–706.

3148

