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Abstract

Not like numerical data clustering, nominal data clustering is
a very difficult problem because there exists no natural rel-
ative ordering between nominal attribute values. This paper
mainly aims to make the Euclidean distance measure appro-
priate to nominal data clustering, and the core idea is the
attribute value embedding, namely, transforming each nom-
inal attribute value into a numerical vector. This embedding
method consists of four steps. In the first step, the weights,
which can quantify the amount of information in attribute
values, is calculated for each value in each nominal attribute
based on each object and its k nearest neighbors. In the sec-
ond step, an intra-attribute value similarity matrix is cre-
ated for each nominal attribute by using the attribute value’s
weights. In the third step, for each nominal attribute, we find
another attribute with the maximal dependence on it, and
build an inter-attribute value similarity matrix on the basis
of the attribute value’s weights related to these two attributes.
In the last step, a diffusion matrix of each nominal attribute
is constructed by the tensor product graph diffusion process,
and this step can cause the acquired value embedding to con-
tain simultaneously the intra- and inter-attribute value simi-
larities information. To evaluate the effectiveness of our pro-
posed method, experiments are done on 10 data sets. Experi-
mental results demonstrate that our method not only enables
the Euclidean distance to be used for nominal data clustering,
but also can acquire the better clustering performance than
several existing state-of-the-art approaches.

Introduction

Most of data mining techniques are only applicable to nu-
merical data and can not operate well for nominal data con-
sisting of several nominal attributes which have no numeri-
cal values, such as degree or profession, since nominal at-
tributes have unordered scales and mathematical calcula-
tions, like addition or subtraction, are unable to be carried
out on them(Agresti 2007). To make nominal data cluster-
ing practicable, nowadays, there exist two primary kinds of
methods: designing the specific distance metrics to quan-
tify the dissimilarities between nominal attribute values and
transforming nominal values into embedding vectors .

The most straightforward and generally used specific dis-
tance metric for nominal values is the Hamming distance
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(HAM for short)(Bock 2000). Additionally, with increas-
ing efforts of researchers, more latest special distance met-
rics are proposed for nominal values in recent years, such
as the coupled nominal distance (CNS)(Wang et al. 2015;
2011), the Hong’s distance metric (HDM)(Jia, m. Cheung,
and Liu 2016) and the Ahmad’s distance metric (ADM)(Ah-
mad and Dey 2007). Nevertheless, these distance metrics
have some disadvantages. HAM is very simple, but it does
not notice the dependence between attributes; HDM focus
on the combination of two attributes, but it ignores the dif-
ferences between multiple attributes; CNS and ADM all take
into consideration that there may be certain relations be-
tween two values from one attribute with respect to other
attributes, but they fail to give proper attention to the corre-
lations between values from distinct attributes and are also
ineffective for nominal data with totally independent at-
tributes. In addition, when implementing the clustering task,
we should incorporate the aforementioned distance metrics
into the models of some nominal clustering algorithms (e.g.,
the most popular K-modes(Huang 1998)), but the number of
nominal clustering algorithms is far less than that of numer-
ical clustering algorithms.

The embedding representation methods can convert nom-
inal values into numerical vectors. Accordingly, after this
transformation, the numerical distance metrics (e.g., the sim-
ple Euclidean distance) can be inserted into a lot of effec-
tive numerical clustering algorithms (e.g., the most pop-
ular K-means) and be used to execute clustering on the
changed nominal data. The available and classical value em-
bedding methods for nominal data clustering are few now.
Nevertheless, we can still roughly summarize three exist-
ing value embedding methods: the dummy variables re-
lated value embedding (DVE)(Suits 1957; Zdravevski et al.
2015), the term frequency–inverse document frequency re-
lated value embedding (TVE) and the coupled data em-
bedding (CDE)(Songlei Jian 2017). Nonetheless, there are
also obvious drawbacks in these three approaches. First,
DVE only can transform each nominal attribute value into
a one dimensional vector, such as a number 0 or 1, and it
overlooks absolutely any relevance contained within nom-
inal data. Second, the term frequency–inverse document
frequency(TF-IDF)(Berry 2003) is often applied to docu-
ment analysis, but whether it is appropriate to general nom-
inal data still requires the support of the theory foundation.
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Therefore, TVE as a general value embedding method has
not yet widely used until now. Third, although, in CDE, each
nominal value can be changed into a vector made up of mul-
tiple numbers and the dependency degree between values is
also measured, it is very easy for CDE to generate the high
dimensional data.

To spare the trouble of selecting only from a small amount
of nominal data clustering algorithms utilizing the specific
distance metrics, in this paper, we endeavor to validate the
Euclidean distance embedded into the frameworks of numer-
ical clustering approaches for nominal data and propose a
tensor product graph diffusion related attribute value embed-
ding method (TAVE), which is made up of four steps: calcu-
lating attribute value’s weights, creating intra-attribute value
similarity matrices, building inter-attribute value similarity
matrices and constructing diffusion matrices. The presented
TAVE has the five following characteristics: (1) In compari-
son to all existing methods mentioned above, TAVE not only
can capture the intrinsic information and relations from each
nominal object and its k nearest neighbors, but also can uti-
lize the tensor product graph diffusion process to propagate
the intra- and inter-attribute value similarities and make the
obtained numerical vectors hold concurrently these two sorts
of similarities information. (2) Contrasted with HAM, CNS,
HDM and ADM, the Euclidean distance based on TAVE,
which cooperates with the most popular K-means belong-
ing to one type of numerical clustering algorithms, can be
utilized to perform clustering on the transformed nominal
data. (3) Compared severally with DVE and TVE, TAVE is
grounded on information theories and graph diffusion and it
is more suitable for general nominal data rather than special
data (e.g., documents). (4) TAVE can bring about low di-
mensional numerical data as against CDE. (5) substantial ex-
periments on benchmark data sets show the higher effective-
ness of TAVE in comparison with these existing approaches.

Related Work
In this section, we present an overview of the existing related
work from two aspects.

The first aspect is in concern of the dissimilarity metrics
measuring the differences between nominal attribute values
or objects. This aspect can be divided into three parts again.
First, the dissimilarity degree is only related to a single at-
tribute. The most heavily used HAM is one of typical repre-
sentatives, and HAM between two nominal objects is equal
to the number of their mismatched attribute values. Further-
more, some similarity metrics(dos Santos and Zrate 2015;
Boriah, Chandola, and Kumar 2008), which are frequently
used in nominal data, also belong to this category, such
as Gower similarity, Eskin similarity, Lin similarity and
Smirnov similarity. Second, the dissimilarity measure in-
volve two attributes, but they only can be employed to ex-
press the relationships between two values from one same
attribute. One proposed association-based distance(Le and
Ho 2005) and ADM are all attributed to this kind of dissimi-
larity measures; they can measure the dissimilarity between
two values from one same attribute with respect to all other
different attributes. However, they neglect the intra-attribute
dissimilarity between two values from one same attribute.

The recently proposed CNS solves this problem. It defines
the intra-attribute similarity between two values from one
attribute as intra-coupled attribute value similarity, and also
defines the similarity between two values from one attribute
with respect to all other attributes as inter-coupled attribute
value similarity, and then regards the product of two de-
creasing functions, whose variables are separately the intra-
coupled and inter-coupled attribute value similarity, as the
final dissimilarity also called coupled attribute value dissim-
ilarity. The key idea of CNS has been successfully applied to
dealing with complex tasks, such as matrix factorization(Li,
Xu, and Cao 2015), collaborative filtering(Jiang et al. 2015),
multi-label classification(Liu and Cao 2015) and outlier de-
tection(Pang, Cao, and Chen 2016). Third, the dissimilarity
measure is based on the combinations of only two nominal
attributes. The latest work HDM pertains to this kind, and it
uses the mutual information to decide which two attributes
should be combined.

The second aspect is in regards to the nominal attribute
value embedding. This aspect also can be separated into two
components again. Firstly, each nominal attribute value is
changed into a numerical vector with one dimension. DVE
and TVE are all be subordinate to this class. In DVE, a nom-
inal attribute value can be thought of as a dummy variable
represented as a numerical value 0 or 1. Dummy variables
are also known as indicator variables and are involved fre-
quently in studies of economic forecasting, credit scoring,
etc. In TVE, a nominal attribute value is substituted by TF-
IDF which is the product of two statistics, term frequency
and inverse document frequency. TF-IDF has already been
used successfully for document summarization and text clas-
sification. Secondly, each nominal attribute value is con-
verted into a numerical vector with multiple dimensions.
While this kind of methods is few, the latest CDE is one
of them. CDE builds two value matrices to capture the at-
tribute value couplings from occurrence and co-occurrence
perspective, learns the value clusters with different granular-
ities based on two value matrices, concatenate the indicator
matrices related to the value clusters, and then apply princi-
pal component analysis on the final matrix to obtain a vector
embedding for each value. Moreover, our proposed TAVE
also belongs to this category.

Table 1: An example of nominal data set
X a1 a2 a3 a4
x1 l1 c2 g1 b1
x2 l1 c3 g2 b2
x3 l1 c1 g1 b2
x4 l1 c1 g1 b2
x5 l2 c1 g2 b2
x6 l1 c1 g2 b1

Methodology

Assume a nominal data set can be formally described as fol-
lows: X={x1, x2, . . . , xn} is a set of n objects, represented
by a set of nominal attributes A={a1, a2, . . . , at}, where t
is the number of attributes; f(am) and ãγm are the number of
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values and the γth value for attribute am respectively (Note
that here the attribute value’s order have no concern with
any kind of attribute value’s magnitudes and they only have
an effect on differentiating between different values in at-
tribute am; γ∈{1, 2, . . . , f(am)}.). Again, let h(xi, am) be
the nominal value of attribute am for object xi and �v(xi, am)
be the embedding-based representation of h(xi, am). Each
h(xi, am) has no any natural order, but each �v(xi, am) is
a numerical vector. Figure 1 shows the simple flowchart of
our TAVE. The proposed TAVE, which is also summarized
by Algorithm 1, mainly aims to transform each h(xi, am)
in a nominal data set X into a corresponding �v(xi, am) and
make the Euclidean distance between nominal objects work
well for nominal data clustering. Table 1 exhibits a nominal
data set consisting of six objects and four attributes. Take
h(x1, a3) as an example, h(x1, a3)=ã13=g1, and when the
parameter k=2 and q=10 in Algorithm 1, TAVE can convert
this nominal value into �v(x1, a3), that is, a numerical vec-
tor (4.1135, 2.9491, 2.8852, 1.3772)T . There are four im-
portant steps in Algorithm 1 and we will describe them in
the following subsections.

Furthermore, here a new presented Euclidean distance
d(xi, xj) between two nominal objects xi and xj can be de-
fined as:

d(xi, xj) = ‖�e(xi)− �e(xj)‖2 (1)
where two vectors �e(xi) and �e(xj) are separately formed by
concatenating all �v(xi, am) and �v(xj , am) (m=1, 2,. . . ,t),
and ‖ · ‖2 is the L2 norm.

Algorithm 1 The Proposed TAVE method
Input: two parameters k and q (k, q>0), a nominal data set

X , and an attribute value h(xi, am) (here suppose
h(xi, am)=ãγm; i∈{1, 2, . . . , n}, m∈{1, 2, . . . , t},
and γ∈{1, 2, . . . , f(am)}.)

Output: an embedding vector �v(xi, am) of h(xi, am)

1: For each nominal attribute value ãβm in attribute am (β=
1, 2, . . . ,f(am)), calculate its weight w(ãβm) in accor-
dance with its occurrence times within attribute am of
all objects and their k nearest neighbors by Eq.(2).

2: For nominal attribute am, create an intra-attribute value
similarity matrix M(am) based on the weights w(ãβm)
of all attribute values in am by Eq.(3).

3: For nominal attribute am, find a nominal attribute au in
A (u∈{1, 2,. . . ,t}, but u �=m) with the maximal depen-
dence on am, compute the weights w(ãδu) (δ=1, 2,. . . ,
f(au)) of all nominal attribute values in au by Eq.(2),
and then build an inter-attribute value similarity matrix
Q(am) according to the weights w(ãβm) and w(ãδu) of
all attribute values in am and au by Eq.(4).

4: For nominal attribute au, create an intra-attribute value
similarity matrix M(au) by Eq.(3), and for nominal at-
tribute am, construct a diffusion matrix H(am) on the
basis of M(am), M(au) and Q(am) by iterating Eq.(5)
until the maximum iteration number q is reached.

5: Let the γth row of H(am) be �v(xi, am).

An attribute value in a nominal data set

Calculating attribute value weights

Creating intra-attribute value similarity matrices

Building inter-attribute value similarity matrices

Constructing diffusion matrices

An embedding vector of this nominal attribute value

Figure 1: The simple flowchart of TAVE

Calculating attribute value’s weights

Attribute value’s weights can be applied to revealing the
information content of attribute values, and thus they are
considered as the root of TAVE. The weight of each nom-
inal attribute value is calculated by using this value occur-
rence times in objects. The definition of one attribute value’s
weight is given as follows:
Definition 1. [Attribute value’s weight (w)]
Given a nominal data set X and a value ãβm in attribute am.
The weight w(ãβm) of attribute value ãβm is defined as:

w(ãβm) =

n∑
i=1

φ(xi, ã
β
m) +

n∑
i=1

k∑
σ=1

φ(x̂σ
i , ã

β
m)

n+ n · k (2)

where k is a parameter, φ is a function, and x̂σ
i is a object

(x̂σ
i ∈X) and the σth nearest neighbor of object xi.
In Eq.(2), φ(·) is an indicator function, φ(xi, ã

β
m)=1 if ãβm

is the value of attribute am for object xi and 0 otherwise, and

while
n∑

i=1

φ(xi, ã
β
m) and

n∑
i=1

k∑
σ=1

φ(x̂σ
i , ã

β
m) are all related to

attribute value ãβm, they respectively signify the value oc-
currence times within attribute am of n objects xi and their
corresponding k nearest neighbors x̂σ

i . Moreover, for any
attribute value ãβm, w(ãβm)∈[0, 1], and for each object, we
employ Hamming distance to seek its k nearest neighbors
before Eq.(2) is available in TAVE.

For a nominal data set, the weight of each nominal at-
tribute value can be reckoned by Eq.(2). For instance, in
Table 1, h(x1, a3)=ã13=g1, and when k=2, w(ã13)=0.7222.
Two nearest neighbors of x1 are x3 and x4, that is, x̂1

1=x3

and x̂2
1=x4.

Creating intra-attribute value similarity matrices

Each intra-attribute value similarity matrix can clearly ex-
press the relationship between different nominal values in
each attribute. Therefore, these similarity matrices are an
important part of TAVE. The intra-attribute value similar-
ity matrix of each attribute is created by utilizing all value’s
weights in this attribute. The related definition is provided
as follows:
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Definition 2. [Intra-attribute value similarity matrix(M )]
Given a nominal data set X and an attribute am in A. The
intra-attribute value similarity matrix M(am) of attribute
am is defined as:

M̈(ρ, η | am) =
min〈w(ãρm), w(ãηm)〉
max〈w(ãρm), w(ãηm)〉 (3)

where M̈(ρ, η | am) is the element of matrix M(am), ρ and
η=1, 2, . . . , f(am) here, min〈·〉 and max〈·〉 severally return
the largest and smallest value from the numbers enclosed in
angle brackets, and w(·) is the value’s weight.

Each element M̈(ρ, η | am) of matrix M(am) computed
by using a couple of the attribute value’s weights and Eq.(3)
can reflect the similarity degree between a pair of attribute
values. The larger M̈(ρ, η | am) indicates the higher simi-
larity degree. If the weights of two values (e.g., ãρm and
ãηm) are same, then we can acquire M̈(ρ, η | am)=1. In ad-
dition, here one supplementary explanation about Eq.(3) is
that M̈(ρ, η | am)=1 if w(ãρm)=w(ãηm)= 0, and similarly,
M̈(ρ, η | am)=1 if ρ=η.

At last, for example, for attribute a3 in Table 1, we can
further get w(ã23)=0.2778 by Eq.(2) when k=2, and conse-
quently the similarity matrix M(a3) can be formed based on

w(ã13) and w(ã23), that is, M(a3)=

[
1.0000 0.3846
0.3846 1.0000

]
.

Building inter-attribute value similarity matrices

The intra-attribute value similarity matrices are not fully
competent for depicting the characteristics of nominal at-
tribute values. Accordingly, the inter-attribute value similar-
ity matrices are the powerful supplement for capturing more
intrinsic relations between nominal attribute values, and they
are also regarded as an indispensable component of TAVE.
The corresponding definition is shown as follows:
Definition 3. [Inter-attribute value similarity matrix(Q)]
Given a nominal data set X and an attribute am in A. The
inter-attribute value similarity matrix Q(am) of attribute am
is defined as:

Q̈(θ, λ | am) =
s(θ, λ)

n
· min〈w(ãθm), w(ãλu)〉
max〈w(ãθm), w(ãλu)〉

(4)

where w(·), min〈·〉 and max〈·〉 are identical to the foremen-
tioned Eq.(3), Q̈(θ, λ | am) is the element of matrix Q(am),
θ=1, 2,. . . ,f(am), λ=1, 2,. . . ,f(au), au (u �=m) is a spe-
cially appointed nominal attribute in A, and s(θ, λ) is the
co-occurrence times of the attribute values ãθm and ãλu within
am and au of n objects.

Like M̈(ρ, η | am), each element Q̈(θ, λ | am) of matrix
Q(am) is also reckoned by a pair of the nominal attribute
value’s weights in Eq.(4). However, Q̈(θ, λ | am) need have
the ability to denote the dependence degree between two
values ãθm and ãλu from two different attributes am and au,
and the bigger Q̈(θ, λ | am) is, the greater the dependence
degree is. Hence, an attribute au in A should be obtained
and its value’s weight can be calculated by Eq.(2) before we
make use of Eq.(4). Here we select an attribute, which has

the highest value of normalized mutual information(Cai, He,
and Han 2005) with attribute am, from all attributes in A ex-
cept am as the desired attribute au. Furthermore, in Eq.(4),
Q̈(θ, λ | am)= s(θ,λ)

n if w(ãθm)=w(ãλu)=0.
Finally, take also attribute a3 in Table 1 as an instance,

nominal attribute au=a1 because a3 has the largest value
of normalized mutual information with a1 in comparison
with other attributes, and we can ulteriorly gain s(1, 1)=3,
s(1, 2)=0, s(2, 1)=2, s(2, 2)=1, and the value’s weights
w(ã11)=0.9444 and w(ã21)=0.0556. Therefore, the similar-

ity matrix Q(a3)=

[
0.3824 0.0000
0.0980 0.0333

]
.

Constructing diffusion matrices

The purpose of constructing diffusion matrices is to fuse the
intra- and inter-attribute value similarity matrices, which can
represent the information content contained the attribute val-
ues from different views. Consequently, this procedure plays
a vital role in TAVE. The correlative definition is furnished
as follows:
Definition 4. [Diffusion matrix(H)]
Given a nominal data set X and an attribute am in A. The
diffusion matrix H(am) of attribute am is constructed by
iterating Eq.(5) until the maximum iteration number q is
met, that is, ξ=q, and Eq.(5) is defined as(Yang, Prasad, and
Latecki 2013; Shu and Latecki 2015):

F (ξ+1) = S F (ξ) ST + I (5)

where S=

[
M(am) Q(am)
Q(am)T M(au)

]
and I is the identity matrix.

Here let H(am)=F (q+1) and F (1)=S.
To acquire the diffusion matrix of attribute am, we should

produce the matrices M(am), M(au) and Q(am) in ad-
vance, and then implement the iteration of Eq.(5). The theo-
retical analysis of Eq.(5) is detailed in the next section.

Lastly, take still nominal attribute a3 in Table 1 for ex-
ample, according to the matrices M(a3), Q(a3) and M(a1)

(M(a1)=

[
1.0000 0.0588
0.0588 1.0000

]
), when the iteration number

q=10, the diffusion matrix H(a3) can be given as follows:

H(a3) =

⎡
⎢⎣
4.1135 2.9491 2.8852 1.3772
2.9492 4.2132 2.6159 1.4686
2.8855 2.6161 4.0981 1.6403
1.3804 1.4718 1.6433 6.0010

⎤
⎥⎦ .

It note that the first row vector of H(a3) is the embedding
vector �v(x1, a3) of nominal attribute value ã13(namely, g1 or
h(x1, a3)).

Theoretical Analysis

Firstly, in most of nominal data clustering methods, the oc-
currence frequency of each attribute value is often used as
the similarity or dissimilarity measure. Nevertheless, ac-
cording to probability theory(Soong 2004), this kind of the
occurrence frequencies only can be called relative likelihood
because it indeed become the real frequency also named rel-
ative frequency only when the number of objects should be
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enough large. Therefore, we view each object as a prototype
and treat its k nearest neighbors as the augmented objects to
apply them for more clearly depicting the frequency feature
of each attribute value, and these nearest neighbors are de-
rived from the original data set and are most similar to their
prototypes. The Eq.(2) is devised in terms of the original and
augmented objects.
Theorem 1 For all nominal values ãεm (ε=1, 2, . . . , f(am)

in attribute am,
f(am)∑
ε=1

w(ãεm)=1.

Proof. Obviously, 1
n

f(am)∑
ε=1

n∑
i=1

φ(xi, ã
ε
m)=1 according to the

indicator function φ(·) of Eq.(2) because
n∑

i=1

φ(xi, ã
ε
m) and

1
n

n∑
i=1

φ(xi, ã
ε
m) are separately the occurrence times and fre-

quency of attribute value ãεm within attribute am of n orig-
inal objects. Since each original object has k nearest neigh-
bors regarded as the augmented objects, the size of the
original and augmented objects add up to n+n·k. Conse-

quently, we can obtain 1
n+n·k

f(am)∑
ε=1

n+n·k∑
i=1

φ(x̄i, ã
ε
m)=1 on

n+n·k objects. Here, object x̄i comes from n original
and n·k augmented objects. Since we can get w(ãεm)=

1
n+n·k

n+n·k∑
i=1

φ(x̄i, ã
ε
m) based on Eq.(2),

f(am)∑
ε=1

w(ãεm)=1.

Secondly, in Eq.(5), if all values in attribute am and au
are considered as all vertices of a graph N , S is the adja-
cency matrix of graph N and also called the affinity ma-
trix. For Eq.(5), assume that we symbolize the limit ma-
trix by F ∗=limξ→∞ F (ξ); furthermore, again suppose that
a tensor product graph N=N⊗N where ⊗ is the Kronecker
product, and S(S=S⊗S) is the adjacency matrix of a ten-
sor product graph N. A close form expression for F ∗ is
equal to limξ→∞F (ξ)=F ∗=S∗=vec−1((I − S)−1vec(I)).
Here, vec is an operator that stacks the columns of a ma-
trix one after the next into a column vector. This above
closed form equation and the proof of the convergence of
Eq.(5) can be found in (Yang, Prasad, and Latecki 2013).
We can acquire that the iterative approach on the original
graph N defined by Eq.(5) yields the same similarities as
the tensor product graph diffusion process on N for a suf-
ficient number q of iterations(Shu and Latecki 2015; 2016;
Yang, Prasad, and Latecki 2013). For attribute am, after q
is reached, we can get a diffusion matrix H(am) (that is,
F (q+1)) which is also a new affinity matrix related to all val-
ues of attributes am and au. In addition, in first f(am) rows
of H(am), each row respectively correspond to each value’s
embedding vector of attribute am.

Next, we choose the tensor product graph diffusion in
TAVE rather than the general graph diffusion since the for-
mer can discover higher order relations compared to the
latter. The diffusion process also can propagate the intra-
and inter-attribute value similarity information on the ten-
sor product graph and make each value’s embedding vec-
tor of attribute am, which is derived from the diffusion ma-

trix H(am), contain these two kinds of information. Hence,
these information can be regarded as each value’s intrinsic
features and used to quantify the differences between at-
tribute values.

Finally, We further analyze the time complexity of Al-
gorithm 1. In Algorithm 1, the computational costs of four
steps are severally O(tn+tnk+n2+nk), O(t), O(t2) and
O(

∑t
m=1 p

3
m) where pm is the sum of the number of all

attribute values from am and au. Therefore, the time cost
of Algorithm 1 is O(tn+tnk+n2+nk+t+t2+

∑t
m=1 p

3
m).

Since from the practical view point, k usually is a constant,
the time complexity of TAVE is O(tn+n2+t2+

∑t
m=1 p

3
m)

and it is lower than CNS.

Experiments
In this section, we test our method on several data sets and
compare it with a series of baselines in order to validate the
usefulness of the proposed method.

Data sets

Ten UCI data sets were used in experiments. For the minor-
ity of them, we did the discretization algorithm on numeri-
cal attributes so as to change them into nominal ones. These
ten data sets were as follows: Teaching Assistant Evaluation
(Tae for short), Solar Flare Data1 (Solar Data1), Liver Dis-
orders (Liver), MONK’s Problems (Monks), Balance Scale
(Balance), Tic-Tac-Toe Endgame (Tic), German Credit
Data (German), Contraceptive Method Choice (CMC),
Chess(King-Rook vs. King-Pawn) (Chess(KRvsKP)), and
Chess (King-Rook vs. King) (Chess(KRvsK)). Table 2 lists
their main characteristics and No. represents the serial num-
ber of each data set. Note that all attributes are totally inde-
pendent in Monks and Balance data sets here.

Table 2: Data sets used in experiments
No. Data sets Objects Attributes Classes
#1 Tae 151 5 3
#2 Solar Data1 323 10 3
#3 Liver 345 6 2
#4 Monks 432 6 2
#5 Balance 625 4 3
#6 Tic 958 9 2
#7 German 1000 20 2
#8 CMC 1473 9 3
#9 Chess(KRvsKP) 3196 36 2
#10 Chess(KRvsK) 28056 6 18

Experimental Settings

The first setting is in relation to the baseline methods. In
the light of two chief kinds of methods for nominal data
clustering, we used HAM, HDM, CNS and ADM as the
baseline methods where the dissimilarity degrees between
nominal objects were regarded as the distance metrics, and
also selected DVE, TVE and CDE as the baseline methods,
by which the Euclidean distance can be applied to the em-
bedded nominal data set. Here, TVE and DVE were sev-
erally based on TF-IDF and the generation of dummy at-
tributes. To make TF-IDF available for general nominal data
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sets, in this paper, we thought of each nominal attribute as
an unique document collected in a corpus and considered
each different value in an attribute as a ”term”, and then
TF-IDF was severally applied to each attribute. In addition,
there are two significant features which distinguish TAVE
from other approaches mentioned in this paper: obtaining
the valuable information from each nominal object and its
k nearest neighbors and propagating the similarities infor-
mation by the tensor product graph diffusion process. Ac-
cordingly, we designed a new baseline method called AVE
to verify that these two different features were capable of
powerfully exerting influence on the clustering performance.
In AVE, each attribute value’s weight ãβm is calculated only
by each value occurrence frequency within attribute am of
n objects, and for each attribute am, the diffusion matrix
H(am) is constructed only by concatenating the correspond-
ing intra-attribute value similarity matrix M(am) and inter-
attribute value similarity matrix Q(am). Actually, AVE is
roughly equivalent to the proposed TAVE where the tensor
product graph diffusion process is not implemented and the
parameter k=0 in Eq.(2).

The second setting is in regards to the clustering meth-
ods. The main goal of this paper does not concentrate on in-
tending the high-powered clustering algorithms, and TAVE
is quite distinct from HAM, HDM, CNS and ADM . Hence,
two simple clustering methods K-means and K-modes are
applied for experiments. K-means is the prevalently used
numerical clustering algorithm, and K-modes originating
from the homogeneous K-means is the most popular nom-
inal clustering approach. We conducted nine strategies for
clustering on each data set: K-modes with HAM, K-modes
with HDM, K-modes with CNS, K-modes with ADM, K-
means with DVE, K-means with TVE, K-means with CDE,
K-means with AVE and K-means with the proposed TAVE.

The next setting is in concern of the evaluation criterion.
To establish a fair comparison between all methods, the clus-
ter number was fixed to the number of classes in each data
set and two commonly used evaluation criteria for clustering
were taken here, namely, F-score and the standard normal-
ized mutual information (NMI)(Manning, Raghavan, and
Schtze 2008). F-score and NMI were averaged on 100 inde-
pendent runs for each data set. The larger values of F-score
and NMI indicate the better clustering performance.

The last setting is related to the selection of parameters. In
all baseline methods, the optimal parameters were employed
for each data set. In TAVE, we uniformly set the maximum
iteration number q=20 for each data set because TAVE is
insensitive to the parameter q. Furthermore, in TAVE, the
choice of the parameter k1 was based on the number n of
objects and relied on the following Eq.(6) for each data set
in all experiments.

k =

⎧⎨
⎩

10 n < 1000

100 1000 ≤ n < 10000

1000 n ≥ 10000

(6)

1Due to space limitations, for each data set, we do not show the
detailed results based on different k here.
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Results Analysis

Experimental results of F-score and NMI on ten UCI data
sets are individually reported in Tabel 3 and 4 and the best
clustering performance is marked in bold face. The evalua-
tion of dimensions between CDE and TAVE are shown in
Figure 2 and each method is represented with a different
color level. The sensitivity of the parameter q is examined
in Figure 3 and the different color level symbolizes distinct
data set.

Comparison with HAM, HDM ,CNS and ADM As
shown in Table 3 and 4, CNS and ADM are a little better
than the homogeneous method HAM for measuring cluster-
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Table 3: Comparison of F-score on ten UCI data sets
Data
sets

K-modes K-means
HAM HDM CNS ADM DVE TVE CDE AVE TAVE

#1 0.4217 0.4067 0.4047 0.3691 0.4113 0.3742 0.3856 0.3587 0.4226
#2 0.5070 0.5506 0.6215 0.5463 0.5079 0.6843 0.5314 0.6528 0.7631
#3 0.5514 0.5487 0.5621 0.5546 0.5457 0.5625 0.5468 0.5419 0.5745
#4 0.5244 0.5085 — — 0.5222 — 0.5211 — 0.5263
#5 0.4260 0.4284 — — 0.4195 — 0.4328 0.4210 0.4478
#6 0.5379 0.5313 0.5266 0.5288 0.5379 0.6060 0.5368 0.5822 0.5420
#7 0.5607 0.5662 0.6480 0.5768 0.5448 0.6132 0.5795 0.6011 0.6698
#8 0.3870 0.3952 0.3972 0.3912 0.3667 0.4168 0.3745 0.3848 0.4547
#9 0.5354 0.5336 0.5867 0.5409 0.5083 0.5394 0.5129 0.5322 0.6425

#10 0.1040 0.1206 0.1228 0.1247 0.1223 0.1250 0.1211 0.1190 0.1270

Table 4: Comparison of NMI on ten UCI data sets
Data
sets

K-modes K-means
HAM HDM CNS ADM DVE TVE CDE AVE TAVE

#1 0.0461 0.0508 0.0323 0.0395 0.0393 0.0450 0.0475 0.0234 0.0756
#2 0.0236 0.0213 0.0300 0.0239 0.0231 0.0286 0.0332 0.0260 0.0377
#3 0.0198 0.0185 0.0159 0.0229 0.0190 0.0250 0.0257 0.0186 0.0231
#4 0.0200 0.0138 — — 0.0272 — 0.0307 — 0.0335
#5 0.0303 0.0324 — — 0.0363 — 0.0612 0.0392 0.0711
#6 0.0137 0.0146 0.0070 0.0100 0.0097 0.0018 0.0095 0.0020 0.0155
#7 0.0090 0.0105 0.0072 0.0089 0.0080 0.0069 0.0118 0.0246 0.0065
#8 0.0270 0.0291 0.0375 0.0362 0.0320 0.0309 0.0281 0.0311 0.0194
#9 0.0108 0.0089 0.0092 0.0092 0.0046 0.0120 0.0072 0.0056 0.0184

#10 0.0652 0.1082 0.1288 0.1287 0.1188 0.1168 0.1152 0.1219 0.1303

ing quality, but they can not work on Monks and Balance
data sets, in which the attributes are totally independent of
each other. Except for NMI only on one data set, TAVE out-
perform HAM, HDM, CNS and ADM on almost all the eval-
uation measures. Moreover, we can see from Table 3 and 4
that this class of methods based on the specific distance met-
rics also underperforms the clustering performance of other
attribute value embedding representation methods, such as
TVE and CDE.

Comparison with DVE and TVE As Table 3 and 4 in-
dicates, the performance of DVE and TVE respectively are
inferior to and as good as other homogeneous methods (e.g.,
CDE and AVE), and when they are taken for a comparison
with TAVE, except for F-score only on one data set, TAVE
is all superior to DVE and TVE. Furthermore, our TAVE is
competent for data sets with totally independent attributes in
comparison with TVE.

Comparison with CDE When the proposed TAVE is
compared with CDE, although table 4 presents that TAVE
obtains the disappointing NMI on 3 out 10 data sets, TAVE
takes on a very satisfying F-score on all data sets in Table
3. In addition, Figure 2 demonstrates that TAVE transform
a nominal object into a numerical object with fewer dimen-
sions than CDE for all data sets except two data sets. Spe-
cially, the dimensions of an object generated by CDE are
almost eight times as many as an object’s dimensions pro-
duced by TAVE on German and Chess(KRvsKP) data sets.

Comparison with AVE The comparison between AVE
and our TAVE aims to further test the influence of k near-

est neighbors and the tensor product graph diffusion process.
Table 3 shows that TAVE can achieve the better F-score than
AVE on all data sets except Tic data set, and Table 4 de-
scribe that TAVE can perform better than AVE for all data
sets except German and CMC data sets. In general , experi-
mental results reflect the fact that more useful information is
captured by utilizing each object’s k nearest neighbors and
tensor product diffusion process in TAVE.

Parameter Sensitivity Experiments on four UCI data sets
were conducted to see whether F-score of TAVE is sensitive
to the number q of diffusion iterations. We can see from Fig-
ure 3 that when q>15, F-score for four data sets can achieve
a very stable results. Therefore, we set q=20 for all experi-
ments. Here, we do not show F-score on other six data sets
because the results on each data set do not present the very
obvious differences for different q.

Conclusions

This paper proposes an effective tensor product graph diffu-
sion related attribute value embedding method TAVE which
can make the Euclidean distance usable for nominal data
clustering. Compared to other baseline methods for nomi-
nal data clustering, our method (1) enables to show its uni-
versality because it is built on the foundation of informa-
tion theories and graph diffusion, (2) demonstrates the bet-
ter clustering performance. There is, however, no free lunch.
The proposed TAVE have a little higher time complexity be-
cause it should search k nearest neighbors for each object on
the whole data set. In the future work, we will adopt a new
method to quickly find k nearest neighbors of each object.
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