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Abstract

Domain generalization aims to apply knowledge gained from
multiple labeled source domains to unseen target domains.
The main difficulty comes from the dataset bias: training data
and test data have different distributions, and the training set
contains heterogeneous samples from different distributions.
Let X denote the features, and Y be the class labels. Exist-
ing domain generalization methods address the dataset bias
problem by learning a domain-invariant representation h(X)
that has the same marginal distribution P(h(X)) across mul-
tiple source domains. The functional relationship encoded
in P(Y |X) is usually assumed to be stable across domains
such that P(Y |h(X)) is also invariant. However, it is unclear
whether this assumption holds in practical problems. In this
paper, we consider the general situation where both P(X)
and P(Y |X) can change across all domains. We propose
to learn a feature representation which has domain-invariant
class conditional distributions P(h(X)|Y ). With the condi-
tional invariant representation, the invariance of the joint dis-
tribution P(h(X), Y ) can be guaranteed if the class prior
P(Y ) does not change across training and test domains. Ex-
tensive experiments on both synthetic and real data demon-
strate the effectiveness of the proposed method.

Introduction

Recent years have witnessed a great success of supervised
learning in various pattern recognition problems, such as im-
age classification, object detection, and speech recognition.
Standard supervised learning relies heavily on the i.i.d. data
assumption; however, dataset-bias is unavoidable in many
situations due to selection bias or mechanism changes. For
example, this problem has been well recognized in the com-
puter vision community (Torralba and Efros 2011; Khosla
et al. 2012): the widely adopted vision datasets have their
special properties and are not representative of the visual
world. In medical diagnosis, the distribution of cell types
varies from patient to patient, and we need to train a classi-
fier on the data collected from previous patients that general-
izes well to unseen patients (Blanchard, Lee, and Scott 2011;
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Muandet, Balduzzi, and Schölkopf 2013). These problems
are known as domain generalization, in which the training
set consists of data from heterogeneous source domains, say
patients, and the test data distribution is different from that
of the training data.

To handle the distribution changes, many existing domain
generalization methods aim to learn domain-invariant repre-
sentations that have stable distributions across all source do-
mains (Muandet, Balduzzi, and Schölkopf 2013; Erfani et al.
2016; Ghifary et al. 2017). The learned invariant representa-
tions are expected to generalize well to any unseen test set
under the assumption that the changes of distribution across
source and test domains are caused by some common fac-
tors whose effects are removed in the invariant representa-
tions. In computer vision, such factors could be illumination,
camera viewpoints, and backgrounds. These methods have
achieved good performance in computer vision (Ghifary et
al. 2015; 2017) and medical diagnosis (Muandet, Balduzzi,
and Schölkopf 2013).

However, existing methods that learn domain-invariant
representations assume that only P(X) changes across do-
mains while the conditional distribution P(Y |X) is rather
stable. Thus, the conditional distribution P(Y |h(X)) is also
invariant, and the learning problem reduces to ensuring that
the marginal distribution P(h(X)) is invariant across do-
mains. This assumption greatly simplifies the problem, but
it is unclear whether this assumption holds in practical sit-
uations. According to some recent results in causal learn-
ing (Schölkopf et al. 2012; Janzing and Scholkopf 2010),
P(Y |X) can be stable when P(X) changes in the situa-
tion where X is the cause for Y , i.e., the causal structure
is X → Y . This is because the mechanism that generates
the cause, i.e., P(X), is not coupled with the mechanism
that generates the effect from the cause, i.e., P(Y |X), and
not vice versa. That is to say, if Y is the cause and X is
the effect, P(X) often changes together with P(Y |X). In
this situation, if P(X) changes, it is very likely that P(Y |X)
also changes across domains, which violates the stability of
P(Y |X) assumption. In practice, we have plenty of prob-
lems where the causal structure is Y → X . For example,
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, in face recognition, Y is person id, X is the feature, and
θ is the viewpoint. Let us consider each viewpoint as a do-
main, then in each domain we have conditional distribution
P (X|Y, θ = θi). According to Bayes theorem, P (Y |X, θ =
θi) = P (X|Y, θ = θi)P (Y |θ = θi)/P (X|θ = θi), thus
changes across domains. This conflicts with previous as-
sumptions that P (Y |X) keeps unchanged. There are also
other examples, e.g. speaker recognition and person re-
identification (Yang et al. 2017).

In this paper, we assume both P(X) and P(Y |X) change
across domains. We aim to find a feature transforma-
tion h(X) that has invariant class-conditional distribution
P(h(X)|Y ). To achieve so, we propose to minimize two reg-
ularization terms that enforce distribution invariance across
source domains. The first term measures the variance of each
class-conditional distribution across all source domains and
then sums up the variances for all classes. The second term
is the variance of class prior-normalized marginal distribu-
tion PN (h(X)), which measures the global distribution dis-
crepancy. The normalization of class priors is introduced
to remove the effects brought by possible changes in P(Y )
across source domains. If the prior distribution P(Y ) does
not change across source domains, the second term reduces
to the common technique used in existing domain-invariant
representation learning methods (Muandet, Balduzzi, and
Schölkopf 2013; Ghifary et al. 2017). To preserve the dis-
criminative power of the learned representation, we also in-
corporate the intra-class and inter-class distances used in
kernel Fisher discriminant analysis (FDA)(Mika et al. 1999).

Compared to existing domain-invariant representation
learning methods, our method does not require the assump-
tion of stable P(Y |X) by exploiting the labels on the source
domains which were overlooked in the previous methods.
Especially, if the prior distribution P(Y ) on the test sets is
the same as that on the training set containing all source do-
mains, our method is able to learn representations h(X) that
have invariant joint distribution P(h(X), Y ) across all do-
mains. We conduct a series of experiments on both synthetic
and real data, and the results demonstrate the effectiveness
of our method.

Related Work

Domain generalization has been widely applied in classifi-
cation tasks (Xu et al. 2014; Duan et al. 2009; Muandet,
Balduzzi, and Schölkopf 2013; Ghifary et al. 2017; 2015;
Erfani et al. 2016). Compared with standard supervised
learning, domain generalization methods aim to reduce data
bias across different domains and improve the generaliza-
tion of the learned model to unseen but related domains.
For example, (Xu et al. 2014)assumed that positive samples
within the same shared latent domain should have similar
likelihood and proposed to exploit the low-rank structure
from latent domains for domain generalization. (Muandet,
Balduzzi, and Schölkopf 2013) proposed domain-invariant
component analysis (DICA) through learning an invariant
feature representation h(X), in which the difference be-
tween marginal distributions P(h(X)) is minimized. (Ghi-
fary et al. 2017) proposed a unified framework called scatter

component analysis for domain adaptation and domain gen-
eralization. The scatter component analysis combines do-
main scatter (Muandet, Balduzzi, and Schölkopf 2013), ker-
nel PCA (Schölkopf, Smola, and Müller 1998), and kernel
FDA (Mika et al. 1999) in a single objective function. How-
ever, all these methods assume that the distribution between
domains differs only in the marginal distribution P(X) while
the conditional distribution P(Y |X) keeps stable or un-
changed across domains. This assumption can simplify the
problem of domain generalization, but it is easily violated in
real-world applications.

Domain adaptation is a related problem which has been
extensively studied in the literature (Baktashmotlagh et al.
2013; Huang et al. 2007; Pan et al. 2011; Long et al. 2017;
Shao, Kit, and Fu 2014; Shao et al. 2016; Luo et al.
2017; Liu, Yang, and Tao 2017). Assuming that only P(X)
changes, the distribution changes can be corrected by impor-
tance reweighting (Huang et al. 2007) or domain-invariant
feature learning (Pan et al. 2011; Baktashmotlagh et al.
2013), using unlabeled data from source and target do-
mains. Recently, several works attempted to work in the
situation where both P(X) and P(Y |X) change across do-
mains (Zhang et al. 2013; Gong et al. 2016; Long et al.
2017). (Zhang et al. 2013) and (Gong et al. 2016) proposed
to consider the domain adaptation problem in the general-
ized target shift (GeTarS) scenario where the causal direc-
tion is Y → X . In this scenario, both the change of distri-
bution P(Y ) and conditional distribution P(X|Y ) are con-
sidered to reduce the data bias across domains. (Zhang et
al. 2013) made an assumption that features from source do-
mains can be transferred to the target domain by a location-
scale transformation, which is restricted in real-world appli-
cations because of the presence of noises in features. (Gong
et al. 2016) proposed to learn components whose condi-
tional distribution P(h(X)|Y ) is invariant across domains
and estimate the target label distribution P

t(Y ) through la-
beled source domain data and unlabeled target domain data.
Since there are no labels in the target domain to match
class-conditionals, the invariance of P(h(X)|Y ) is achieved
by minimizing the discrepancy of the marginal distribution
P(h(X)) under some untestable assumptions. (Long et al.
2017) proposed an iterative way to match the conditionals by
using the predicted labels from previous iterations as pseudo
labels. Different from the domain adaptation methods, do-
main generalization does not require unlabeled data from the
target domains.

Conditional Invariant Domain Generalization

In this section, we first establish the basic notations of do-
mains and formally introduce the definition of domain gen-
eralization. Then we give a detailed description of the pro-
posed conditional invariant domain generalization (CIDG)
method.

Problem Definition

Denote X and Y as the input feature and label spaces, re-
spectively. A domain defined on X × Y can be represented
by a joint probability distribution P(X,Y ). For simplicity,
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we denote the joint probability distribution P
s(X,Y ) of the

s-th source domain as Ps. The domain P
s is associated with

a sample Ds = {xs
i , y

s
i }n

s

i=1, where (xs
i , y

s
i ) ∼ P

s and ns

denotes the sample size of the domain P
s. Then we can de-

fine domain generalization as follows.

Definition 1 (Domain Generalization). Given multiple re-
lated source domains Ω = {P1,P2, ...,Pm} and each do-
main is associated with a sample Ds = {xs

i , y
s
i }n

s

i=1 ∼ P
s,

where s = {1, 2, . . . ,m}. The goal of domain generaliza-
tion is to learn a classification function f : X → Y from
source domain datasets {Ds}ms=1 and apply it to an unseen
but related target domain P

t(X,Y ).

Kernel Mean Embedding

Before introducing the proposed method, we briefly review
the kernel mean embedding of distributions, which is an
important mathematical tool to represent and compare dis-
tributions (Song, Fukumizu, and Gretton 2013; Sriperum-
budur et al. 2010). Let H denote a characteristic reproduc-
ing kernel Hilbert space (RKHS) on X associated with a
kernel k(·, ·) : X × X → R, and φ be an associated map-
ping such that φ(x) ∈ H. Suppose we have two observa-
tions xs

1 ∈ X and xs
2 ∈ X from domain s, then we have

〈φ(xs
1), φ(x

s
2)〉 = k(xs

1, x
s
2). The kernel embedding of a dis-

tribution P(X) can be formulated as the following:

μPX
:= EX∼PX

[φ(X)] = EX∼PX
[k(X, ·)], (1)

where PX denotes P(X) for simplicity. If a kernel is char-
acteristic, then the mean embedding μPX

is injective. All the
information about the distribution can be preserved (Sripe-
rumbudur et al. 2010). The kernel embedding cannot be
computed directly and is usually estimated from observa-
tions. Given a sample D = {xi}ni=1, where n is the sample
size of the domain, and the kernel embedding can be empir-
ically estimated as the following:

μ̂PX
=

1

n

n∑
i=1

φ(xi) =
1

n

n∑
i=1

k(xi, ·). (2)

Proposed Approach

The proposed conditional invariant domain generalization
(CIDG) method aims to find a conditional invariant repre-
sentation h(X) (a linear transformation of the original fea-
tures) to reduce the variance of the conditional distribution
P(h(X)|Y ) across source domains. Suppose we can learn
a perfect conditional invariant representation h(X), which
satisfies Ps=i(h(X)|Y ) = P

s=j(h(X)|Y ) = P
t(h(X)|Y ),

i, j ∈ {1, 2, ...,m} and P
t denotes the target domain. We

can gather all the source domains to construct a new sin-
gle domain with a joint distribution P

t(h(X)|Y )Pnew(Y ).
Therefore, under the condition P

new(Y ) = P
t(Y ), the

learned h(X) has the invariant joint distribution across
training and test domains. Contrarily, the previous method
can only guarantee that P(h(X)) is invariant, and whether
P(Y |h(X)) is invariant remains unknown. If Pnew(Y ) is dif-
ferent from P

t(Y ), our method cannot guarantee the in-
variance of the joint distribution either. Nevertheless, our

method can at least guarantee invariant class-conditional dis-
tributions, which is still better than previous methods. This
is because P(Y |h(X)) is usually not very sensitive to the
changes in the prior P(Y ) if h(X) is highly correlated with
Y .

The learning of conditional invariant representations is
achieved mainly through two regularization terms: total scat-
ter of class-conditional distributions and scatter of class
prior-normalized marginal distributions. The first term mea-
sures the variance of P(h(X)|Y ) locally, while the second
term measures the variance of P(h(X)|Y ) globally. In ad-
dition to these two terms, we also incorporate several terms
that measure the discriminative power of the representation
h(X) as done in the previous works. By minimizing the dis-
tribution variance across domains and maximizing the dis-
criminative power in one objective function, we can obtain
the conditional invariant representation which is predictable
for the labels on unseen target domains.

Total scatter of class-conditional distributions Suppose
we have m related domains {P1,P2, ...,Pm} on X ×Y . The
marginal distribution on X of the s-th domain is denoted as
P
s
X . Suppose the class labels of each domain vary from 1

to C. For simplicity, the j-th class conditional distribution
P
s(X|Y = j) of the s-th domain is denoted as Ps

j . The total
scatter of class-conditional distributions across domains can
be formulated as:

Ψ
(
{μP1

1
, μP1

2
, ..., μPm

C
}
)
=

C∑
j=1

1

m

m∑
s=1

‖μPs
j
− μj‖2H, (3)

where μj = 1
m

m∑
s=1

μPs
j

and 1
m

m∑
s=1

‖μPs
j
− μj‖2H is called

the domain scatter (Ghifary et al. 2017) or distributional
variance (Muandet, Balduzzi, and Schölkopf 2013). Instead
of measuring the domain scatter w.r.t. the marginal dis-
tributions P

s
X as done in previous works like (Ghifary et

al. 2017), we measure the domain scatter w.r.t. each class-
conditional distribution and then sum them together.

Before introducing the computation of the above scatter,
we first give the formulation of the learned feature transfor-
mation. Denote the feature matrix X = [x1, x2, ..., xn]

� ∈
R

n×d as the data matrix of samples from m source do-
mains, where d is the dimension of the feature space X
and n =

∑m
s=1 n

s. Define a set of functions Φ =
[φ(x1), φ(x2)..., φ(xn)]

� related to the feature map φ :
R

d → H. We aim to find a linear feature transformation
W transforming H into a finite subspace : H → R

q , that is
h(x) = W�φ(x). According to the kernel principal compo-
nent analysis (KPCA) (Schölkopf, Smola, and Müller 1998),
the linear transformation can be formulated as the linear
combination of Φ, i.e.,W = Φ�B, where B ∈ R

n×q is
the coefficient matrix. By using this representation, we can
avoid explicitly computing the feature map φ and use the
kernel trick instead.
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For simplicity, denote Ψ
(
{μP1

1
, μP1

2
, ..., μPm

C
}
)

as Ψcon,

Ψcon =
1

m

m∑
s=1

C∑
j=1

‖μPs
j
− μj‖2H

=
1

m

m∑
s=1

C∑
j=1

Tr
(
(μPs

j
− μj)(μPs

j
− μj)

�
)

= Tr

⎛
⎝ 1

m

m∑
s=1

C∑
j=1

(μPs
j
− μj)(μPs

j
− μj)

�

⎞
⎠ ,

(4)

where Tr(·) is trace operator. To measure the distribution
scatter of the distributions of P(h(X)|Y ), we apply the lin-
ear feature transformation W to the above scatter and obtain

Ψcon
B

= Tr

⎛
⎝ 1

m

m∑
s=1

C∑
j=1

B�Φ(μPs
j
− μj)(μPs

j
− μj)

�Φ�B

⎞
⎠

= Tr
(
B�HB

)
, (5)

where H is:

H =
m∑
s=1

1

m

C∑
j=1

Φ(μPs
j
− μj)(μPs

j
− μj)

�Φ�, (6)

in which μPi
j

and μj can be computed according to the em-
pirical estimation shown in equation (2). Denote xs

k∼j as the
k-th sample belonging to the j-th class in the s-th domain,
where s ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., C}. Let ns

j denote
the sample size of the j-th class from the s-th domain, we
have:

μ̂Ps
j
=

1

ns
j

ns
j∑

k=1

φ(xs
k∼j), μ̂j =

1

m

m∑
s=1

μ̂Ps
j
, (7)

where k ∼ j denotes the indicies of examples in the j-th
class.

Scatter of class prior-normalized marginal distributions
The scatter of each class-conditional distribution is esti-
mated locally using the samples from that class. When the
number of examples in each class is small, optimizing (5)
can easily overfit the data. To further improve the estima-
tion accuracy, we propose another regularization term which
measures the scatter of class-prior normalized marginal dis-
tributions. The new regularization term is able to measure
the global distance between all class-conditionals. In the s-
th domain, the marginal distribution is defined as

P
s(X) =

C∑
j=1

P
s(X|Y = j)Ps(Y = j). (8)

If the class prior distribution P(Y ) does not change across
domains, and we can also find a feature representation that
has an invariant class-conditional P(h(X)|Y ) across source
domains, we can say that P(h(X)) is also domain-invariant,

but not vice versa. Nevertheless, searching for a representa-
tion that reduces the discrepancy between the marginal dis-
tributions can to some extent reduce the discrepancy of class
conditional distributions, though the original purpose was to
match marginal distributions only (Muandet, Balduzzi, and
Schölkopf 2013; Ghifary et al. 2017). However, if the class
prior changes across source domains, the above statements
are no longer true. That is to say, even if the class condi-
tionals are domain-invariant, the marginal distribution are
not invariant because of the changes in P(Y ). To mitigate
this issue, we propose to match the class-prior normalized
marginal distribution, which is defined as follows:

P
s
N (X) =

∑C
j=1 P

s(X|Y = j) 1
C (9)

It can be seen that the class-prior normalized marginal
distribution enforces the same prior probability for each
class. Therefore, the changes in the prior distribution across
source domains are adjusted, which guarantees that the
prior-normalized marginal distribution is domain-invariant
when the class conditionals are invariant. By embedding the
class prior-normalzied marginal distribution into a Hilbert
space, the scatter of the normalized marginal distribution
across domains can be formulated as:

Ψprior =
1

m

m∑
s=1

‖μN − μPs
N
‖2H, (10)

where μPs
N

= Ex∼Ps
N
[φ(x)], and P

s
N is the prior-

normalized marginal distribution of the s-th domain. μN =
1
m

∑m
s=1 μPs

N
is the kernel mean of the class prior-

normalized marginal distribution PN of all domains. To
learn the domain-invariant representation, we apply the lin-
ear feature transformation W to the above scatter, resulting
in:

Ψprior
B

= Tr

(
1

m

m∑
s=1

B�Φ(μN − μPs
N
)(μN − μPs

N
)�Φ�B

)

= Tr
(
B�LB

)
, (11)

where L can be formulated as follows:

L =
1

m

m∑
s=1

Φ(μN − μPs
N
)(μN − μPs

N
)�Φ�. (12)

μPs
N

in (12) can be empirically estimated from the observa-
tions as:

μ̂Ps
N
=

1

C

C∑
j=1

1

ns
j

ns
j∑

k=1

φ(xs
k∼j). (13)

Note that if ns
j are identical for all j, that is the classes are

balanced, the class prior-normalized marginal distribution
reduces to the empirical estimate of the original marginal

distribution μ̂Ps = 1
ns

ns∑
k=1

φ(xs
k) adopted in (Muandet, Bal-

duzzi, and Schölkopf 2013; Ghifary et al. 2017).
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Preserving Discriminative Power In addition to the
above proposed two domain-invariance regularization terms,
we also consider extra terms to preserve the discriminative-
ness of the learned representation. There have been plenty
of works in supervised dimension reduction in the i.i.d.
case, and kernel Fisher discriminant analysis (Mika et al.
1999) is a representative method which has been used in do-
main generalization (Ghifary et al. 2017). Becasue the fo-
cus of our method is to better learn the domain-invariant
representations, we incorporate kernel Fisher discriminant
analysis for fair comparison to existing methods. Specifi-
cally, the examples with the same label should be similar
and the examples with different labels should be well sepa-
rated. These two constraints can be formulated as two regu-
larization terms: within-class scatter and between-class scat-
ter, which are briefly described as follows.

Between-class scatter:

Ψbetween
B = Tr(B�PB), (14)

where matrix P can be computed as:

eq : PP =

C∑
j=1

njΦ(μj − μb)(μj − μb)
�Φ�, (15)

and nj =
∑m

s=1 n
s
j denotes the number of examples in the

j-th class from all domains. Note that μj and μb can be em-

pirically estimated as μ̂j = 1
nj

∑m
s=1

∑ns
j

k=1 φ(x
s
k∼j) and

μ̂b =
1
n

∑C
j=1 nj μ̂j .

Within-class scatter:

Ψwithin
B = Tr(B�QB), (16)

where the matrix Q can be computed as:

Q =
C∑

j=1

m∑
s=1

ns
j∑

k=1

Φ(φ(xs
k∼j)− μj)(φ(x

s
k∼j)− μj)

�Φ�.

(17)

Objective Function and Optimization In this subsection,
we first formulate our objective function with the above reg-
ularization terms and then find the solutions by maximizing
the objective function.

The proposed CIDG aims to learn an invariant feature
transformation by solving the following optimization prob-
lem:

argmax
B

Ψbetween
B

Ψcon
B +Ψprior

B +Ψwithin
B

. (18)

The numerator enforces the distance between features in dif-
ferent classes to be large. The denominator aims to learn a
conditional invariant feature representation and reduce the
distance between features in the same class simultaneously.

Replace the scatters with equation, (5), (11), (14), (16)
and introduce several trade-off parameters γ, α, the above
objective function can be reformulated as follows:

argmax
B

Tr(B�PB)

Tr(B�(γH + αL+Q)B)
, (19)

where 0 < γ, 0 < α are trade-off parameters, which need to
be selected according to the validation set.

Note that the above objective function is invariant when
rescaling B → ηB, where η is a constant. Consequently,
(19) can be reformulated as the following constrained opti-
mization problem:

argmax
B

Tr(B�PB)

s.t. T r(B�(γH + αL+Q)B) = 1,
(20)

which yields Lagrangian:

L(B) =Tr(B�PB)

− Tr((B�(γH + αL+Q)B − Iq)Γ),
(21)

where Iq is an identity matrix of dimension q and Γ =
diag(λ1, λ2, ..., λq) is a diagonal matrix with the Lagrange
multipliers aligned in the diagonal. Solving (21) by setting
the derivative w.r.t. B to be zero, we arrive at a standard
eigenvalue decomposition problem:

PB = (γH + αL+Q)BΓ. (22)

In practice, the term (γH + αL + Q) is added by a small
constant εI to get a more stable solution, becoming (γH +
αL + Q + εI). We summarize the algorithm of our CIDG
in Algorithm 1.

Algorithm 1 Conditional invariant domain generalization
Require: m source domains with datasets SD = {Ds =

{xs
i , y

s
i }n

s

i=1, s = {1, 2, ...,m}}, trade-off parameters
γ, α.

Ensure: Invariant feature transformation B∗ and corre-
sponding eigenvalues Γ∗

1: Construct kernel matrix K from data samples of all do-
mains, K(i, j) = k(xi, xj), ∀xi, xj ∈ SD, and con-
struct matrices H,L,P ,Q from equations (14), (5),
(11), (16).

2: Centering the kernel matrix K ← K−1nK−K1n+
1nK1n, where n =

∑m
i=1 n

s and 1n ∈ R
n×n denotes

a matrix with all entries equal to 1
n .

3: Solve the equation (22) to get the optimal feature trans-
formation matrix B∗ and the corresponding eigenvalues
Γ∗ with the first q leading eigenvalues.

4: When given a target domain with a set of data Dt =

{xt
i, y

t
i}n

t

i=1, construct a kernel matrix Kt with sam-
ples from source domains and samples from the target
domain, Kt(i, j) = k(xi, xj), ∀xi ∈ SD, xj ∈ Dt.
Then we apply the centering operation to Kt ← Kt −
1nK

t −Kt1nt + 1nK
t1nt , where 1nt ∈ R

nt×nt

de-
notes a matrix with all entries equal to 1

n .
5: The learned feature matrix of the target domain can be

computed as X∗ = (Kt)�B∗(Γ∗)−
1
2 .

Experiments

In this section, we conduct experiments on one synthetic
data and two real-world image classification datasets to
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domain index domain 1 domain 2 domain 3
class index 1 2 3 1 2 3 1 2 3

x (1,0.3) (2, 0.3) (3, 0.3) (3.5, 0.3) (4.5, 0.3) (5.5, 0.3) (8, 0.3) (9.5, 0.3) (10, 0.3)
y (2,0.3) (1, 0.3) (2, 0.3) (2.5, 0.3) (1.5, 0.3) (2.5, 0.3) (2.5, 0.3) (1.5, 0.3) (2.5, 0.3)

# samples 30 20 30 20 60 40 40 40 40

Table 1: Details of the generated distributions of three domains.

Figure 1: Performance comparison between different methods. The figures in the first row visualize the samples according to
three different domains (yellow, magenta, cyan). The figures in the second row visualize the samples of three classes (green,
red, blue) in different domains (star, circle, cross). Note that the left two domains (yellow, magenta) are source domains and the
right one (cyan) is target domain.

demonstrate the effectiveness of our conditional invariant
domain generalization (CIDG) method. The synthetic data
are two dimensional, which facilitate the comparison of the
performance of different methods through the visualization
of the data distribution. The two real-world image classifi-
cation datasets are the VLCS and Office+Caltech datasets,
which are widely used datasets to evaluate the performance
of domain generalization and domain adaptation (Ghifary et
al. 2017; Gong et al. 2016; Khosla et al. 2012). We compare
our CIDG with several state-of-the-art domain generaliza-
tion methods, which are summarized below.

• K-nearest neighbors (KNN) using the original features,
which servers as the baseline method.

• Kernel principal component analysis (KPCA) (Schölkopf,
Smola, and Müller 1998) which finds the dominant com-
ponents of the original features. KNN is applied for clas-
sification on the KPCA features.

• Undo-Bias (Khosla et al. 2012), which is a multi-task
learning method aims to reduce the data bias. Because
undo-bias is a binary classification algorithm, we use the
one-vs-rest strategy for multi-class classification.

• Domain invariant component analysis (DICA) (Muandet,
Balduzzi, and Schölkopf 2013), which is a domain gener-
alization method learns an domain-invariant feature repre-
sentation in terms of marginal distributions. We use KNN
to do classification on the learned feature representation.

• Scatter component analysis (SCA) (Ghifary et al. 2017),
which is a another method that learns domain-invariant
features in terms of marginal distributions. The method
incorporates discriminative terms and domain scatter
terms into a unified framework.

Note that we have also conducted experiments using kernel
finsher discriminant analysis (FDA), however, it performs
worse than KPCA. Consequently, we do not report the re-
sults of KLDA in this paper.

Synthetic Dataset

In this section, we randomly generate two dimensional ex-
amples for source domains and target domain from different
Gaussian distributions N (μ, σ), where μ is the mean and σ
is the standard deviation. The values of mean μ and standard
deviation σ pairs (μ, σ) of different classes in three domains
are shown in Table . We consider the first two domains as
source domains and the third one as a target domain. The
first row of Figure visualizes the samples from three differ-
ent domains corresponding to three different colors (yellow,
magenta, cyan), and the domains are domain 1, domain 2
and domain 3 from left to right. The second row of Figure
shows that each domain has three clusters (green, red, blue)
corresponding to three different classes and the domains are
represented by different shapes (star, circle, cross). The first
column illustrates the raw feature distributions.

We compare our CIDG with KNN, KPCA, DICA, and
SCA to evaluate the distributions of the learned feature rep-
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Source Target 1NN KPCA DICA Undo-bias SCA CIDG
L,C,S V 53.27± 1.52 58.62± 1.44 58.29± 1.51 57.73± 1.02 57.48± 1.78 65.65± 0.52
V,C,S L 50.35± 0.94 53.80± 1.78 50.35± 1.45 58.16± 2.13 52.07± 0.86 60.43± 1.57
V,L,S C 76.82± 1.56 85.84± 1.64 73.32± 4.13 82.18± 1.77 70.39± 1.42 91.12± 1.62
V,C,L S 51.78± 2.07 53.23± 0.62 54.97± 0.61 55.02± 2.53 54.46± 2.71 60.85± 1.05
C,S V,L 52.44± 1.87 55.74± 1.01 53.76± 0.96 56.83± 0.67 56.05± 0.98 59.25± 1.21
C,L V,S 45.04± 2.49 45.13± 3.01 44.81± 1.62 52.16± 0.80 48.97± 1.04 54.04± 0.91
C,V L,S 47.09± 2.49 55.79± 1.57 49.81± 1.40 59.00± 2.49 53.47± 0.71 61.61± 0.67
L,S V,C 57.09± 1.43 58.50± 3.84 44.09± 0.58 51.16± 3.52 49.98± 1.84 55.65± 3.57
L,V S,C 59.21± 1.84 63.88± 0.36 61.22± 0.95 64.26± 2.77 66.68± 1.09 70.89± 1.31
V,S L,C 58.39± 0.78 64.56± 0.99 60.68± 1.36 68.58± 1.62 63.29± 1.34 70.44± 1.43

Table 2: Performance comparison between different methods with respect to accuracy (%) on VLCS dataset.

Source Target 1NN KPCA DICA Undo-bias SCA CIDG
W,D,C A 87.65± 2.46 90.92± 1.03 80.34± 2.65 89.56± 1.55 89.97± 1.85 93.24± 0.71
A,W,D C 67.00± 0.67 74.23± 1.34 64.55± 2.85 82.27± 1.49 77.90± 1.28 85.07± 0.93
A,W,C D 97.36± 1.92 94.34± 1.19 93.21± 1.92 95.28± 2.45 93.21± 3.50 97.36± 0.92
A,C,D W 82.11± 0.67 88.84± 2.17 69.68± 3.22 90.18± 2.10 81.26± 3.15 90.53± 2.66
A,C D,W 60.95± 1.31 75.81± 2.94 60.41± 1.94 80.24± 2.21 76.89± 0.99 83.65± 2.24
D,W A,C 60.47± 0.99 65.75± 1.74 43.02± 3.24 74.14± 3.45 69.53± 1.87 65.91± 1.42
A,W C,D 71.11± 0.81 76.26± 1.13 69.29± 1.77 81.77± 1.77 78.99± 1.54 83.89± 2.97
A,D C,W 60.95± 1.31 75.81± 2.94 68.49± 2.88 81.23± 2.17 75.84± 1.66 84.66± 3.27
C,W A,D 89.08± 2.26 91.45± 1.27 83.01± 2.42 91.73± 0.67 90.46± 1.72 93.41± 0.92
C,D A,W 86.19± 1.58 90.36± 1.26 79.69± 1.11 90.67± 1.87 88.61± 0.38 91.70± 1.35

Table 3: Performance comparison between different methods with respect to accuracy (%) on office+caltech dataset.

resentation across domains. Since Undo-Bias is a SVM-
based method that does not need to explicitly learn a feature
representation, we do not compare the results with Undo-
Bias on synthetic data. We use the RBF kernel for all the
methods involving computation of kernel matrices. In all ex-
periments, domain 1 and domain 2 are used as source do-
mains and domain 3 is used as the unseen target domain.
From the results in Figure , we can see that the proposed
CIDG achieves the best accuracy of 86.67%. KPCA almost
has no improvement over the baseline KNN method on the
synthetic dataset. DICA can cluster one class (blue) well but
performs badly for the other two classes. SCA can learn
better feature distribution but the blue class and the green
class are mixed in the learned representation. Additionally,
the samples in the same class lie in a line rather than reside
in a clear cluster. Our CIDG can learn more robust feature
representations and the learned features in the same class are
distributed in a well-shaped cluster.

VLCS Dataset

VLCS is an image classification dataset widely used for
evaluating the performance of domain generalization. This
dataset contains images from four different sub-datasets cor-
responding to four domains: PASCAL VOC2007 (V) (Ev-
eringham et al. 2010), LabelMe (L) (Russell et al. 2008),
Caltech-101 (C) (Griffin, Holub, and Perona 2007), and
SUN09 (S) (Choi et al. 2010). Five shared classes (bird, car,
chair, dog and person) are selected from these four datasets.

The images are preprocessed by subtracting the mean val-
ues and cropped on the central 224 × 224 region out of the
256 × 256 resized images. Then the preprocessed images
are fed into the DeCAF network and extracted the 4096 di-
mensional DeCAF6 features (Donahue et al. 2014). We ran-
domly select 70% of the data as training set from each do-
main and repeat the random selection five times. The mean
classification accuracy and standard deviation of the five ran-
dom selection are given for each method. All parameters are
selected through validation, in which 30% of the training
data is selected as validation set. All kernel methods use
a RBF kernel and the learned features are classified using
KNN except for Undo-Bias. The results are shown in Table
.

From the results in Table , we can see that our conditional
invariant domain generalization (CIDG) performs the best
on 9 of the 10 domain generalization tasks. KPCA performs
the best when L,S are source domains and V,C are target do-
mains. Note that almost all the domain generalization meth-
ods outperform the 1NN on raw features. However, some
methods on several domain tasks perform even worse than
1NN on raw features. This is mainly because that features
of real world images are complicated and noisy. The learned
features are not discriminative when generalized to target
domains.
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Office+Caltech Dataset

The Office+Caltech image dataset consists of ten overlap-
ping categories between the Office dataset and the Caltech-
256 dataset (C). Because the Office dataset contains three
sub-datasets: AMAZON (A), DSLR (D), and WEBCAM
(W), we have four different domains in total. Similarly, We
randomly select 70% of the data as training set from each do-
main and repeat the random selection five times. The mean
classification accuracy and standard deviation of the five ran-
dom selection are reported for each method. The feature ex-
traction is the same as that used for the VLCS dataset except
we use the CAFFE network (Jia et al. 2014) instead of the
DeCAF network. The other settings are the same as those in
experiments on the VLCS dataset.

From the results in Table , we can find that the proposed
CIDG achieves the best performance on 9 of the 10 do-
main generalization tasks. This further validates that enforc-
ing conditional invariance is more reasonable than enforcing
only marginal invariance. Note that Undo-bias is a SVM-
based method. It is possibly the main reason why it outper-
forms CIDG when using D,W as source domains and A,C as
target domains.

Conclusion
In this paper, we have proposed a conditional invariant do-
main generalization approach considering the situation that
both P(X) and P(Y |X) change across domains. Different
from previous works which assume that only P(X) changes,
our proposed method can learn representations that have in-
variant joint distribution P(h(X), Y ) across domains if the
prior distribution P(Y ) does not change between the source
domains and the target domains. Two regularization terms
that enforce class-conditional distribution invariance across
domains are proposed and validated on both synthetic and
real datasets.

Acknowledgments
This work was supported by National Key Research and
Development Program of China 2017YFB1002203, NSFC
No.61572451, No.61390514, and No. 61632019, Youth
Innovation Promotion Association CAS CX2100060016,
Fok Ying Tung Education Foundation WF2100060004, and
Australian Research Council Projects FL-170100117, DP-
180103424, DP-140102164, LP-150100671.

References
Baktashmotlagh, M.; Harandi, M.; Lovell, B.; and Salz-
mann, M. 2013. Unsupervised domain adaptation by do-
main invariant projection. In Computer Vision (ICCV), 2013
IEEE International Conference on, 769–776.
Blanchard, G.; Lee, G.; and Scott, C. 2011. Generalizing
from several related classification tasks to a new unlabeled
sample. In Advances in neural information processing sys-
tems, 2178–2186.
Choi, M. J.; Lim, J. J.; Torralba, A.; and Willsky, A. S. 2010.
Exploiting hierarchical context on a large database of ob-
ject categories. In Computer vision and pattern recognition
(CVPR), 2010 IEEE conference on, 129–136. IEEE.

Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.;
Tzeng, E.; and Darrell, T. 2014. Decaf: A deep convolu-
tional activation feature for generic visual recognition. In
International conference on machine learning, 647–655.
Duan, L.; Tsang, I. W.; Xu, D.; and Chua, T.-S. 2009. Do-
main adaptation from multiple sources via auxiliary classi-
fiers. In Proceedings of the 26th Annual International Con-
ference on Machine Learning, 289–296. ACM.
Erfani, S. M.; Baktashmotlagh, M.; Moshtaghi, M.; Nguyen,
V.; Leckie, C.; Bailey, J.; and Ramamohanarao, K. 2016.
Robust domain generalisation by enforcing distribution in-
variance. In IJCAI, 1455–1461.
Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.;
and Zisserman, A. 2010. The pascal visual object classes
(voc) challenge. International journal of computer vision
88(2):303–338.
Ghifary, M.; Bastiaan Kleijn, W.; Zhang, M.; and Balduzzi,
D. 2015. Domain generalization for object recognition with
multi-task autoencoders. In Proceedings of the IEEE inter-
national conference on computer vision, 2551–2559.
Ghifary, M.; Balduzzi, D.; Kleijn, W. B.; and Zhang, M.
2017. Scatter component analysis: A unified framework
for domain adaptation and domain generalization. IEEE
transactions on pattern analysis and machine intelligence
39(7):1414–1430.
Gong, M.; Zhang, K.; Liu, T.; Tao, D.; Glymour, C.; and
Schölkopf, B. 2016. Domain adaptation with conditional
transferable components. In International Conference on
Machine Learning, 2839–2848.
Griffin, G.; Holub, A.; and Perona, P. 2007. Caltech-256
object category dataset.
Huang, J.; Smola, A.; Gretton, A.; Borgwardt, K.; and
Schölkopf, B. 2007. Correcting sample selection bias by
unlabeled data. In NIPS 19, 601–608.
Janzing, D., and Scholkopf, B. 2010. Causal inference using
the algorithmic markov condition. IEEE Transactions on
Information Theory 56(10):5168–5194.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference on
Multimedia, 675–678. ACM.
Khosla, A.; Zhou, T.; Malisiewicz, T.; Efros, A. A.; and Tor-
ralba, A. 2012. Undoing the damage of dataset bias. In Eu-
ropean Conference on Computer Vision, 158–171. Springer.
Liu, T.; Yang, Q.; and Tao, D. 2017. Understanding how
feature structure transfers in transfer learning. In Proceed-
ings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, 2365–2371.
Long, M.; Zhu, H.; Wang, J.; and Jordan, M. I. 2017. Deep
transfer learning with joint adaptation networks. In Precup,
D., and Teh, Y. W., eds., Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, 2208–2217. Inter-
national Convention Centre, Sydney, Australia: PMLR.

3586



Luo, Y.; Wen, Y.; Liu, T.; and Tao, D. 2017. General het-
erogeneous transfer distance metric learning via knowledge
fragments transfer.
Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; and Mullers,
K.-R. 1999. Fisher discriminant analysis with kernels. In
Neural Networks for Signal Processing IX, 1999. Proceed-
ings of the 1999 IEEE Signal Processing Society Workshop.,
41–48. IEEE.
Muandet, K.; Balduzzi, D.; and Schölkopf, B. 2013. Do-
main generalization via invariant feature representation. In
Proceedings of the 30th International Conference on Ma-
chine Learning (ICML-13), 10–18.
Pan, S. J.; Tsang, I. W.; Kwok, J. T.; and Yang, Q. 2011.
Domain adaptation via transfer component analysis. IEEE
Transactions on Neural Networks 22:199–120.
Russell, B. C.; Torralba, A.; Murphy, K. P.; and Freeman,
W. T. 2008. Labelme: a database and web-based tool for
image annotation. International journal of computer vision
77(1):157–173.
Schölkopf, B.; Janzing, D.; Peters, J.; Sgouritsa, E.; Zhang,
K.; and Mooij, J. 2012. On causal and anticausal learning.
arXiv preprint arXiv:1206.6471.
Schölkopf, B.; Smola, A.; and Müller, K.-R. 1998. Non-
linear component analysis as a kernel eigenvalue problem.
Neural computation 10(5):1299–1319.
Shao, M.; Ding, Z.; Zhao, H.; and Fu, Y. 2016. Spectral
bisection tree guided deep adaptive exemplar autoencoder
for unsupervised domain adaptation. In AAAI, 2023–2029.
Shao, M.; Kit, D.; and Fu, Y. 2014. Generalized transfer sub-
space learning through low-rank constraint. International
Journal of Computer Vision 109(1-2):74–93.
Song, L.; Fukumizu, K.; and Gretton, A. 2013. Kernel
embeddings of conditional distributions: A unified kernel
framework for nonparametric inference in graphical models.
IEEE Signal Processing Magazine 30(4):98–111.
Sriperumbudur, B. K.; Gretton, A.; Fukumizu, K.;
Schölkopf, B.; and Lanckriet, G. R. 2010. Hilbert space
embeddings and metrics on probability measures. Journal
of Machine Learning Research 11(Apr):1517–1561.
Torralba, A., and Efros, A. A. 2011. Unbiased look at dataset
bias. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, 1521–1528. IEEE.
Xu, Z.; Li, W.; Niu, L.; and Xu, D. 2014. Exploiting low-
rank structure from latent domains for domain generaliza-
tion. In European Conference on Computer Vision, 628–
643. Springer.
Yang, X.; Wang, M.; Hong, R.; Tian, Q.; and Rui, Y. 2017.
Enhancing person re-identification in a self-trained sub-
space. arXiv preprint arXiv:1704.06020.
Zhang, K.; Schölkopf, B.; Muandet, K.; and Wang, Z. 2013.
Domain adaptation under target and conditional shift. In
International Conference on Machine Learning, 819–827.

3587


