
Dynamic Optimization of Neural Network
Structures Using Probabilistic Modeling

Shinichi Shirakawa
Yokohama National University

shirakawa-shinichi-bg@ynu.ac.jp

Yasushi Iwata
Yokohama National University

iwata-yasushi-ct@ynu.jp

Youhei Akimoto
Shinshu University

y akimoto@shinshu-u.ac.jp

Abstract

Deep neural networks (DNNs) are powerful machine learn-
ing models and have succeeded in various artificial intelli-
gence tasks. Although various architectures and modules for
the DNNs have been proposed, selecting and designing the
appropriate network structure for a target problem is a chal-
lenging task. In this paper, we propose a method to simul-
taneously optimize the network structure and weight parame-
ters during neural network training. We consider a probability
distribution that generates network structures, and optimize
the parameters of the distribution instead of directly optimiz-
ing the network structure. The proposed method can apply
to the various network structure optimization problems un-
der the same framework. We apply the proposed method to
several structure optimization problems such as selection of
layers, selection of unit types, and selection of connections
using the MNIST, CIFAR-10, and CIFAR-100 datasets. The
experimental results show that the proposed method can find
the appropriate and competitive network structures.

Introduction
Deep neural networks (DNNs) have become a popular
machine-learning model and seen great success in vari-
ous tasks such as image recognition and natural language
processing. To date, a variety of DNN models has been
proposed. Considering the convolutional neural networks
(CNNs) for visual object recognition as an example, a va-
riety of deep and complex CNN models were developed,
such as the VGG model (Simonyan and Zisserman 2015),
the residual networks (ResNets) (He et al. 2016), which have
the skip connections, and the dense convolutional networks
(DenseNets) (Huang et al. 2017). It is not easy for users
to select an appropriate network structure including hyper-
parameters, such as the depth of a network, the type of each
unit, and the connection between layers, since the perfor-
mance depends on tasks and data. However, the appropriate
configuration of such structures is of importance for high
performance of the DNNs. Therefore, developing efficient
methods to optimize the structure of the DNNs is an impor-
tant topic.

A popular approach to such a network structure optimiza-
tion is to treat the network structure as the hyper-parameters

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the DNNs and optimize them by a black-box opti-
mization technique such as Bayesian optimization (Snoek,
Larochelle, and Adams 2012) or evolutionary algorithms
(Loshchilov and Hutter 2016). Given a network configura-
tion (hyper-parameter vector), the training is done for a cer-
tain period and the trained network is evaluated based on the
accuracy or the loss for validation dataset. A black-box op-
timizer treats the hyper-parameter vector and the resulting
accuracy/loss as the design variables and its objective/cost
function. Recently, the methods for automatic network de-
sign that can construct more flexible network structures than
the conventional hyper-parameter optimization approaches
have been proposed. Zoph and Le defined the recurrent neu-
ral networks (RNNs) that generate neural network architec-
tures for a target problem and found the state-of-the-art ar-
chitectures by optimizing the RNN using the policy gradient
method (Zoph and Le 2017). The works of (Real et al. 2017;
Suganuma, Shirakawa, and Nagao 2017) optimize the con-
nections and types of layers by evolutionary algorithms
to construct a high-performance CNN architecture. These
methods succeeded in finding the state-of-the-art configu-
rations of the DNNs. We view all these approaches as static
optimization of the network structures. The main disadvan-
tage of static optimization is the efficiency, since it repeats
the training with different network configurations until it
finds a reasonable configuration.

A dynamic optimization of the network structures, on the
other side, learns the connection weights and the structure of
a network simultaneously. A typical example is to represent
the network structure parameters as the learnable parameters
and optimize them by a stochastic gradient descent when
carrying out the weight training (Srinivas and Babu 2016;
Ba and Frey 2013). Srinivas and Babu (Srinivas and Babu
2016) introduce the Tri-State ReLU activation having dif-
ferentiable parameters to prune the units and layers using
back-propagation. Ba and Frey (Ba and Frey 2013) use a bi-
nary belief network overlaying a neural network to decide
the dropout rate and jointly train two networks. The sparse
and compact network structures can be dynamically learned
by using regularization techniques (Wen et al. 2016) as well.
These methods require the loss function to be differentiable
with respect to (w.r.t.) the structure parameters or they use
heuristic optimization techniques. The dynamic optimiza-
tion approach is computationally efficient since it optimizes

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4074

the connection weights and the network structure within a
single training loop, though it compromises the flexibility of
the learnable structures compared with the static optimiza-
tion approaches.

In this paper, we propose a general framework for dy-
namically optimizing the network structures and the connec-
tion weights simultaneously. To achieve more flexibility of
learnable structures, we introduce a parametric distribution
generating the network structure and treat the distribution
parameters as the hyper-parameters. The objective function
for the weights and hyper-parameters are defined by the ex-
pectation of the loss function under the distribution. Then,
gradient based search algorithms can be applied. To demon-
strate the flexibility and the efficiency of our framework,
we consider the Bernoulli distributions in this paper and
show that the proposed method can dynamically optimize
various network structure parameters under the same frame-
work. Our method is more computationally efficient than the
static optimization approach and more flexible than the con-
ventional dynamic optimization approach, such as directly
optimizing structure parameters (Srinivas and Babu 2016;
Ba and Frey 2013). We conduct four experiments: selec-
tion of layers, selection of activation functions, adaptation
of stochastic network, and selection of connections. The ex-
perimental results show that the proposed method can find
the appropriate and unusual network structures.

Dynamic Network Structure Optimization
Generic Framework In the following we consider the
neural network φ(W,M) modeled by two parameter vec-
tors, the vector W ∈ W consisting of the connection
weights and the vector M ∈ M consisting of d hyper-
parameters that determine the structure of the network such
as connectivity of each unit, type of activation function
for each unit, and so on. The weights W are in general
real valued, and the structure parameters M can live in
an arbitrary space. Our original objective is to minimize
the loss L(W,M), which is often defined as L(W,M) =∫
D l(z,W,M)p(z)dz, where D and l(z,W,M) indicate the

dataset and the loss function for a given data z, respectively.
Let us consider a family of probability distributions

pθ(M) of M parametrized by a real vector θ ∈ Θ. Instead
of directly optimizing L(W,M), we consider to minimize
the expected loss G(W, θ) under pθ(M), namely,

G(W, θ) =

∫
M
L(W,M)pθ(M)dM , (1)

where dM is a reference measure onM. Note that the min-
imizer (W ∗, θ∗) of G admits the minimizer (W ∗,M∗) of L
in the sense that pθ∗ will be concentrated at the minimizer
M∗ of L as long as such a distribution is included in the
given family of probability distributions. We remark that the
domain W × Θ of G is continuous and the objective G is
likely to be differentiable (one may be able to choose pθ so
that it will be), whereasL itself is not necessarily continuous
sinceM can be discrete, as we consider in the following.

We optimize the parameters W and θ based on by taking a
gradient step and a natural gradient step, respectively, which

are given by

∇WG(W, θ) =

∫
∇WL(W,M)pθ(M)dM, (2)

∇̃θG(W, θ) =

∫
L(W,M)∇̃θ ln pθ(M)pθ(M)dM, (3)

where ∇̃θ ln pθ(M) = F−1(θ)∇θ ln pθ(M) is the so-called
natural gradient (Amari 1998) of the log-likelihood ln pθ
and F (θ) is the Fisher information matrix of pθ(M). Note
that the natural gradient generally requires the estimation of
the inverse Fisher information matrix in the standard ma-
chine learning setting (e.g., for W update). However, we
can analytically compute the natural gradient of the log-
likelihood w.r.t. θ since we have full access to the distri-
bution pθ. For example, any exponential family with suf-
ficient statistics T (M) with the expectation parameteriza-
tion θ = E[T (M)] admits the natural gradient of the log-
likelihood ∇̃θ ln pθ(M) = T (x) − θ. This setting is sim-
ilar to those in the natural policy gradient method with
parameter-based exploration (PGPE) (Miyamae et al. 2010)
for reinforcement learning and in the information geomet-
ric optimization algorithm (IGO) (Ollivier et al. 2017) for
simulation based black-box optimization. The natural gradi-
ent gives us a reasonable scaling of the gradient in our case,
compared to the vanilla (Euclidean) gradient.

At each step of the training phase, we receive a mini-batch
Z of N training data zj , i.e., Z = {z1, . . . , zN}. The loss
function L(W,M) =

∫
D l(z,W,M)p(z)dz is then approx-

imated by the sample average of the loss l(zj ,W,M). We
shall write it as L̄(W,M ;Z). The cost in (3) and the gra-
dient of the cost in (2) are replaced with L̄(W,M ;Z) and
∇W L̄(W,M ;Z), respectively. In our situation, we need to
estimate the cost and its gradient for each structure parame-
ter Mi. We consider the following two different ways:
(a) same mini-batches The same training data set Z is

used for each Mi, namely,

L̄(W,Mi;Z) = 1

N

∑
z∈Z

l(z,W,Mi) (4)

(b) different mini-batches The training data set Z is de-
composed into λ subsets Zi with equal number of data,
N/λ, and each subset Zi is used for each Mi, namely,

L̄(W,Mi;Zi) =
λ

N

∑
z∈Zi

l(z,W,Mi) (5)

Letting L̄(W,Mi) denote either (4) or (5), we obtain the
Monte-Carlo approximation of the gradients as

∇WG(W, θ) ≈ 1

λ

λ∑
i=1

∇W L̄(W,Mi) , (6)

∇̃θG(W, θ) ≈ 1

λ

λ∑
i=1

L̄(W,Mi)∇̃θ ln pθ(Mi) . (7)

On one hand the latter (5) possibly has an advantage in com-
putational time, since its mini-batch size for each network is

4075

1/λ times smaller. This advantage will disappear if GPU is
capable of processing all the data of the original mini-batch
in parallel. On the other hand, since the latter uses different
batches to compute the loss of different networks, the result-
ing loss function may lead to a racing situation. From this
optimization viewpoint, the former (4) is preferred. These
two variations are compared in experiment (I).

Instantiation with Bernoulli Distribution In the follow-
ing we focus on the cases that the structure variables are
binary, i.e., mk ∈ {0, 1} for each element mk of M =
(m1, . . . ,md). We consider the Bernoulli distribution pθ as
a law of M . The probability mass function is pθ(M) =∏

θmk

k (1 − θk)
1−mk , where θk is the probability of each

bit mk to be 1. The parameter vector θ = (θ1, . . . , θd) then
lives in Θ = [0, 1]d. Since it is an exponential family with
the expectation parameterization, the natural gradient of the
log-likelihood ∇̃ ln pθ(M) is given by M − θ.

The parameters W and θ are updated by taking the ap-
proximated gradient steps with learning rates (aka step-size)
ηW and ηθ. Any stochastic gradient optimizer can be used
for W update as well as in the standard neural network train-
ing. However, since Θ is bounded, one needs to constrain θ
so that it remains in Θ = [0, 1]d. To do so, a simple yet
practically attractive treatment is to rescale the loss func-
tion at each training step. This is done by transforming the
loss value L̄(W,Mi) into the ranking based utility value ui

(Hansen and Ostermeier 2001; Yi et al. 2009) as

L̄(W,Mi) �→ ui =

⎧⎨
⎩
1 (best �λ/4� samples)

−1 (worst �λ/4� samples)

0 (otherwise)

. (8)

With this utility transformation, the θ update reads

θt+1 = θt +
ηθ
λ

λ∑
i=1

ui(Mi − θt), (9)

where ηθ is set to 1/(d
∑ |ui|) for all experiments. This

way, we can guarantee for θ to stay in Θ with neither the
adaptation of ηθ nor the constraint handling. Moreover, we
restrict the range of θ within [1/d, 1 − 1/d] to leave open
the possibility of generating both values, i.e., we replace the
value of θ by the boundary value if it will be updated beyond
the boundary. The optimization procedure of the proposed
method is displayed in Algorithm 1.

When we apply the trained network to test data, we have
two options: the deterministic and stochastic predictions.
The deterministic prediction indicates that we fix the random
variables as mi = 0 if θi < 0.5 and mi = 1 if θi ≥ 0.5,
while the stochastic one averages the values of the model
predictions using the samples from pθ(M). The stochastic
prediction requires high computational cost in proportion as
the number of samples increases. We report the results of
both predictions in the experiments and use 100 samples for
the stochastic prediction.

Relation to stochastic network models Since our method
uses the stochastic network structures, we describe the rela-
tion to the stochastic networks such as Dropout (Srivastava

Algorithm 1 Optimization procedure of the proposed
method instantiated with Bernoulli distribution.
Input: Training data D
Output: Optimized parameters of W and θ
Procedure:

1: Initialize the weights and Bernoulli parameters as W 0

and θ0

2: t← 0
3: while no stopping criterion is satisfied do
4: Get N mini-batch samples from D
5: Sample M0, . . . ,Mλ from pθt

6: Compute the loss using (4) or (5)
7: Update the weights to W t+1 using (6) by a SGD

method
8: Update the Bernoulli parameters to θt+1 by (9)
9: t← t+ 1

10: end while

et al. 2014), which stochastically zeros the output of hid-
den units during training to prevent overfitting. Also, other
stochastic networks, DropConnect (Wan et al. 2013) that
drops the connections and the stochastic depth (Huang et
al. 2016) that skips the layers in ResNets, were developed.
Swapout (Singh, Hoiem, and Forsyth 2016) is a generaliza-
tion of Dropout and the stochastic depth, and it randomly
chooses each unit behavior from four types: dropped, feed-
forward, skipped, or a residual network unit. These dropout
techniques contribute to reducing the generalization error.
The stochastic behavior is decided based on the Bernoulli
distributions of typically θ = 0.5. If the binary vector M
drawn from the Bernoulli distributions are used to decide
whether each unit drops or not in our method, the method
can be regarded as the adaptation of the dropout ratio. There-
fore, our method can be also applied to the adaptation of the
parameters of the existing stochastic network models.

Relation and difference to IGO Optimizing the param-
eters of the probability distribution in the proposed method
is based on the IGO (Ollivier et al. 2017). We can view the
IGO as a generalization of the specific estimation distribu-
tion algorithms (EDAs) (Larrañaga and Lozano 2001) such
as the population based incremental learning (PBIL) (Baluja
1994) and the compact genetic algorithm (cGA) (Harik,
Lobo, and Goldberg 1999) for discrete optimization. More-
over, it generalizes the covariance matrix adaptation evo-
lution strategy (CMA-ES) (Hansen and Ostermeier 2001;
Hansen, Müller, and Koumoutsakos 2003), which is nowa-
days recognized as a stat-of-the-art black-box continuous
optimizer. The update rule (9) is similar to the one in the
cGA.

In the standard IGO and EDAs, the optimizer only updates
the parameters of the distribution. On the contrary in this pa-
per, the weight parameters of the neural network are simulta-
neously updated with a different mechanism (i.e., a stochas-
tic gradient descent with momentum). Differently from ap-
plying IGO to update both parameters at the same time, we
update the distribution parameters by IGO (i.e., natural gra-

4076

Table 1: Mean test errors (%) over 30 trials at the final iteration in the experiment of selection of layers. The values in parentheses
denote the standard deviation.

θinit = 0.5 θinit = 0.969
Deterministic Stochastic Deterministic Stochastic

AdaptiveLayer (a) (λ = 2) 2.200 (0.125) 2.218 (0.135) 2.366 (0.901) 2.375 (0.889)
AdaptiveLayer (b) (λ = 2) 15.69 (29.9) 15.67 (29.9) 35.26 (41.6) 35.27 (41.7)

(λ = 8) 2.406 (0.189) 2.423 (0.189) 65.74 (38.8) 65.74 (38.8)
(λ = 32) 2.439 (0.224) 2.453 (0.228) 80.59 (24.6) 80.60 (24.6)
(λ = 128) 2.394 (0.163) 2.405 (0.173) 80.58 (24.8) 80.58 (24.8)

StochasticLayer 4.704 (0.752)

dient) and the weights are updated by using the gradient of
the loss function, since the gradient is available and it leads
to a faster learning compared to a direct search by IGO.

From the viewpoint of updating the distribution parame-
ters, i.e. optimizing the network structures, the landscape of
the loss function dynamically changes at each algorithmic
iteration because the weight parameters as well as a mini-
batch change. This is the reason why we call the methods
that optimize the both of structure and weight parameters at
the same time dynamic structure optimization.

Experiments and Results
We apply our methodology to the following four situations:
(I) selection of layers, (II) selection of activation functions,
(III) adaptation of stochastic network, and (IV) selection of
connections for densely connected CNNs. The algorithms
are implemented by the Chainer framework (Tokui et al.
2015) (version 1.23.0) on NVIDIA Geforce GTX 1070 GPU
for experiments (I) to (III) and on NVIDIA TITAN X GPU
for experiment (IV). In all experiments, the SGD with a Nes-
terov momentum (Sutskever et al. 2013) of 0.9 and a weight
decay of 10−4 is used to optimize the weight parameters.
The learning rate is divided by 10 at 1/2 and 3/4 of the
maximum number of epochs. This setting is based on the
literature (He et al. 2016; Huang et al. 2017).

(I) Selection of Layers
Experimental setting The base network consists of 32
fully connected hidden layers with 128 units for each layer
and the rectified linear unit (ReLU) (Nair and Hinton 2010).
We use the MNIST handwritten digits dataset containing
the 60,000 training examples and 10,000 test examples of
28× 28 gray-scale images. The input and output layers cor-
respond to the 784 input pixel values and class labels (0 to
9), respectively. We use the cross entropy error with softmax
activation as the loss function L.

We use the binary vector M = (m1, . . . ,md) to de-
cide whether the processing of the corresponding layer is
skipped: we skip the processing of l-th layer if ml = 0.
We re-connect the (l + 1)-th layer with the (l − 1)-th layer
when ml = 0. More precisely, denoting the l-th layer’s pro-
cessing by Hl, the (l + 1)-th layer’s input vector becomes
Xl+1 = Hl(Xl) if ml = 1 and Xl+1 = Xl if ml = 0. It
is possible because the number of units in each layer is the

same. The gradient ∇W L̄(W,Mi) in (6) is then computed
in the straight-forward way, where the components of the
gradient corresponding to the skipped layers are zero. Such
skip processing is the same as the skip-forward defined in
(Singh, Hoiem, and Forsyth 2016), and the number of 1-bits
in M implies the number of hidden layers. To ensure the skip
processing, we do not skip the first hidden layer and decide
whether the second to 32-th hidden layers are skipped or not
based on the binary vector. For this setting, the dimension of
M is d = 31.

The purpose of this experiment is to investigate the differ-
ence between the type of approximation of the loss, (4) and
(5), and to check whether the proposed method can find the
appropriate number of layers. With the neural network struc-
ture as mentioned above with fixed layer size and the follow-
ing optimization setting, the training does not work prop-
erly when the number of layers is greater than 21. There-
fore, the proposed method needs to find less than 22 layers
during the training. We denote the proposed methods using
(4) by AdaptiveLayer (a) and using (5) by AdaptiveLayer
(b). We vary the parameter λ as {2, 8, 32, 128} for Adaptive-
Layer (b) and use λ = 2 for AdaptiveLayer (a) and report
the results using the deterministic and stochastic predictions
mentioned above. The data sample size and the number of
epochs are set to N = 64 and 100 for AdaptiveLayer (a), re-
spectively, and N = 128 and 200 for other algorithms. The
number of iterations is about 9 × 104 for all algorithms. At
the beginning of training, we initialize the learning rate of
SGD by 0.01 and the Bernoulli parameters by θinit = 0.5 or
θinit = 1 − 1/31 ≈ 0.968 to verify the impact of θ initial-
ization1. We also run the method using fixed Bernoulli pa-
rameters of 0.5 denoted by StochasticLayer to check the ef-
fectiveness of optimizing θ. The experiments are conducted
over 30 trials with the same settings.

Result and discussion Table 1 shows the test error of each
method at the final iteration. We observe that AdaptiveLayer
(a) shows the best performance among the proposed meth-
ods, and the performances of AdaptiveLayer (b) become sig-
nificantly worse when the bad initialization (θinit ≈ 0.968)

1The initialization with θinit = 1 − 1/31 ≈ 0.968 is an artifi-
cially poor initialization. We use this setting here only to check the
impact of the initialization. We do not recommend tuning θinit at
all, and it should be θinit = 0.5 which assumes no prior knowledge.

4077

0.0 0.2 0.4 0.6 0.8 1.0
θ

0

5

10

15

20

25

30

Figure 1: An example of histogram of θ obtained by Adap-
tiveLayer (a) at the final iteration.

0 10000 20000 30000 40000
Number of iterations

5

10

15

20

25

30

S
um

of
B
er
no
ul
li
P
ar
am
et
er
s
(∑

θ i
)

θinit = 0.5

θinit = 0.968

Figure 2: Transitions of the sum of the Bernoulli parame-
ters (

∑
θi) using AdaptiveLayer (a) when we initialize by

θinit = 0.5 and 0.968. The expected number of hidden lay-
ers is given by

∑
θi + 1. The first 45,000 iterations (about

half of the maximum number of iterations) are plotted.

is used. One reason for this is that the loss approximation (4)
used in AdaptiveLayer (a) evaluates each sample of M with
the same mini-batch, and this leads to an accurate compari-
son between the samples of M . Comparing the deterministic
and stochastic predictions, the performance differences are
not significant because the values of θ distributed close to
0.0 or 1.0, as shown in Figure 1.

Figure 2 shows the transitions of the sum of the Bernoulli
parameters (

∑
θi) for the first 45,000 iterations using Adap-

tiveLayer (a). The expected number of layers which is given
by

∑
θi+1 converges in between eight and ten. We observe

that the values converge to the learnable number of layers at
the early iteration, even in the case of the bad initial condi-
tion. In this experiments we observed no significant differ-
ence in computational time for AdaptiveLayer (a) and (b).

The test error of StochasticLayer is inferior to the most
proposed methods; thus optimizing the Bernoulli parame-
ters θ is effective. In our preliminary study, we found that
the best number of layers was ten, whose test error is 1.778
in our experimental setting. There was a run where the layer

0 250000 500000 750000
Number of iterations

1.50

1.75

2.00

2.25

2.50

2.75

3.00

T
es
t
er
ro
r
(%
)

AdaptiveActivation

ReLU

tanh

Figure 3: Transitions of the test errors (%) of AdaptiveActi-
vation (deterministic), ReLU, and tanh.

size converges to 10, however, the final test error was infe-
rior. From these observation, we conclude that the goodness
of the proposed method is not to find the optimal network
configuration, but to find a reasonable configuration within
a single training loop. It will improve the convenience of the
deep learning in practice. Based on the observation that the
method using (4) with λ = 2 showed the best performance,
even in the case of the bad initial condition, we adopt this
setting in the following experiments.

(II) Selection of Activation Functions

Experimental setting We use the binary vector M to se-
lect the activation function for each unit. Different activa-
tion functions can be mixed in the same layer. The activation
function of i-th unit is ReLU Frelu if mi = 1 and the hyper-
bolic tangent Ftanh if mi = 0. In other words, the activation
function is defined as miFrelu(Xi) + (1 − mi)Ftanh(Xi),
where Xi denotes an input to the activation of the i-th unit.

The base network structure used in this experiment con-
sists of three fully connected hidden layers with 1,024 units
for each layer. The number of activation functions to be de-
cided is d = 3072. We use the MNIST dataset. In this ex-
periment, we report the result of the method using (4) with
λ = 2 and denote it as AdaptiveActivation. We also run the
method using the fixed Bernoulli parameters of 0.5 and ones
using the ReLU and hyperbolic tangent activations for all
units; we denote them as StochasticActivation, ReLU, and
tanh, respectively.

The data sample size and the number of epochs are set
to N = 64 and 1,000 for AdaptiveActivation, respectively,
and N = 128 and 2,000 for other algorithms. Note that the
number of epochs is greater than the previous experiment. It
is because the number of bits to be optimized (i.e., 3, 072) is
significantly greater than the previous setting (i.e., 31). We
initialize the learning rate of SGD by 0.01 and the Bernoulli
parameters by θinit = 0.5. The experiments are conducted
over 10 trials using the same settings.

4078

Table 2: Mean test errors (%) over 30 trials at the final iteration in the experiment of selection of activation functions. The
values in parentheses denote the standard deviation. The training time of a typical single run is reported.

Test error (Deterministic) Test error (Stochastic) Training time (min.)

AdaptiveActivation 1.414 (0.054) 1.407 (0.036) 255
StochasticActivation – 1.452 (0.025) 204
ReLU 1.609 (0.044) – 120
tanh 1.592 (0.069) – 120

0.0 0.2 0.4 0.6 0.8 1.0
θ

0

50

100

150

200

250

300
First hidden layer

0.0 0.2 0.4 0.6 0.8 1.0
θ

0

50

100

150

200

250

300
Second hidden layer

0.0 0.2 0.4 0.6 0.8 1.0
θ

0

50

100

150

200

250

300
Third hidden layer

Figure 4: The histograms of θ in each layer obtained by AdaptiveActivation after training. The larger value of θi means that
it tends to become ReLU. These histograms were created on a certain run, but the obtained histograms on the other runs are
similar to this.

Result and discussion Table 2 shows the test error and
training time of each algorithm. We observe that Adaptive-
Activation (stochastic) outperforms StochasticActivation in
which the Bernoulli parameters stay constant, suggesting
that the optimization of such parameters by our method is
effective. The predictive performance of AdaptiveActivation
(deterministic) is competitive with StochasticActivation, but
it is more computationally efficient than the stochastic pre-
diction. In addition, the obtained networks by AdaptiveAc-
tivation have a better classification performance compared
to both uniform activations: ReLU and hyperbolic tangent.
Comparing the training time, we observe that the proposed
method needs about twice the computational time for train-
ing compared to the fixed structured neural networks. Our
method additionally requires the computation regarding the
Bernoulli distributions (e.g., the equation (9)) and one to
switch the structure. In our implementation, these are the
reason of the increase in computational time. As our imple-
mentation is naive, the computational time may be reduced
by a sophisticated implementation.

Figure 3 illustrates the transitions of the test errors of
AdaptiveActivation (deterministic), ReLU, and tanh. We ob-
serve that the convergence of AdaptiveActivation is slow but
achieves better results at the last iterations. More iterations
are needed in our method to tune structure and weight pa-
rameters simultaneously.

Figure 4 shows an example of the histograms of θ in each
layer after training. In our setting, the larger value of θ means
that it tends to become ReLU. Interestingly, only the his-
togram of the first layer is biased toward ReLU. We have
observed that the number of units with θ ≥ 0.5 increases to
about 2,000 through training.

(III) Adaptation of Stochastic Network

Experimental setting Our proposed framework can be
applied to optimize more than one types of hyper-
parameters. To demonstrate this, we adapt the dropout ratio
as well as the layer-skip ratio at the same time. We use the
MNIST dataset in this experiment.

The network model is defined as follows. We consider
a fully connected network consisting L = 10 hidden lay-
ers with U = 1, 024 units for each layer as the base net-
work. The configuration of the network is identified by
LU + (L − 1) binary parameters M . The first L − 1 bits,
denoted as mlayer

l for l = 2, . . . , L, determine whether
l-th hidden layer is skipped (if mlayer

l = 0) or not (if
mlayer

l = 1). The last LU bits, denoted as munit
li for l =

1, . . . , L and i = 1, . . . , U , determine whether the i-th
unit of the l-th layer will be dropped (if munit

li = 0) or
not (if munit

li = 1). The underlying probability distribution
for mlayer

l is the Bernoulli distribution pθlayer
l

, whereas the

dropout mask munit
li for all i = 1, . . . , U are drawn from

the same Bernoulli distribution pθunit
l

. In other words, the
dropout ratio is shared by units within a layer. Let the vector
of the dropout mask for the l-th layer be denoted by Munit

l =

(munit
l1 , . . . ,munit

lU) and p(Munit
l) =

∏U
i=1 pθunit

l
(munit

li).
Then, the underlying distribution of M is pθ(M) =

p(Munit
1)

∏L
l=2 pθlayer

l
(mlayer

l)p(Munit
l) and the parameter

vector is θ = (θlayer2 , . . . , θlayerL , θunit1 , . . . , θunitL) ∈ R
2L−1.

Since the underlying probability distribution of M is not
anymore the independent Bernoulli model, the natural gra-
dient of the log-likelihood is different from M − θ. Yet, the
natural gradient of the log-likelihood of our network model

4079

Table 3: Test errors (%) and computational time of the pro-
posed method (AdaptiveNet) and the Bayesian optimization
(BO) with different budgets in the experiment of adaptation
of stochastic network. The mean values over 30 trials are re-
ported in the proposed method, and the value in parentheses
denotes the standard deviation. For the Bayesian optimiza-
tion, the result of a single run is reported.

Test error (%) Time (hour)

AdaptiveNet 1.645 (0.072) 1.01
BO (budget=10) 1.780 9.59
BO (budget=20) 1.490 18.29

is easily derived as

∇̃θlayer
l

ln pθ(M) = mlayer
l − θlayerl ,

∇̃θunit
l

ln pθ(M) =
1

U

U∑
i=1

munit
li − θunitl .

(It demonstrates the generality of our methodology to some
extent.) We use the same training parameters as used in the
first experiment and report the result of the method using (4)
with λ = 2 and denote it as AdaptiveNet.

We employ a simple Bayesian optimization to the
same problem to compare the computational cost with a
static hyper-parameter optimization method. We use GPy-
Opt package (version 1.0.3, http://github.com/SheffieldML/
GPyOpt) for the Bayesian optimization implementation and
adopt the default parameter setting. The Bernoulli parame-
ters of the stochastic network as mentioned above are op-
timized as the hyper-parameter. The problem dimension is
d = 2L − 1 = 19 and the range of search space is
[1/d, 1 − 1/d]d. The training data is split into training and
validation set in the ratio of nine to one; the validation
set is used to evaluate a hyper-paremter after training the
neural network with a candidate hyper-parameter. We fix
the parameters of the Bernoulli distribution during the net-
work training. After searching the hyper-parameter, we re-
train the model using all training data and report the error
for test data. For fair comparison, we include the vector of
(0.5, . . . , 0.5), which is the initial parameter of the proposed
method, to the initial points for the Bayesian optimization.
We use the same setting for the network training as used in
the proposed method.

Result and discussion Table 3 shows that the test errors
of the stochastic networks obtained by the proposed method
and the Bayesian optimization with different budgets, where
budget indicates the number of hyper-parameters to be eval-
uated. We use the stochastic prediction with 100 samples to
calculate the test errors. Obviously, we observe that the com-
putational time of the Bayesian optimization proportionally
increases for the number of budgets while our method is
more computationally efficient. The proposed method can
find a competitive stochastic network with reasonable com-
putational time. We observed that the networks obtained by

the proposed method skip about five to seven layers and
their units are not dropped with high probability. We also
observed the same tendency for the network obtained by the
Bayesian optimization. Although the Bayesian optimization
could find a better configuration in this case within several
ten budgets, it probably needs many budgets if the dimen-
sion of hyper-parameters increases such as in the setting of
the experiment (II).

(IV) Selection of Connections for DenseNets
Experimental setting In this experiment, we use the
dense convolutional networks (DenseNets) (Huang et al.
2017), a state-of-the-art architectures for image classifica-
tion, as the base network structure. DenseNets contain sev-
eral dense blocks and transition layers. The dense block
comprises of Lblock layers, each of which implements a non-
linear transformation with a batch normalization (BN) (Ioffe
and Szegedy 2015) followed by a ReLU activation and a
3 × 3 convolution. The size of the output feature-maps of
each layer is the same as that of the input feature-maps.
Let k be the number of output feature-maps of each layer,
called growth rate; the l-th layer in the dense block receives
k(l − 1) + k0 feature-maps, where k0 indicates the number
of input feature-maps to the dense block. Thus, the number
of output feature-maps of the dense block is kLblock + k0.
The transition layer is located between the dense blocks and
consists of a batch normalization, a ReLU activation, and an
1×1 convolutional layer followed by a 2×2 average pooling
layer. The detailed architecture of DenseNets can be found
in (Huang et al. 2017).

We decide the existence of the connections between lay-
ers in each dense block according to the binary vector M .
Namely, we remove the connection when the correspond-
ing bit equals zero. Let us denote the k-th layer’s output
feature-maps by Yk; then, the input feature-maps to the l-
th layer is computed by (mpY0, . . . ,mp+l−1Yl−1), where
p = l(l − 1)/2. We use the most simple DenseNet consist-
ing 40 depth (k = 12 and Lblock = 12) reported in (Huang
et al. 2017) as the base network structure, containing three
dense blocks and two transition layers. For this setting, the
dimension of M becomes d = 273.

In this experiment, we use the CIFAR-10 and CIFAR-100
datasets in which the numbers of classes are 10 and 100,
respectively. The numbers of training and test images are
50,000 and 10,000, respectively, and the size of the images
is 32 × 32. We normalize the data using the per-channel
means and the standard deviations in the preprocessing. We
use the data augmentation method based on (He et al. 2016;
Huang et al. 2017): padding 4 pixels on each side followed
by choosing a random 32× 32 crop from the padded image
and random horizontal flips on the cropped 32 × 32 image.
We report the results of the method using (4) with λ = 2
(AdaptiveConnection) and also run the normal DenseNet
for comparison. The data sample size and the number of
epochs are set to N = 32 and 300 for AdaptiveConnec-
tion, respectively, and N = 64 and 600 epochs for the nor-
mal DenseNet. We initialize the weight parameters using
the method described in (He et al. 2015), and the learning
rate of SGD and the initial Bernoulli parameters by 0.1 and

4080

Table 4: Test errors (%) at the final iteration in the experiment of connection selection for DenseNets. The values in parentheses
denote the standard deviation.

CIFAR-10 CIFAR-100
Deterministic Stochastic Deterministic Stochastic

AdaptiveConnection 5.427 (0.167) 5.399 (0.153) 25.461 (0.408) 25.315 (0.409)
Normal DenseNet (40 depth, k = 12) 5.050 (0.147) – 25.518 (0.380) –

0.5, respectively. We conduct the experiments with same set-
tings over 20 and 5 trials for AdaptiveConnection and nor-
mal DenseNet, respectively.

Result and discussion Table 4 shows the test errors of
AdaptiveConnection and the normal DenseNet at the final
iteration. In this case, the stochastic prediction is slightly
better than the deterministic one, but the difference is not
significant. The difference of the predictive performances
between AdaptiveConnection and the normal DenseNet is
not significant for the CIFAR-100 datasets, whereas Adap-
tiveConnection is inferior for the CIFAR-10 dataset. We,
however, observed that the obtained Bernoulli parameters
are distributed to be close to 0.0 or 1.0, as in Figure 1. We
observed that about 70 connections are removed with high
probability for both datasets. Counting the weight parame-
ters of those removed connections, we found that it can re-
duce about 10% of the weight parameters without suffering
from performance deterioration for CIFAR-100.

Conclusion
In this paper, we proposed a methodology that dynamically
and indirectly optimizes the network structure parameters
by using probabilistic models. We instantiated the proposed
method using the Bernoulli distributions and simultaneously
optimized their parameters and network weights. We con-
ducted experiments where we optimized four different net-
work components: the layer skips, activation functions, layer
skips and unit dropouts, and connections. We observed that
the proposed method could find the learnable layer size and
the appropriate mix rate of the activation functions. We also
showed that our method can dynamically optimize more
than one type of hyper-parameters and obtain the compet-
itive results with a reasonable training time. In the experi-
ment of connection selection for DenseNets, the proposed
method have shown the competitive results with a smaller
number of connections.

The proposed method is computationally more efficient
than static structure optimization in general, which is vali-
dated in the experiment (III) (Table 3). The static optimiza-
tion method such as a Bayesian optimization may find better
hyper-parameter configuration, but it takes a lot more time.
This is also observed in Table 3.

The existing dynamic structure optimization methods
need to parameterize the network structure by differentiable
parameters to optimize them within a standard stochastic
gradient descent framework, whereas the proposed method
can optimize the network structure that are not necessarily

differentiable through parametric probability distributions.
Although this paper focuses on the Bernoulli distributions
(0/1 bits), the proposed framework can be used with other
distributions such as categorical distributions which repre-
sent several categorical variables (A/B/C/...). Indeed, it is
rather easy to derive the update of the distribution param-
eters if the distributions are in exponential families. Since
it is difficult to design a model to represent categorical
variables by differentiable parameters, the proposed frame-
work is more flexible than the existing dynamic optimization
methods in the sense that it can handily treat a wider range
of structural optimization problems.

One direction of future work is to extend the proposed
method to treat variables other than binary variables, i.e.,
categorical variables, and to optimize a larger and more
complex networks. Another direction of future work is to
introduce a prior distribution for θ; one can incorporate the
regularization term to obtain sparse and compact represen-
tation through the prior distribution of θ.

Acknowledgments
This work is partially supported by the SECOM Science and
Technology Foundation.

References
Amari, S. 1998. Natural gradient works efficiently in learn-
ing. Neural Computation 10(2):251–276.
Ba, J., and Frey, B. 2013. Adaptive dropout for training
deep neural networks. In Advances in Neural Information
Processing Systems 26 (NIPS 2013), 3084–3092.
Baluja, S. 1994. Population-based incremental learning: A
method for integrating genetic search based function opti-
mization and competitive learning. Technical Report Tech
Rep CMU-CS-94-163, Carnegie Mellon University.
Hansen, N., and Ostermeier, A. 2001. Completely deran-
domized self-adaptation in evolution strategies. Evolution-
ary Computation 9(2):159–195.
Hansen, N.; Müller, S. D.; and Koumoutsakos, P. 2003. Re-
ducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (CMA-ES). Evo-
lutionary Computation 11(1):1–18.
Harik, G. R.; Lobo, F. G.; and Goldberg, D. E. 1999. The
compact genetic algorithm. IEEE Transactions on Evolu-
tionary Computation 3(4):287–297.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on im-
agenet classification. In Proceedings of the 2015 IEEE In-

4081

ternational Conference on Computer Vision (ICCV 2015),
1026–1034.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR 2016), 770–778.
Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; and Weinberger,
K. Q. 2016. Deep networks with stochastic depth. In
Proceedings of the 14th European Conference on Com-
puter Vision (ECCV 2016), volume 9908 of LNCS, 646–661.
Springer.
Huang, G.; Liu, Z.; van der Maaten, L.; and Weinberger,
K. Q. 2017. Densely connected convolutional networks.
In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2017), 4700–4708.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd International Conference
on Machine Learning (ICML 2015), volume 37, 448–456.
PMLR.
Larrañaga, P., and Lozano, J. A. 2001. Estimation of Distri-
bution Algorithms: A New Tool for Evolutionary Computa-
tion. Kluwer Academic Publishers.
Loshchilov, I., and Hutter, F. 2016. CMA-ES for hy-
perparameter optimization of deep neural networks. arXiv
preprint.
Miyamae, A.; Nagata, Y.; Ono, I.; and Kobayashi, S. 2010.
Natural policy gradient methods with parameter-based ex-
ploration for control tasks. In Advances in Neural Informa-
tion Processing Systems 23 (NIPS 2010), 1660–1668.
Nair, V., and Hinton, G. E. 2010. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML
2010), 807–814.
Ollivier, Y.; Arnold, L.; Auger, A.; and Hansen, N. 2017.
Information-geometric optimization algorithms: A unifying
picture via invariance principles. Journal of Machine Learn-
ing Research 18:1–65.
Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y. L.;
Tan, J.; Le, Q. V.; and Kurakin, A. 2017. Large-scale evo-
lution of image classifiers. In Proceedings of the 34th In-
ternational Conference on Machine Learning (ICML 2017),
volume 70, 2902–2911. PMLR.
Simonyan, K., and Zisserman, A. 2015. Very deep convo-
lutional networks for large-scale image recognition. In Pro-
ceedings of the 3rd International Conference on Learning
Representations (ICLR 2015).
Singh, S.; Hoiem, D.; and Forsyth, D. 2016. Swapout:
Learning an ensemble of deep architectures. In Advances
in Neural Information Processing Systems 29 (NIPS 2016),
28–36.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practi-
cal Bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing Systems 25
(NIPS 2012), 2951–2959.

Srinivas, S., and Babu, R. V. 2016. Learning neural network
architectures using backpropagation. In Proceedings of the
British Machine Vision Conference (BMVC 2016).
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to pre-
vent neural networks from overfitting. Journal of Machine
Learning Research 15:1929–1958.
Suganuma, M.; Shirakawa, S.; and Nagao, T. 2017. A
genetic programming approach to designing convolutional
neural network architectures. In Proceedings of the Genetic
and Evolutionary Computation Conference 2017 (GECCO
2017), 497–504.
Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013.
On the importance of initialization and momentum in deep
learning. In Proceedings of the 30th International Confer-
ence on Machine Learning (ICML 2013), volume 28, 1139–
1147. PMLR.
Tokui, S.; Oono, K.; Hido, S.; and Clayton, J. 2015. Chainer:
a next-generation open source framework for deep learning.
In Proceedings of the Workshop on Machine Learning Sys-
tems (LearningSys) in the 29th Annual Conference on Neu-
ral Information Processing Systems (NIPS 2015), 1–6.
Wan, L.; Zeiler, M.; Zhang, S.; Cun, Y. L.; and Fergus, R.
2013. Regularization of neural networks using DropCon-
nect. In Proceedings of the 30th International Conference
on Machine Learning (ICML 2013), volume 28, 1058–1066.
PMLR.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016.
Learning structured sparsity in deep neural networks. In Ad-
vances in Neural Information Processing Systems 29 (NIPS
2016), 2074–2082.
Yi, S.; Wierstra, D.; Schaul, T.; and Schmidhuber, J. 2009.
Stochastic search using the natural gradient. In Proceedings
of the 26th International Conference on Machine Learning
(ICML 2009), 1161–1168.
Zoph, B., and Le, Q. V. 2017. Neural architecture search
with reinforcement learning. In Proceedings of the 5th In-
ternational Conference on Learning Representations (ICLR
2017).

4082

