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Abstract

We present a novel method for frequentist statistical inference
in M -estimation problems, based on stochastic gradient de-
scent (SGD) with a fixed step size: we demonstrate that the
average of such SGD sequences can be used for statistical in-
ference, after proper scaling. An intuitive analysis using the
Ornstein-Uhlenbeck process suggests that such averages are
asymptotically normal. To show the merits of our scheme, we
apply it to both synthetic and real data sets, and demonstrate
that its accuracy is comparable to classical statistical meth-
ods, while requiring potentially far less computation.

1 Introduction

In M -estimation, the minimization of empirical risk func-
tions (RFs) provides point estimates of the model param-
eters. Statistical inference then seeks to assess the quality
of these estimates; e.g., by obtaining confidence intervals or
solving hypothesis testing problems. Within this context, a
classical result in statistics states that the asymptotic distri-
bution of the empirical RF’s minimizer is normal, centered
around the population RF’s minimizer (van der Vaart 2000).
Thus, given the mean and covariance of this normal distribu-
tion, we can infer a range of values, along with probabilities,
that allows us to quantify the probability that this interval in-
cludes the true minimizer.

The Bootstrap (Efron 1982; Efron and Tibshirani 1994)
is a classical tool for obtaining estimates of the mean
and covariance of this distribution. The Bootstrap oper-
ates by generating samples from this distribution (usually,
by re-sampling with or without replacement from the en-
tire data set) and repeating the estimation procedure over
these different re-samplings. As parameter dimensionality
and data size grow, the Bootstrap becomes increasingly –
even prohibitively– expensive.

In this context, we follow a different path: we show
that inference can also be accomplished by directly using
stochastic gradient descent (SGD), both for point estimates
and inference, with a fixed step size over the data set. It
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is well-established that fixed step-size SGD is by and large
the dominant method used for large scale data analysis. We
prove, and also demonstrate empirically, that the average of
SGD sequences, obtained by minimizing RFs, can also be
used for statistical inference. Unlike the Bootstrap, our ap-
proach does not require creating many large-size subsamples
from the data, neither re-running SGD from scratch for each
of these subsamples. Our method only uses first order in-
formation from gradient computations, and does not require
any second order information. Both of these are important
for large scale problems, where re-sampling many times, or
computing Hessians, may be computationally prohibitive.

Outline and main contributions: This paper studies and
analyzes a simple, fixed step size1, SGD-based algorithm
for inference in M -estimation problems. Our algorithm pro-
duces samples, whose covariance converges to the covari-
ance of the M -estimate, without relying on bootstrap-based
schemes, and also avoiding direct and costly computation of
second order information. Much work has been done on the
asymptotic normality of SGD, as well as on the Stochastic
Gradient Langevin Dynamics (and variants) in the Bayesian
setting. As we discuss in detail in Section 4, this is the first
work to provide finite sample inference results, using fixed
step size, and without imposing overly restrictive assump-
tions on the convergence of fixed step size SGD.

The remainder of the paper is organized as follows. In
the next section, we define the inference problem for M -
estimation, and recall basic results of asymptotic normality
and how these are used. Section 3 is the main body of the
paper: we provide the algorithm for creating bootstrap-like
samples, and also provide the main theorem of this work. As
the details are involved, we provide an intuitive analysis of
our algorithm and explanation of our main results, using an
asymptotic Ornstein-Uhlenbeck process approximation for
the SGD process (Kushner and Huang 1981; Pflug 1986;

1Fixed step size means we use the same step size every iteration,
but the step size is smaller with more total number of iterations. In
contrast, constant step size means the step size is constant no matter
how many iterations taken.
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Benveniste, Priouret, and Métivier 1990; Kushner and Yin
2003; Mandt, Hoffman, and Blei 2016), and we postpone
the full proof until the appendix. We specialize our main
theorem to the case of linear regression (see supplementary
material), and also that of logistic regression. For logistic
regression in particular, we require a somewhat different ap-
proach, as the logistic regression objective is not strongly
convex. In Section 4, we present related work and elaborate
how this work differs from existing research in the literature.
Finally, in the experimental section, we provide parts of our
numerical experiments that illustrate the behavior of our al-
gorithm, and corroborate our theoretical findings. We do this
using synthetic data for linear and logistic regression, and
also by considering the Higgs detection (Baldi, Sadowski,
and Whiteson 2014) and the LIBSVM Splice data sets. A
considerably expanded set of empirical results is deferred to
the appendix.

Supporting our theoretical results, our empirical find-
ings suggest that the SGD inference procedure produces re-
sults similar to bootstrap while using far fewer operations.
Thereby, we produce a more efficient inference procedure
applicable in large scale settings, where other approaches
fail.

2 Statistical inference for M -estimators
Consider the problem of estimating a set of parameters θ� ∈
R

p using n samples {Xi}ni=1, drawn from some distribution
P on the sample space X . In frequentist inference, we are
interested in estimating the minimizer θ� of the population
risk:

θ� = argmin
θ∈Rp

EP [f(θ;X)] = argmin
θ∈Rp

∫
x

f(θ;x) dP (x), (1)

where we assume that f(·;x) : R
p → R is real-valued

and convex; further, we will use E ≡ EP , unless other-
wise stated. In practice, the distribution P is unknown. We
thus estimate θ� by solving an empirical risk minimization
(ERM) problem, where we use the estimate θ̂:

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

f(θ;Xi). (2)

Statistical inference consists of techniques for obtaining
information beyond point estimates θ̂, such as confidence
intervals. These can be performed if there is an asymptotic
limiting distribution associated with θ̂ (Wasserman 2013).
Indeed, under standard and well-understood regularity con-
ditions, the solution to M -estimation problems satisfies
asymptotic normality. That is, the distribution

√
n(θ̂ − θ�)

converges weakly to a normal distribution:
√
n(θ̂ − θ�) −→ N (0, H�−1G�H�−1), (3)

where
H� = E[∇2f(θ�;X)],

and
G� = E[∇f(θ�;X) · ∇f(θ�;X)�];

see also Theorem 5.21 in (van der Vaart 2000). We can there-
fore use this result, as long as we have a good estimate of the

covariance matrix: H�−1G�H�−1. The central goal of this
paper is obtaining accurate estimates for H�−1G�H�−1.

A naive way to estimate H�−1G�H�−1 is through the
empirical estimator Ĥ−1ĜĤ−1 where:

Ĥ =
1

n

n∑
i=1

∇2f(θ̂;Xi) and

Ĝ =
1

n

n∑
i=1

∇f(θ̂;Xi)∇f(θ̂;Xi)
�. (4)

Beyond calculating2 Ĥ and Ĝ, this computation requires an
inversion of Ĥ and matrix-matrix multiplications in order
to compute Ĥ−1ĜĤ−1—a key computational bottleneck in
high dimensions. Instead, our method uses SGD to directly
estimate Ĥ−1ĜĤ−1.

3 Statistical inference using SGD

Consider the optimization problem in (2). For instance, in
maximum likelihood estimation (MLE), f(θ;Xi) is a neg-
ative log-likelihood function. For simplicity of notation, we
use fi(θ) and f(θ) for f(θ;Xi) and 1

n

∑n
i=1 f(θ;Xi), re-

spectively, for the rest of the paper.
The SGD algorithm with a fixed step size η, is given by

the iteration

θt+1 = θt − ηgs(θt), (5)

where gs(·) is an unbiased estimator of the gradient, i.e.,
E[gs(θ) | θ] = ∇f(θ), where the expectation is w.r.t. the
stochasticity in the gs(·) calculation. A classical example
of an unbiased estimator of the gradient is gs(·) ≡ ∇fi(·),
where i is a uniformly random index over the samples Xi.

Our inference procedure uses the average of t consecu-
tive SGD iterations. In particular, the algorithm proceeds as
follows: Given a sequence of SGD iterates, we use the first
SGD iterates θ−b, θ−b+1, . . . , θ0 as a burn in period; we dis-
card these iterates. Next, for each “segment” of t+d iterates,
we use the first t iterates to compute θ̄

(i)
t = 1

t

∑t
j=1 θ

(i)
j

and discard the last d iterates, where i indicates the i-th seg-
ment. This procedure is illustrated in Figure 1. As the final
empirical minimum θ̂, we use in practice θ̂ ≈ 1

R

∑R
i=1 θ̄

(i)
t

(Bubeck 2015).
Some practical aspects of our scheme are discussed be-

low.
Step size η selection and length t: Theorem 1 below is

consistent only for SGD with fixed step size that depends
on the number of samples taken. Our experiments, however,
demonstrate that choosing a constant (large) η gives equally
accurate results with significantly reduced running time. We
conjecture that a better understanding of t’s and η’s influ-
ence requires stronger bounds for SGD with constant step
size. Heuristically, calibration methods for parameter tuning

2In the case of maximum likelihood estimation, we have H� =
G�—which is called Fisher information. Thus, the covariance of
interest is H�−1 = G�−1. This can be estimated either using Ĥ or
Ĝ.
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burn in︷ ︸︸ ︷
θ−b, θ−b+1, · · · θ−1, θ0,

↙
θ̄
(i)
t = 1

t

∑t
j=1 θ

(i)
j︷ ︸︸ ︷

θ
(1)
1 , θ

(1)
2 , · · · , θ

(1)
t

discarded︷ ︸︸ ︷
θ
(1)
t+1, θ

(1)
t+2, · · · , θ(1)t+d

↙
θ
(2)
1 , θ

(2)
2 , · · · , θ

(2)
t θ

(2)
t+1, θ

(2)
t+2, · · · , θ(2)t+d

↙
...
↙

θ
(R)
1 , θ

(R)
2 , · · · , θ

(R)
t θ

(R)
t+1, θ

(R)
t+2, · · · , θ(R)

t+d

Figure 1: Our SGD inference procedure

in subsampling methods ((Politis, Romano, and Wolf 2012),
Ch. 9) could be used for hyper-parameter tuning in our SGD
procedure. We leave the problem of finding maximal (prov-
able) learning rates for future work.

Discarded length d: Based on the analysis of mean esti-
mation in the appendix, if we discard d SGD iterates in every
segment, the correlation between consecutive θ(i) and θ(i+1)

is of the order of C1e
−C2ηd, where C1 and C2 are data de-

pendent constants. This can be used as a rule of thumb to re-
duce correlation between samples from our SGD inference
procedure.

Burn-in period b: The purpose of the burn-in period b, is
to ensure that samples are generated when SGD iterates are
sufficiently close to the optimum. This can be determined
using heuristics for SGD convergence diagnostics. Another
approach is to use other methods (e.g., SVRG (Johnson and
Zhang 2013)) to find the optimum, and use a relatively small
b for SGD to reach stationarity, similar to Markov Chain
Monte Carlo burn-in.

Statistical inference using θ̄
(i)
t and θ̂: Similar to ensemble

learning (Opitz and Maclin 1999), we use i = 1, 2, . . . , R
estimators for statistical inference:

θ(i) = θ̂ +

√
Ks · t
n

(
θ̄
(i)
t − θ̂

)
. (6)

Here, Ks is a scaling factor that depends on how the stochas-
tic gradient gs is computed. We show examples of Ks for
mini batch SGD in linear regression and logistic regression
in the corresponding sections. Similar to other resampling
methods such as bootstrap and subsampling, we use quan-
tiles or variance of θ(1), θ(2), . . . , θ(R) for statistical infer-
ence.

3.1 Theoretical guarantees

Next, we provide the main theorem of our paper. Essentially,
this provides conditions under which our algorithm is guar-
anteed to succeed, and hence has inference capabilities.

Theorem 1. For a differentiable convex function f(θ) =
1
n

∑n
i=1 fi(θ), with gradient ∇f(θ), let θ̂ ∈ R

p be its min-
imizer, according to (2), and denote its Hessian at θ̂ by
H := ∇2f(θ̂) = 1

n ·∑n
i=1 ∇2fi(θ̂). Assume that ∀θ ∈ R

p,
f satisfies:

(F1) Weak strong convexity: (θ−θ̂)�∇f(θ) ≥ α‖θ−θ̂‖22,
for constant α > 0,

(F2) Lipschitz gradient continuity: ‖∇f(θ)‖2 ≤ L‖θ −
θ̂‖2, for constant L > 0,

(F3) Bounded Taylor remainder: ‖∇f(θ)−H(θ−θ̂)‖2 ≤
E‖θ − θ̂‖22, for constant E > 0,

(F4) Bounded Hessian spectrum at θ̂: 0 < λL ≤
λi(H) ≤ λU < ∞, ∀i.

Furthermore, let gs(θ) be a stochastic gradient of f , satisfy-
ing:

(G1) E [gs(θ) | θ] = ∇f(θ),

(G2) E
[‖gs(θ)‖22 | θ] ≤ A‖θ − θ̂‖22 +B,

(G3) E
[‖gs(θ)‖42 | θ] ≤ C‖θ − θ̂‖42 +D,

(G4)
∥∥E [

gs(θ)gs(θ)
� | θ]−G

∥∥
2

≤ A1‖θ − θ̂‖2 +

A2‖θ − θ̂‖22 +A3‖θ − θ̂‖32 +A4‖θ − θ̂‖42,

where G = E[gs(θ̂)gs(θ̂)
� | θ̂] and, for positive, data de-

pendent constants A,B,C,D,Ai, for i = 1, . . . , 4.
Assume that ‖θ1− θ̂‖22 = O(η); then for sufficiently small

step size η > 0, the average SGD sequence, θ̄t, satisfies:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)�]−H−1GH−1
∥∥∥
2

� √
η +

√
1
tη + tη2. (7)

We provide the full proof in the appendix, and also we
give precise (data-dependent) formulas for the above con-
stants. For ease of exposition, we leave them as constants in
the expressions above. Further, in the next section, we relate
a continuous approximation of SGD to Ornstein-Uhlenbeck
process (Robbins and Monro 1951) to give an intuitive ex-
planation of our results.

Discussion. For linear regression, assumptions (F1), (F2),
(F3), and (F4) are satisfied when the empirical risk func-
tion is not degenerate. In mini batch SGD using sampling
with replacement, assumptions (G1), (G2), (G3), and (G4)
are satisfied. Linear regression’s result is presented in the
appendix.

For logistic regression, assumption (F1) is not satisfied
because the empirical risk function in this case is strictly but
not strongly convex. Thus, we cannot apply Theorem 1 di-
rectly. Instead, we consider the use of SGD on the square of
the empirical risk function plus a constant; see eq. (11) be-
low. When the empirical risk function is not degenerate, (11)
satisfies assumptions (F1), (F2), (F3), and (F4). We cannot
directly use vanilla SGD to minimize (11), instead we de-
scribe a modified SGD procedure for minimizing (11) in
Section 3.3, which satisfies assumptions (G1), (G2), (G3),
and (G4). We believe that this result is of interest by its own.
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We present the result specialized for logistic regression in
Corollary 1.

Note that Theorem 1 proves consistency for SGD with
fixed step size, requiring η → 0 when t → ∞. However,
we empirically observe in our experiments that a sufficiently
large constant η gives better results. We conjecture that the
average of consecutive iterates in SGD with larger constant
step size converges to the optimum and we consider it for
future work.

3.2 Intuitive interpretation via the
Ornstein-Uhlenbeck process approximation

Here, we describe a continuous approximation of the dis-
crete SGD process and relate it to the Ornstein-Uhlenbeck
process (Robbins and Monro 1951), to give an intuitive ex-
planation of our results. In particular, under regularity con-
ditions, the stochastic process Δt = θt − θ̂ asymptotically
converges to an Ornstein-Uhlenbeck process Δ(t), (Kush-
ner and Huang 1981; Pflug 1986; Benveniste, Priouret, and
Métivier 1990; Kushner and Yin 2003; Mandt, Hoffman, and
Blei 2016) that satisfies:

dΔ(T ) = −HΔ(T ) dT +
√
ηG

1
2 dB(T ), (8)

where B(T ) is a standard Brownian motion. Given (8),√
t(θ̄t − θ̂) can be approximated as

√
t(θ̄t − θ̂) = 1√

t

t∑
i=1

(θi − θ̂)

= 1
η
√
t

t∑
i=1

(θi − θ̂)η ≈ 1
η
√
t

∫ tη

0

Δ(T ) dT,

(9)
where we use the approximation that η ≈ dT . By rear-

ranging terms in (8) and multiplying both sides by H−1,
we can rewrite the stochastic differential equation (8) as
Δ(T ) dT = −H−1 dΔ(T )+

√
ηH−1G

1
2 dB(T ). Thus, we

have∫ tη

0

Δ(T ) dT =

−H−1(Δ(tη)−Δ(0)) +
√
ηH−1G

1
2B(tη). (10)

After plugging (10) into (9) we have

√
t
(
θ̄t − θ̂

)
≈

− 1
η
√
t
H−1 (Δ(tη)−Δ(0)) + 1√

tη
H−1G

1
2B(tη).

When Δ(0) = 0, the variance Var
[− 1/η

√
t ·H−1(Δ(tη)−

Δ(0))
]

= O (1/tη). Since 1/
√
tη · H−1G

1
2B(tη) ∼

N (0, H−1GH−1), when η → 0 and ηt → ∞, we conclude
that

√
t(θ̄t − θ̂) ∼ N (0, H−1GH−1).

3.3 Logistic regression

We next apply our method to logistic regression. We have
n samples (X1, y1), (X2, y2), . . . (Xn, yn) where Xi ∈ R

p

consists of features and yi ∈ {+1,−1} is the label. We esti-
mate θ of a linear classifier sign(θTX) by:

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

log
(
1 + exp(−yiθ

�Xi)
)
.

We cannot apply Theorem 1 directly because the empir-
ical logistic risk is not strongly convex; it does not satisfy
assumption (F1). Instead, we consider the convex function

f(θ) =
1

2

(
c+

1

n

n∑
i=1

log
(
1 + exp(−yiθ�Xi)

))2

,

where c > 0 (e.g., c = 1). (11)

The gradient of f(θ) is a product of two terms

∇f(θ) =

(
c+

1

n

n∑
i=1

log
(
1 + exp(−yiθ�Xi)

))
︸ ︷︷ ︸

Ψ

×

∇
(

1

n

n∑
i=1

log
(
1 + exp(−yiθ�Xi)

))
︸ ︷︷ ︸

Υ

.

Therefore, we can compute gs = ΨsΥs, using two indepen-
dent random variables satisfying E[Ψs | θ] = Ψ and E[Υs |
θ] = Υ. For Υs, we have Υs = 1

SΥ

∑
i∈IΥ

t
∇ log(1 +

exp(−yiθ
�Xi)), where IΥt are SΥ indices sampled from

[n] uniformly at random with replacement. For Ψs, we have
Ψs = c + 1

SΨ

∑
i∈IΨ

t
log(1 + exp(−yiθ

�Xi)), where IΨt
are SΨ indices uniformly sampled from [n] with or with-
out replacement. Given the above, we have ∇f(θ)�(θ −
θ̂) ≥ α‖θ − θ̂‖22 for some constant α by the general-
ized self-concordance of logistic regression (Bach 2010;
2014), and therefore the assumptions are now satisfied.

For convenience, we write k(θ) = 1
n

∑n
i=1 ki(θ) where

ki(θ) = log(1+exp(−yiθ
�Xi)). Thus f(θ) = (k(θ)+c)2,

E[Ψs | θ] = k(θ) + c, and E[Υs | θ] = ∇k(θ).

Corollary 1. Assume ‖θ1 − θ̂‖22 = O(η); also SΨ = O(1),
SΥ = O(1) are bounded. Then, we have∥∥∥tE [

(θ̄t − θ̂)(θ̄t − θ̂)�
]
−H−1GH−1

∥∥∥
2
� √η +

√
1
tη

+ tη2,

where H = ∇2f(θ̂) = (c + k(θ̂))∇2k(θ̂). Here, G =
1
SΥ

KG(θ̂)
1
n

∑n
i=1 ∇ki(θ̂)ki(θ̂)

� with KG(θ) = E[Ψ(θ)2]
depending on how indexes are sampled to compute Ψs:
• with replacement: KG(θ) = 1

SΨ
( 1
n

∑n
i=1(c + ki(θ))

2) +
SΨ−1
SΨ

(c+ k(θ))2 ,

• no replacement: KG(θ) =
1−SΨ−1

n−1

SΨ
( 1
n

∑n
i=1(c + ki(θ))

2) +
SΨ−1
SΨ

n
n−1

(c+ k(θ))2.

Quantities other than t and η are data dependent constants.
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As with the results above, in the appendix we give data-
dependent expressions for the constants. Simulations sug-
gest that the term tη2 in our bound is an artifact of our
analysis. Because in logistic regression the estimate’s co-

variance is (∇2k(θ̂))
−1

n

(∑n
i=1 ∇ki(θ̂)∇ki(θ̂)

�

n

)(
∇2k(θ̂)

)−1

,

we set the scaling factor Ks =
(c+k(θ̂))2

KG(θ̂)
in (6) for statistical

inference. Note that Ks ≈ 1 for sufficiently large SΨ.

4 Related work

Bayesian inference: First and second order iterative opti-
mization algorithms –including SGD, gradient descent, and
variants– naturally define a Markov chain. Based on this
principle, most related to this work is the case of stochas-
tic gradient Langevin dynamics (SGLD) for Bayesian infer-
ence – namely, for sampling from the posterior distributions
– using a variant of SGD (Welling and Teh 2011; Bubeck,
Eldan, and Lehec 2015; Mandt, Hoffman, and Blei 2016;
2017). We note that, here as well, the vast majority of the
results rely on using a decreasing step size. Very recently,
(Mandt, Hoffman, and Blei 2017) uses a heuristic approxi-
mation for Bayesian inference, and provides results for fixed
step size.

Our problem is different in important ways from the
Bayesian inference problem. In such parameter estimation
problems, the covariance of the estimator only depends
on the gradient of the likelihood function. This is not the
case, however, in general frequentist M -estimation prob-
lems (e.g., linear regression). In these cases, the covariance
of the estimator depends both on the gradient and Hessian
of the empirical risk function. For this reason, without sec-
ond order information, SGLD methods are poorly suited for
general M -estimation problems in frequentist inference. In
contrast, our method exploits properties of averaged SGD,
and computes the estimator’s covariance without second or-
der information.

Connection with Bootstrap methods: The classical ap-
proach for statistical inference is to use the bootstrap (Efron
and Tibshirani 1994; Shao and Tu 2012). Bootstrap samples
are generated by replicating the entire data set by resam-
pling, and then solving the optimization problem on each
generated set of the data. We identify our algorithm and its
analysis as an alternative to bootstrap methods. Our analysis
is also specific to SGD, and thus sheds light on the statistical
properties of this very widely used algorithm.

Connection with stochastic approximation methods: It has
been long observed in stochastic approximation that under
certain conditions, SGD displays asymptotic normality for
both the setting of decreasing step size, e.g., (Ljung, Pflug,
and Walk 2012; Polyak and Juditsky 1992), and more re-
cently, (Toulis and Airoldi 2014; Chen et al. 2016); and also
for fixed step size, e.g., (Benveniste, Priouret, and Métivier
1990), Chapter 4. All of these results, however, provide their
guarantees with the requirement that the stochastic approx-
imation iterate converges to the optimum. For decreasing
step size, this is not an overly burdensome assumption, since
with mild assumptions it can be shown directly. As far as we
know, however, it is not clear if this holds in the fixed step

size regime. To side-step this issue, (Benveniste, Priouret,
and Métivier 1990) provides results only when the (con-
stant) step-size approaches 0 (see Section 4.4 and 4.6, and in
particular Theorem 7 in (Benveniste, Priouret, and Métivier
1990)). Similarly, while (Kushner and Yin 2003) has asymp-
totic results on the average of consecutive stochastic approx-
imation iterates with constant step size, it assumes conver-
gence of iterates (assumption A1.7 in Ch. 10) – an assump-
tion we are unable to justify in even simple settings.

Beyond the critical difference in the assumptions, the ma-
jority of the “classical” subject matter seeks to prove asymp-
totic results about different flavors of SGD, but does not
properly consider its use for inference. Key exceptions are
the recent work in (Toulis and Airoldi 2014) and (Chen et
al. 2016), which follow up on (Polyak and Juditsky 1992).
Both of these rely on decreasing step size, for reasons men-
tioned above. The work in (Chen et al. 2016) uses SGD
with decreasing step size for estimating an M -estimate’s co-
variance. Work in (Toulis and Airoldi 2014) studies implicit
SGD with decreasing step size and proves results similar to
(Polyak and Juditsky 1992), however it does not use SGD to
compute confidence intervals.

Overall, to the best of our knowledge, there are no prior
results establishing asymptotic normality for SGD with fixed
step size for general M-estimation problems (that do not rely
on overly restrictive assumptions, as discussed).

5 Experiments

5.1 Synthetic data

The coverage probability is defined as 1
p

∑p
i=1 P[θ

�
i ∈ Ĉi]

where θ� = argminθ E[f(θ,X)] ∈ R
p, and Ĉi is the esti-

mated confidence interval for the ith coordinate. The average
confidence interval width is defined as 1

p

∑p
i=1(Ĉ

u
i − Ĉl

i)

where [Ĉl
i , Ĉ

u
i ] is the estimated confidence interval for the

ith coordinate. In our experiments, coverage probability and
average confidence interval width are estimated through
simulation. We use the empirical quantile of our SGD in-
ference procedure and bootstrap to compute the 95% con-
fidence intervals for each coordinate of the parameter. For
results given as a pair (α, β), it usually indicates (coverage
probability, confidence interval length).

Univariate models In Figure 2, we compare our SGD in-
ference procedure with (i) Bootstrap and (ii) normal ap-
proximation with inverse Fisher information in univariate
models. We observe that our method and Bootstrap have
similar statistical properties. Q-Q plots in the appendix show
of samples from our SGD inference procedure.

Normal distribution mean estimation: Figure 2a compares
500 samples from SGD inference procedure and Bootstrap
versus the distribution N (0, 1/n), using n = 20 i.i.d. sam-
ples from N (0, 1). We used mini batch SGD. For the param-
eters, we used η = 0.8, t = 5, d = 10, b = 20, and mini
batch size of 2. Our SGD inference procedure gives (0.916 ,
0.806), Bootstrap gives (0.926 , 0.841), and normal approx-
imation gives (0.922 , 0.851).
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Figure 2: Estimation in univariate models.

η t = 100 t = 500 t = 2500

0.1 (0.957, 4.41) (0.955, 4.51) (0.960, 4.53)
0.02 (0.869, 3.30) (0.923, 3.77) (0.918, 3.87)
0.004 (0.634, 2.01) (0.862, 3.20) (0.916, 3.70)

(a) Bootstrap (0.941, 4.14), normal approximation (0.928, 3.87)

η t = 100 t = 500 t = 2500

0.1 (0.949, 4.74) (0.962, 4.91) (0.963, 4.94)
0.02 (0.845, 3.37) (0.916, 4.01) (0.927, 4.17)
0.004 (0.616, 2.00) (0.832, 3.30) (0.897, 3.93)

(b) Bootstrap (0.938, 4.47), normal approximation (0.925, 4.18)

Table 1: Linear regression. Left: Experiment 1, Right: Experiment 2.

η t = 100 t = 500 t = 2500

0.1 (0.872, 0.204) (0.937, 0.249) (0.939, 0.258)
0.02 (0.610, 0.112) (0.871, 0.196) (0.926, 0.237)
0.004 (0.312, 0.051) (0.596, 0.111) (0.86, 0.194)

(a) Bootstrap (0.932, 0.253), normal approximation (0.957, 0.264)

η t = 100 t = 500 t = 2500

0.1 (0.859, 0.206) (0.931, 0.255) (0.947, 0.266)
0.02 (0.600, 0.112) (0.847, 0.197) (0.931, 0.244)
0.004 (0.302, 0.051) (0.583, 0.111) (0.851, 0.195)

(b) Bootstrap (0.932, 0.245), normal approximation (0.954, 0.256)

Table 2: Logistic regression. Left: Experiment 1, Right: Experiment 2.

Exponential distribution parameter estimation: Figure 2b
compares 500 samples from inference procedure and Boot-
strap, using n = 100 samples from an exponential distribu-
tion with PDF λe−λx where λ = 1. We used SGD for MLE
with mini batch sampled with replacement. For the parame-
ters, we used η = 0.1, t = 100, d = 5, b = 100, and mini
batch size of 5. Our SGD inference procedure gives (0.922,
0.364), Bootstrap gives (0.942 , 0.392), and normal approx-
imation gives (0.922, 0.393).

Poisson distribution parameter estimation: Figure 2c
compares 500 samples from inference procedure and Boot-
strap, using n = 100 samples from a Poisson distribution
with PDF λxe−λx where λ = 1. We used SGD for MLE
with mini batch sampled with replacement. For the parame-
ters, we used η = 0.1, t = 100, d = 5, b = 100, and mini
batch size of 5. Our SGD inference procedure gives (0.942 ,
0.364), Bootstrap gives (0.946 , 0.386), and normal approx-
imation gives (0.960 , 0.393).

Multivariate models In these experiments, we set d =
100, used mini-batch size of 4, and used 200 SGD samples.
In all cases, we compared with Bootstrap using 200 repli-
cates. We computed the coverage probabilities using 500
simulations. Also, we denote 1p = [1 1 . . . 1]

� ∈ R
p.

Additional simulations comparing covariance matrix com-
puted with different methods are given in the appendix.

Linear regression: Experiment 1: Results for the case
where X ∼ N (0, I) ∈ R

10, Y = w∗TX + ε, w∗ = 1p/
√
p,

and ε ∼ N (0, σ2 = 102) with n = 100 samples is given
in Table 1a. Bootstrap gives (0.941, 4.14), and confidence
intervals computed using the error covariance and normal
approximation gives (0.928, 3.87). Experiment 2: Results
for the case where X ∼ N (0,Σ) ∈ R

10, Σij = 0.3|i−j|,
Y = w∗TX + ε, w∗ = 1p/

√
p, and ε ∼ N (0, σ2 = 102)

with n = 100 samples is given in Table 1b. Bootstrap gives
(0.938, 4.47), and confidence intervals computed using the
error covariance and normal approximation gives (0.925,
4.18).

Logistic regression: Here we show results for logistic re-
gression trained using vanilla SGD with mini batch sampled
with replacement. Results for modified SGD (Sec. 3.3) are
given in the appendix. Experiment 1: Results for the case
where P[Y = +1] = P[Y = −1] = 1/2, X | Y ∼
N (0.01Y 1p/

√
p, I) ∈ R

10 with n = 1000 samples is given
in Table 2a. Bootstrap gives (0.932, 0.245), and confidence
intervals computed using inverse Fisher matrix as the error
covariance and normal approximation gives (0.954, 0.256).
Experiment 2: Results for the case where P[Y = +1] =
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(a) Bootstrap (b) SGD inference covariance

Figure 3: Splice data set

(a) Original “0”: logit -46.3,
CI (-64.2, -27.9)

(b) Adversarial “0”: logit 16.5,
CI (-10.9, 30.5)

Figure 4: MNIST

P[Y = −1] = 1/2, X | Y ∼ N (0.01Y 1p/
√
p,Σ) ∈ R

10,
Σij = 0.2|i−j| with n = 1000 samples is given in Ta-
ble 2b. Bootstrap gives (0.932, 0.253), and confidence in-
tervals computed using inverse Fisher matrix as the error
covariance and normal approximation gives (0.957, 0.264).

5.2 Real data

Here, we compare covariance matrices computed using our
SGD inference procedure, bootstrap, and inverse Fisher in-
formation matrix on the LIBSVM Splice data set, and we
observe that they have similar statistical properties.

Splice data set The Splice data set 3 contains 60 distinct
features with 1000 data samples. This is a classification
problem between two classes of splice junctions in a DNA
sequence. We use a logistic regression model trained using
vanilla SGD.

In Figure 3, we compare the covariance matrix computed
using our SGD inference procedure and bootstrap n = 1000
samples. We used 10000 samples from both bootstrap and
our SGD inference procedure with t = 500, d = 100, η =
0.2, and mini batch size of 6.

MNIST Here, we train a binary logistic regression clas-
sifier to classify 0/1 using a noisy MNIST data set, and
demonstrate that adversarial examples produced by gradient
attack (Goodfellow, Shlens, and Szegedy 2015) (perturbing
an image in the direction of loss function’s gradient with re-
spect to data) can be detected using prediction intervals. We
flatten each 28 × 28 image into a 784 dimensional vector,
and train a linear classifier using pixel values as features. To

3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
binary.html

add noise to each image, where each original pixel is either
0 or 1, we randomly changed 70% pixels to random num-
bers uniformly on [0, 0.9]. Next we train the classifier on the
noisy MNIST data set, and generate adversarial examples
using this noisy MNIST data set. Figure 4 shows each im-
age’s logit value (log P[1|image]

P[0|image] ) and its 95% confidence inter-
val (CI) computed using quantiles from our SGD inference
procedure.

5.3 Discussion

In our experiments, we observed that using a larger step
size η produces accurate results with significantly acceler-
ated convergence time. This might imply that the η term in
Theorem 1’s bound is an artifact of our analysis. Indeed, al-
though Theorem 1 only applies to SGD with fixed step size,
where ηt → ∞ and η2t → 0 imply that the step size should
be smaller when the number of consecutive iterates used for
the average is larger, our experiments suggest that we can
use a (data dependent) constant step size η and only require
ηt → ∞.

In the experiments, our SGD inference procedure uses
(t + d) · S · p operations to produce a sample, and Newton
method uses n · (matrix inversion complexity = Ω(p2)) ·
(number of Newton iterations t) operations to produce a
sample. The experiments therefore suggest that our SGD
inference procedure produces results similar to Bootstrap
while using far fewer operations.
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