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Abstract

Adversarial training has been shown to regularize deep neural
networks in addition to increasing their robustness to adver-
sarial examples. However, the regularization effect on very
deep state of the art networks has not been fully investigated.
In this paper, we present a novel approach to regularize deep
neural networks by perturbing intermediate layer activations
in an efficient manner. We use these perturbations to train
very deep models such as ResNets and WideResNets and
show improvement in performance across datasets of differ-
ent sizes such as CIFAR-10, CIFAR-100 and ImageNet. Our
ablative experiments show that the proposed approach not
only provides stronger regularization compared to Dropout
but also improves adversarial robustness comparable to tradi-
tional adversarial training approaches.

Introduction

Deep neural networks (DNNs) have shown tremendous
success in several computer vision tasks in recent years
[(He et al. 2016),(Schroff, Kalenichenko, and Philbin
2015),(Krizhevsky, Sutskever, and Hinton 2012)]. How-
ever, seminal works on adversarial examples [(Goodfellow,
Shlens, and Szegedy 2014), (Szegedy et al. 2013)] have
shown that DNNs are susceptible to imperceptible pertur-
bations at input and intermediate layer activations. From an
optimization perspective, they also showed that adversarial
training can be used as a regularization approach while train-
ing deep networks. The focus of adversarial training tech-
niques has been to improve network robustness to gradient
based adversarial perturbations. In this work, we propose a
novel variant of adversarial training with a focus to improve
regularization performance on test data.

The proposed approach is efficient and simple to imple-
ment. It uses adversarial perturbations of intermediate layer
activations to provide a stronger regularization compared to
traditional techniques like Dropout (Srivastava et al. 2014).
By generating the perturbations from a different class com-
pared to the current input, we ensure that the resulting per-
turbations in the intermediate layers are directed towards
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an adversarial class. This forces the network to learn robust
representations at each layer resulting in improved discrim-
inability. Even though these perturbations are not adversarial
at the input layer, we show that they are strongly adversarial
when applied at the intermediate layers.

The proposed regularization approach does not add any
significant overhead during training and thus can be easily
extended to very deep neural networks, as shown in our ex-
periments. Our approach complements dropout and achieves
regularization beyond dropout. It avoids over-fitting and
generalizes well by achieving significant improvement in
performance on the test set. We show that the trained net-
work develops robustness against adversarial examples even
when it is not explicitly trained with adversarial inputs.
While previous works have focused on generating adversar-
ial perturbations for standalone images, our work focuses
on using these to efficiently regularize training. We perform
several ablative experiments to highlight the properties of
the proposed approach and present results for very deep
networks such as VGG (Simonyan and Zisserman 2014),
ResNets (He et al. 2016) and state of the art models such as
WideResNets (Zagoruyko and Komodakis 2016) on CIFAR-
10, CIFAR-100 and ImageNet datasets.

Related Work

Many approaches have been proposed to regularize the train-
ing procedure of very deep networks. Early stopping and
statistical techniques like weight decay are commonly used
to prevent overfitting. Specialized techniques such as Drop-
Connect (Wan et al. 2013), Dropout (Srivastava et al. 2014)
have been successfully applied with very deep networks.
Faster convergence of such deep architectures was made
possible by Batch Normalization (BN) (Ioffe and Szegedy
2015). One of the added benefit of BN was that the ad-
ditional regularization provided during training even made
dropout regularization unnecessary in some cases.

The work of Szegedy et al. (Szegedy et al. 2013) showed
the existence of adversarial perturbations for computer vi-
sion tasks by solving a box-constrained optimization ap-
proach to generate these perturbations. They also showed
that training the network by feeding back these adversar-
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ial examples regularizes the training and makes network re-
sistant to adversarial examples. Due to a relatively expen-
sive training procedure, their analysis was limited to small
datasets and shallow networks. (Goodfellow, Shlens, and
Szegedy 2014) proposed the fast gradient sign method to
generate such adversarial examples. They proposed a modi-
fied loss function with an adversarial objective that improves
network robustness. (Miyato et al. 2017) proposed a virtual
adversarial training framework and showed its regularization
benefits for relatively deep models, while incurring addi-
tional computational overhead during training. Furthermore,
recent approaches such as deep contrastive smoothing (Gu
and Rigazio 2014), distillation (Papernot et al. 2016) and
stability training (Zheng et al. 2016) have focused solely
on improving the robustness of deep models to adversarial
inputs. In this work, we present an efficient layerwise ap-
proach to adversarial training and demonstrate its ability as
a strong regularizer for very deep models beyond the spe-
cialized methods mentioned above, in addition to improving
model robustness to adversarial inputs.

Recent theoretical works [(Fawzi, Fawzi, and Frossard
2015), (Fawzi, Moosavi-Dezfooli, and Frossard 2016)] ana-
lyze the effect of random, semi-random and adversarial per-
turbations on classifier robustness. They presented funda-
mental upper bounds on the robustness of classifier which
depends on factors such as curvature of decision boundary
and distinguishability between class cluster centers. Wang et
al. (Wang, Gao, and Qi 2016) point out that the differences
between generalization and robustness by characterizing the
topology of the learned classification function. In this work,
we perform empirical studies that show that the proposed ap-
proach improves performance by suppressing those dimen-
sions that are unnecessary for generalization. In addition, we
observe that pure adversarial training techniques suppress
most dimensions resulting in strong robustness against ad-
versarial examples but less improvement in generalization.
To the best of our knowledge, this is the first work that pro-
vides a comparison between regularization and adversarial
robustness by providing empirical results on very deep net-
works.

Our Approach

In this section, we present the proposed regularization ap-
proach and highlight the differences between related meth-
ods that use adversarial training for regularization. In ad-
dition, we perform a small scale experiment to study the
properties of the proposed approach by analyzing the sin-
gular value spectrum of the Jacobian. We also visualize the
impact of these perturbations on the intermediate layer acti-
vations and conclude by illustrating the connection to robust
optimization.

We start by defining some notation. Let {xi}Ni=1 denote
the set of images and {yi}Ni=1 denote the set of labels. Let
f : x ∈ R

m �→ y ∈ L denote the classifier mapping that
maps the image to a discrete label set, L. In this work, f
is modeled by a deep CNN unless specified otherwise. We
denote the loss function of the deep network by J (θ, x, y)
where θ represents the network parameters and {x, y} are

the input and output respectively. The deep network consists
of L layers and∇lJ (θt, xt, yt) denotes the backpropagated
gradient of the loss function at the output of the lth layer at
iteration t. In the above expression, l = 0 corresponds to the
input layer and l = L− 1, the loss layer. Let xt

l be the input
activation to the lth layer and rtl represents the perturbation
that is added to xt

l . For clarity, we drop the subscript l when
talking about the input layer.

Overview of Adversarial training methods

Previous works on adversarial training have observed that
training the model with adversarial examples acts as a reg-
ularizer and improves the performance of the base network
on the test data. Szegedy et al. (2013) define adversarial per-
turbations r as a solution of a box-constrained optimization
as follows: Given an input x and target label y, they in-
tend to minimize ||r||2 subject to (1) f(x + r) = y and
(2) x + r ∈ [0, 1]m. Note that, if f(x) = y, then the opti-
mization is trivial (i.e. r = 0), hence f(x) �= y. While the
exact minimizer is not unique, they approximate it using a
box-constrained L-BFGS. More concretely, the value of c is
found using line-search for which the minimizer of the fol-
lowing problem satisfies f(x+ r) = ŷ, where ŷ �= y:

argmin
r

c||r||2+J (θ, x+r, y), subject to x+r ∈ [0, 1]m

(1)
This can be interpreted as finding a perturbed image x + r
that is closest to x and is misclassified by f . The train-
ing procedure for the above framework involves optimizing
each layer by using a pool of adversarial examples gener-
ated from previous layers. As a training procedure, this is
rather cumbersome even when applied to shallow networks
having 5-10 layers. To overcome the computational over-
head due to the L-BFGS optimization performed at each in-
termediate layer, (Goodfellow, Shlens, and Szegedy 2014)
propose the Fast Gradient Sign (FGS) method to gener-
ate adversarial examples. By linearizing the cost function
around the value of the model parameters at a given itera-
tion, they obtain a norm constrained perturbation as follows:
rfgs = ε.sign(∇J (θ, x, y)). They show that the perturbed
images x + rfgs reliably cause deep models to misclassify
their inputs. As noted in (Shaham, Yamada, and Negahban
2015), the above formulation for adversarial perturbation
can be understood by looking at a first order approximation
of the loss function J (·) in the neighborhood of the training
sample x:

J̃ (θ, x+ r, y) = J (θ, x, y) + 〈∇J (θ, x, y), r〉 (2)

The FGS solution (rfgs) is the result of maximizing the
second term with respect to r, with a l∞ norm constraint.
They train the network with the following objective function
with an added adversarial objective:

J̃ (θ, x, y) = αJ (θ, x, y) + (1− α)J (θ, x+ rfgs, y) (3)

By training the model with both original inputs and adver-
sarially perturbed inputs, the objective function in 3 makes
the model more robust to adversaries and provides marginal
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improvement in performance on the original test data. Intu-
itively, the FGS procedure can be understood as perturbing
each training sample within a L∞ ball of radius ε, in the
direction that maximally increases the classification loss.

The focus of the adversarial training techniques described
above is to improve a model’s robustness to adversarial ex-
amples. As a by-product, they observe that an adversarial
loss term can also marginally regularize the deep network
training. In this work, we propose a novel approach which is
an extension of the traditional adversarial training. The focus
of our approach is to improve regularization and as an inter-
esting by-product, we observe improvement in adversarial
robustness of the trained model as well.

Proposed Formulation

The proposed approach differs in the following aspects com-
pared to the formulations discussed above: (1) Generat-
ing adversarial perturbations from intermediate layers rather
than just using the input layer (2) Using the gradients from
the previous batch to generate adversarial perturbations for
the activations of the current batch. In order to facilitate
the representation of the intermediate activations in the loss
function, we denote the collection of layerwise responses
as X = {xl}L−1

l=0 and the set of layerwise perturbations
as R = {rl}L−1

l=0 . Then, J (θ,X + R, y) denotes the loss
function where intermediate layer activations are perturbed
according to the set R. The notation used in the previous
section is a special case where X = x and R = rfgs. Now,
consider the following objective to obtain the perturbation
set R:

argmax
R

J (θ,X +R, y)

subject to ||rl||∞ ≤ ε, ∀l, f(X +R) �= y
(4)

Ideally, for each training example x, the solution to the
above problem, consists of generating the perturbation cor-
responding to the maximally confusing class; in other words,
by choosing the class ŷ which maximizes the divergence,
KL(p(y|xL−1), p(ŷ|xL−1)). In the absence of any prior
knowledge about class cooccurences, solving this explicitly
for each training sample for every iteration is time consum-
ing. Hence we propose an approximate solution to this prob-
lem: the gradients computed from the previous sample at
each intermediate layer are cached and used to perturb the
activations of the current sample. In a mini-batch setting,
this amounts to caching the gradients of the previous mini-
batch. To ensure that the class constraint in Eq. 4 is satisfied,
the only requirement is that successive batches have little lat-
eral overlap in terms of class labels. From our experiments,
we observed that any random shuffle of the data satisfies this
requirement. For more discussion on this, please refer to the
experiments section. Given this procedure of accumulating
gradients, we are no longer required to perform an extra gra-
dient descent-ascent step as in the FGS method to generate
perturbations for the current batch. Since the gradient accu-
mulation procedure does not add to the computational cost
during training, this can be seamlessly integrated into any
existing supervised training procedure including even very
deep networks as shown in the experiments.

The training procedure is summarized in Algorithm 1,
where sign(·) denotes the signum function. We add the
gradient accumulation layers after the Batch Normalization
(BN) layer in each convolutional block (conv-BN-relu). In
case the BN layers are not present, we add gradient accu-
mulation layers after each convolution layer. A subtle detail
that is overlooked in the algorithm is that the value of ε is
not constant over all the layers, rather it is normalized by
multiplying with the range of the gradients generated at the
respective layers. During test time, the gradient accumula-
tion layers (Gc) are removed from the trained model.

To understand the effect of the proposed layerwise pertur-
bations described in the previous section, we compare them
with random layerwise perturbations. Figure 2 shows a two
dimensional t-SNE (der Maaten and Hinton 2008) visual-
ization of the embeddings belonging to the penultimate FC-
layer for a range of values of ε, the intensity of the adversar-
ial perturbation.

We used a pretrained VGG network that was trained on
the CIFAR-10 dataset to compute the embeddings for two
randomly chosen classes from the test data. In the bottom
row, the effect of random perturbations with zero mean and
unit standard deviation, applied layerwise on the original
data is also shown. From the visualization and the accuracy
values, it is clear that the proposed perturbations when added
to the original data makes the network misclassify the orig-
inal data. Hence training using these perturbations results
in good regularization and improved robustness. Notice that
even for higher values of ε, the data perturbed by layerwise
random gradient directions remains clearly linearly separa-
ble while the data perturbed by the accumulated gradients is
unable to be distinguished by the base model.

Toy example

In order to acquire a better understanding of the regularizing
properties of the mapping function learned using the pro-
posed approach, we perform a toy experiment using a small
neural network consisting of two fully connected layers of
sizes 1024 and 512. Each fully connected layer is followed
by a hyperbolic tangent activations. We use the grayscale
version of the CIFAR-10 dataset as our testbed and L2 norm
weight decay was applied during training. No data augmen-
tation or other regularization methods such as dropout were
used during training. We train three networks: a baseline net-
work, a network with the gradient accumulation layers (as
in Algorithm 1) added after each fully connected layer and
a network using the FGS training approach. Cross entropy
loss was used to train all the networks. In terms of classifi-
cation accuracy, the proposed method improves the baseline
performance from 39.5% to 43.3% on the original data while
the accuracy of the FGS network is 40.5%.

Singular Value Analysis: To gain a deeper understand-
ing of the encoder mapping learned by each network, we
perform an analysis similar to (Rifai et al. 2011) by com-
puting the singular values of the Jacobian of the encoder.
Since this is a small architecture, we are able to explicitly
compute the Jacobian for each sample in the test set. The
average singular value spectrum of the Jacobian for the test
data is shown in Figure 1. We can make the following ob-
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Algorithm 1 Efficient layerwise adversarial training procedure for improved regularization

1: Inputs: Deep network f with loss function J and parameters θ containing C convolutional blocks. Bt is the batch sampled
at iteration t of size k, with input-output pairs {Xt, Y t}. Gradient accumulation layers {Gc}Cc=1, with stored perturbations
Rt = {rtc}Cc=1, initialized with zero. Perturbation parameter, ε.

2: t=0:
3: Sample a batch {Xt, Y t} of size k images from the training data
4: Perform regular forward pass - Gc’s are not active for t = 0.
5: Perform backward pass using the classification loss function. Each gradient accumulation layer Gc stores the gradient

signal backpropagated to that layer:

rt+1
c = sign(∇cJ (θt, Xt +Rt, Y t)), ∀c = [1, C] (5)

6: for t in 1:|B| − 1 do
7: Sample a batch {Xt, Y t} of size k from the training data
8: Perform forward pass with perturbation: Each gradient accumulation layer acts as follows. Let Xt

c be the input to block
c, then:

Gc(X
t
c) = Xt

c + ε · rtc (6)
9: Perform backward pass updating rtc to rt+1

c for all blocks c as in Eq. 5 above.
10: end for
11: Test time usage: During test time, the gradient accumulation layers (Gc) are removed and f behaves as a standard feed

forward deep network.

servations: (a) The singular value spectrum computed for
ours and FGS approach has fewer dominant singular val-
ues and decays at a much faster rate compared to base net-
work (b) The FGS training suppresses the response of the
network strongly in all the dimensions while our approach
achieves a strong suppression only for trailing dimensions.
This implies that our network is able to better capture data
variations that are relevant for classifying original test data
hence providing improved performance. On the other hand,
FGS achieves slightly improved robustness against adversar-
ial examples compared to our approach by suppressing the
network’s response strongly even in leading dimensions, as
demonstrated in our ablative experiments in the next section.

Figure 1: Average singular value (SV) spectrum showing top
50 SVs for the toy example presented in the text. A model
regularized with the proposed approach is compared with a
FGS regularized model and baseline model with no regular-
ization.

Connection to Robust Optimization

Several regularization problems in machine learning such as
ridge regression, lasso or robust SVMs have been shown to
be instances of a more general robust optimization frame-
work (Sra, Nowozin, and Wright 2012). To point out the

connection between the proposed approach and robust opti-
mization, we borrow the idea of uncertainty sets from (Sha-
ham, Yamada, and Negahban 2015). To explain briefly, an
uncertainty set denoted by U = Bρ(x, ε) represents an ep-
silon ball around x under norm ρ. (Goodfellow, Shlens, and
Szegedy 2014) point out that adversarial training can be
thought of as training with hard examples that strongly resist
classification. Under the setting of uncertainty sets, adver-
sarial training with the FGS method could be seen as gen-
erating the worst case perturbations from the input space
U under the l∞ norm. In this work, we extend the idea of
uncertainty sets from input activations to intermediate layer
activations. This can be thought of as sampling perturba-
tions from the feature space learned by the deep network.
Let Ul represent the uncertainty set of the activation xl at
layer l. Then, the proposed adversarial training approach is
equivalent to sampling perturbations from the intermediate
layer uncertainty sets which makes the feature representa-
tion learned at those layers to become more robust during
training. Moreover, by generating perturbations from inputs
that do not belong to the same class as the current input, the
directions sampled from the uncertainty set tend to move the
perturbed feature representation towards the direction of an
adversarial class. This effect can be observed from the t-SNE
visualization shown in Figure 2.

Experiments

In this section, we provide an experimental analysis of the
proposed approach to show that layerwise adversarial train-
ing improves the performance of the model on the origi-
nal test data and increases robustness to adversarial inputs.
To demonstrate the generality of our training procedure, we
present results on CIFAR-10 and CIFAR-100 (Krizhevsky
and Hinton 2009) using VGG, ResNet-20 and ResNet-56
networks. For the ResNet networks, we use the publicly
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(a) ε = 0, 91.9% (b) ε = 0.02, 69.4% (c) ε = 0.04, 48.2% (d) ε = 0.06, 34.6%

(e) ε = 0, 91.9% (f) ε = 0.02, 91.85% (g) ε = 0.04, 91.9% (h) ε = 0.06, 85.8%

Figure 2: t-SNE visualization of the final fc-layer features of dimension 512 of the VGG network for two randomly chosen
classes of the CIFAR-10 data for different values of the intensity, ε. The top row shows the effect of the perturbations generated
using the proposed approach while the bottom row shows random perturbations of the same intensity. It is clear that the random
perturbations do not affect the linear separability of the data, while the proposed perturbations are extremely effective in leading
the network to misclassify the perturbed data.

available torch implementation (Res 2017). For the VGG
architecture, we use a publicly available implementation
which consists of Batch Normalization (VGG 2017). For
all the experiments, we use the SGD solver with Nesterov
momentum of 0.9. The base learning rate is 0.1 and it is
dropped by 5 every 60 epochs in case of CIFAR-100 and
every 50 epochs in case of CIFAR-10. The total training du-
ration is 300 epochs. We employ random flipping as a data
augmentation procedure and standard mean/std preprocess-
ing was applied conforming to the original implementations.
For the ResNet baseline models, without regularization, we
find that they start overfitting if trained longer and hence we
perform early stopping and report their best results. For the
perturbed models, we find that no early stopping is neces-
sary; the learning continues for a longer duration and shows
good convergence behavior. We refer to the model trained
using the proposed approach described in Algorithm 1 as
Perturbed throughout this section. Dropout was not used
in any of the training procedure in this experiment. We ex-
plicitly compare our approach against dropout in the ablative
experiments. Figure 3 plots the training and test error rates
for the baseline model and the proposed approach. It can be
observed that our method converges faster and achieves bet-
ter generalization error.

Imagenet Experiment: To test the applicability of our
regularization approach over a large scale dataset, we con-
ducted an experiment using the ImageNet dataset (train:
1.2M images, val: 50K images). We used AlexNet as the
base architecture. We used the publicly available implemen-
tation from the torch platform (Ale 2017) and both the base-
line and the regularized models were trained from scratch
to 60 epochs. The classification accuracies obtained were:
Baseline - 56.1%, Proposed - 59.2%, an increase of 3.1%.

Table 1: Classification accuracy (%) on CIFAR-10 and
CIFAR-100 for VGG and Resnet architectures. Results re-
ported are average of 5 runs.

Type (CIFAR-10) Baseline Perturbed
VGG 92.1 ± 0.3 92.65 ± 0.2

Resnet-20 90.27 ± 0.4 91.1 ± 0.3
Resnet-56 91.53 ± 0.3 94.1 ± 0.2

Type (CIFAR-100) Baseline Perturbed
VGG 69.8 ± 0.5 72.3 ± 0.3

Resnet-20 64.0 ± 0.2 66.9 ± 0.3
Resnet-56 68.2 ± 0.4 71.4 ± 0.5

This shows that our approach can significantly improve the
performance of deep neural networks even on a large and
diverse corpus like Imagenet.

Ablative Experiments and Discussion

Comparison with Dropout: We perform an experiment
where we compare the regularization performance of the
proposed adversarial training approach to Dropout. We use
the VGG architecture used in the previous sections and per-
form experiments with and without dropout on CIFAR-10
and CIFAR-100 datasets.

The following observations can be made from Table 2:
(1) The perturbed model performs better than the baseline
model with or without dropout. Thus, the proposed training
improves the performance of even dropout based networks.
(2) On a complex task like CIFAR-100, the proposed adver-
sarial training based regularization gives better performance
compared to that provided by dropout (70.5% (vs) 73.1%).
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(a) CIFAR-10 (b) CIFAR-100

Figure 3: Training and test error rates for VGG network trained on CIFAR-10 and CIFAR-100 datasets. The training errors are
computed using perturbed activations in each epoch. The red color indicates the baseline model and green indicates the model
regularized with the proposed approach, referred as Perturbed in the text. Best viewed in color. Please zoom in for clarity.

Table 2: Comparison of classification accuracy (%)
with/without dropout on CIFAR-10 and CIFAR-100 for the
VGG model

Type (CIFAR-10) Baseline Perturbed
w/o Dropout 92.1 92.7
with Dropout 92.5 93.2

Type (CIFAR-100) Baseline Perturbed
w/o Dropout 69.8 72.3
with Dropout 70.5 73.1

Table 3: Effect of adding gradient accumulation layers in-
crementally (from shallow to deeper layers) throughout the
deep network. The numbers reported are the classification
accuracy using the VGG network on the CIFAR-10 dataset.
Baseline performance is 89.4%. conv1 to indicates we start
adding the gradient accumulation layers from conv1 upto the
mentioned layers such as pool1, pool2 etc.

Layer (conv1 to) pool1 pool2 pool3 pool4 pool5
Accuracy 89.5 89.62 90.24 91.1 91.3

Since the proposed adversarial perturbations are intended to
move the inputs towards directions that strongly resist cor-
rect classification, they are able to create a more discrimina-
tive representation for tasks with a larger number of classes.

Perturbing deeper layers: In this section, we analyze
the effect of adversarial perturbations starting from the low-
est convolutional layers which model edges/shape informa-
tion to the more deeper layers which model abstract con-
cepts. For this experiment, we use the VGG network with
batch normalization that was used in the previous section.
The experiments were performed on the CIFAR-10 dataset.
No data augmentation or dropout is applied. It is clear from
the results in Table 3 that the improvement in performance
due to the proposed layerwise perturbations become sig-
nificant when applied to the deeper layers of the network,
which is in line with the observation made by (Szegedy et al.
2013). While performing layerwise alternate training as pro-
posed by(Szegedy et al. 2013) becomes infeasible for even

Table 4: Comparison of the strength of adversarial examples
between the FGS approach applied at the input and using
the proposed layerwise perturbations. Reported numbers are
classification accuracies for different values of ε.

Type ε = 0 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

FGS (2014) 92.4 53.28 41.58 36.44 33.85
Ours - all layers 92.4 48.56 21.72 14.76 14.19

moderately deep architectures, our training scheme provides
an efficient framework to infuse adversarial perturbations
throughout the structure of very deep models.

Adversarial strength of the proposed perturbations:
Traditional adversarial training techniques improve the per-
formance on adversarial examples by explicitly making the
network robust to adversarial gradient directions. Thus, an
important question that needs to be addressed in light of the
proposed optimization strategy is: Are the gradient direc-
tions generated from the previous mini-batch (as described
in Algorithm 1) adversarial? To answer this question, we
perform an empirical experiment to measure the perfor-
mance of a deep model (3 convolutional layers + 1 fc-layer)
trained using CIFAR-10 training data, on the CIFAR-10 test
data. No adversarial training was used to train this model.
As described earlier, for each test sample, the intermediate
layer activations are perturbed using gradients accumulated
from the previous sample. For comparison, we also show
the performance of the same model on the adversarial data
generated using the FGS method. From the metrics in Ta-
ble 4, it can be observed that using accumulated gradients
from the previous batch as adversarial perturbations results
in a bigger drop in performance. This signifies that the ag-
gregated effect of layerwise perturbations is more adversar-
ial compared to perturbing only the input layer as done in
the FGS approach. We performed an additional experiment
where only the input layer was perturbed using the gradients
of the previous sample instead of perturbing all the interme-
diate layers. We found that this resulted in negligible drop in
the baseline performance, indicating that these gradients are
not adversarial enough when used to perturb only the input.

Variants of the proposed approach: In the proposed
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Table 5: Comparison of classification accuracy (%) between
the different variants of the proposed approach and FGS
method (FGS-orig) for different values of ε

Type 0 0.02 0.04 0.06 0.08 0.1
Baseline 89.4 67.5 49.6 41.2 37.3 34.7

FGS-orig (2014) 88.7 86.4 84.1 81.4 80.5 77.1
FGS-inter 90.9 87.79 83.85 79.65 74.69 69.92
Ours-orig 91.2 87.95 83.84 79.11 73.66 68.37
Ours-joint 91.5 86.07 81.38 75.72 70.25 64.76

training method summarized in Algorithm 1 (referred as
Ours-orig), each batch of inputs is perturbed at intermedi-
ate layers by the gradients accumulated from the previous
batch. In this section, we present an empirical comparison
between the following variants:

• FGS-orig: The original FGS joint loss based adversar-
ial training as proposed by (Goodfellow, Shlens, and
Szegedy 2014) and shown in Eq. (3). We used a value of
α = 0.5; we did not find other values yield any significant
improvements.

• FGS-inter: In this setting, different from (Goodfellow,
Shlens, and Szegedy 2014), we use the FGS gradients to
perturb the intermediate layer activations and use the joint
loss with α = 0.5.

• Ours-joint: This setting is same as Ours-orig with the ex-
ception that we use the joint loss formulation with α =
0.5. Note that, Ours-orig corresponds to setting where
α = 0

All the models are trained on the CIFAR-10 dataset. No
data augmentation or dropout regularization is applied. The
training parameters are similar to the ones used in the previ-
ous section. We generate adversarial test data for the CIFAR-
10 test dataset using the FGS method, since it has been
shown to generate adversarial examples reliably. We then
test the models on the original and adversarial test data for
different values of the adversarial strength ε. Table 5 shows
the results of the different training strategies. ε = 0 corre-
sponds to the original test data and other values of ε indicate
the strength of adversarial FGS perturbation added to the
input image. From these results, we make the following ob-
servations: (1) Approaches based on perturbing intermedi-
ate layers (FGS-inter,Ours-orig,Ours-joint) improve the per-
formance on the original data significantly as compared to
perturbing only the input but they marginally decrease the
adversarial test performance. (2) On the other hand, perturb-
ing only the input layer (FGS-orig) yields the best adversar-
ial test performance among the compared approaches while
performing marginally worse than the baseline on the origi-
nal test data. These observations indicate the possibility of a
trade-off that exists between adversarial robustness and reg-
ularization effect over clean data. Referring to the toy exam-
ple described earlier, the singular value analysis performed
there also supports our claim that methods which impart ad-
versarial robustness tend to suppress sensitivity of the model
in all the dominant directions; while the proposed approach
provides a nice trade-off by retaining those directions which
are essential for modeling the variations in the training data.

Table 6: Classification error rates (%) on CIFAR-10 and
CIFAR-100 for WideResNet (WRN) architectures. Our re-
sults are reported as average of 5 runs. For comparison we
provide the published WRN baseline results. (∗) denotes the
results obtained by a single run.

Model #params CIFAR-10 CIFAR-100
WRN-28-10 (2016) 36.5M 4.00 19.25

WRN-28-10 with dropout (2016) 36.5M 3.89 18.85
WRN-40-10 with dropout∗ (2016) 51.0M 3.8 18.3

WRN-28-10 - Ours 36.5M 3.62 ± 0.05 17.1 ± 0.1

This ensures that our approach results in better regulariza-
tion performance on clean data while providing comparable
robustness on adversarial data.

Results on WideResNet models: Wide Residual Net-
works are recently proposed deep architectures that gener-
ated state of the art results on CIFAR-10 and CIFAR-100
datasets. In this experiment, we use their publicly available
implementation and train them from randomly initialized
weights using the proposed approach using the parameter
settings described in the experiments section. Specifically,
the Ours-joint approach described in the previous section is
used for training. As data augmentation, we applied flipping
and random cropping as done in their native implementation.
The results are shown in Table 6. For the compared methods,
we quote their published accuracy values. It can be observed
that the proposed approach results in improved performance
compared to both the baseline model and the model regu-
larized with dropout. This demonstrates the generalization
ability of our approach to state of art deep models.

Generalization to non-image signals: In this work, we
have considered adversarial perturbations in the space of
natural images. The existence of adversarial perturbations
has been shown to exist in other types of signals that oc-
cur in speech recognition ((Serdyuk et al. 2016), (Carlini
et al. 2016)) and language processing tasks (Miyato, Dai,
and Goodfellow 2016). While the focus of the this paper has
been images, there exists a natural extension of our frame-
work to the above modalities. Such an extension is trivially
possible since end-to-end learning systems such as deep net-
works are used in speech and language tasks as well. As fu-
ture work, we propose to extend the current approach to ex-
plore robustness aspects of deep networks trained on modal-
ities other than images.

Summary and Conclusion

While the behavior of CNNs to adversarial data has gen-
erated some intrigue in computer vision since the work of
(Szegedy et al. 2013), its effects on deeper networks have
not been explored well. We observe that adversarial pertur-
bations for hidden layer activations generalize across differ-
ent samples and we leverage this observation to devise an
efficient regularization approach that could be used to train
very deep architectures. Through our experiments and anal-
ysis we make the following observations: (1) Contrary to
recent methods which are inconclusive about the role of per-
turbing intermediate layers of a DNN in adversarial training,
we have shown that for very deep networks, they play a sig-
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nificant role in providing a strong regularization (2) The ag-
gregated adversarial effect of perturbing intermediate layer
activations is much stronger than perturbing only the input
(3) Significant improvement in classification accuracy en-
tails capturing more variations in the data distribution while
adversarial robustness can be improved by suppressing the
unnecessary variations learned by the network . By provid-
ing an efficient adversarial training approach that could be
used to regularize very deep models, we hope that this can
inspire more robust network designs in the future.
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